
Control Architecture for Tuning Intensity and Burstiness of Traffic
Qiong Li David L. Mills

Wireless Communications and Networking Department Department of Electrical and Computer Engineering

Philips Research USA University of Delaware

345 Scarborough Road, Briarcliff Manor, NY 10510 Newark, DE 19716

qiong-stan.li@philips.com mills@udel.edu

Abstract—In this paper we explore a control architecture that
can implement active queue management and transport control.
For queue management, two independent metrics — utilization
factor � and burstiness factor�, are used to characterize queue-
ing congestion state. Consequently, two information bits are gen-
erated to guide the sender’s adaptation of traffic intensity and
burstiness. Transport control is achieved through the combina-
tion of a window and a token bucket that can respond to the two-
bit feedback properly. Preliminary simulation study shows that
this architecture can easily achieve a specified throughput and
constrain both queueing delay and delay jitter within specified
bounds.

I. INTRODUCTION

Congestion control can be done either solely by the end sys-
tems, as for TCP [1], Packet-Pair [2] and the equation-based
scheme [3], or by cooperation between end-systems and net-
work routers, such as in DECnet [4], RED + ECN-TCP [5], [6],
REM [7] and ERICA [8] for ABR ATM. Traffic adjustment in
a control scheme can be either window-based, as for TCP, or
rated-based, as in ERICA. The performance of these schemes
and similar ones has been extensively investigated by means of
simulation [9], fluid models [10], control theoretic approaches
[11], [2] and optimization problems [12]. A common property
of these schemes is that they all use single control loops.

In this paper, we explore an architecture that can realize
queue management and transport control functionalities with
two decoupled control loops, so it can implement both traffic
intensity and burstiness controls simultaneously and indepen-
dently.

The queue management algorithm uses two parameters —
the link utilization factor � and a so-called burstiness factor �
(see Section II-B for definition) to characterize queuing state,
and generates two bits of feedback information (�-bit and �-
bit) to indicate congestion. We call this mechanism Two-
Dimensional Queue Management (TDQM).

Transport control is performed through the combination of a
window and a token bucket that can not only achieve reliable
delivery, but also decouple receiver buffer protection from rate
control, and from burstiness control.

The two loops (�-loop and �-loop) are designed to control
different aspects of networking systems. The �-loop is used to
maintain system stability and robustness (or first-order behav-
ior), while the �-loop is used to control high frequency varia-
tions in either traffic intensity or system transient performance

(or second-order behavior). In this paper, we present the princi-
ples behind this control architecture and test its control benefits
through simulation. Preliminary results show that the system
can yield a higher throughput while maintaining smaller delays
and delay jitter than when only one loop, such as �-loop, exists.

The rest of this paper is organized as follows. Section II and
III present the two components of our control architecture and
their algorithms. Section IV presents ns-2 simulation results.
We conclude in Section V with comments on future work.

II. TDQM

TDQM is similar in spirit to RED [5] except that it uses a
two-dimensional – � and � – model, to characterize queueing
behavior. In the following, we introduce the algorithms for cal-
culating � and �.

A. Utilization Factor

To measure real-time � (� ��� by definition), we set an ob-
servation time window ��. The measured � is the average within
the time period ��.

The specification of �� is vital to the control of queueing be-
havior. Assume � �� is the total busy time of the queue in ��, and
���� is the control reference. We can easily show that:

�� �� � ���� ��� (1)

Therefore, if ���� 	 �, the �-loop control tends to break up
long busy periods into smaller ones that are of the order of
���� ��. We recommend that �� be chosen of the order of the
queue buffer drainage time.

B. Burstiness Factor

Let
 ��� be the queueing delay. An instance
 ��� of a busy
period is shown in Figure 1, in which �� and �� are the start time
and the span time of this busy period, respectively. � is defined
as:

� �

� �����

��

 �����

������
� (2)

Equation (2) shows that � (� �) is the ratio between the area
under the
 ��� and that of the dotted triangle shown in Figure 1.

Let
�� � �

��

� �����

��

 ����� be the average of
 ��� in this

busy period. Equation (2) can be simplified as � � �
 �����.

�

�

��

�
�
��
�
�
�
�
�
��

.....
....

.....
.....

....
.....

....
.....

................................

� ���

��� �� � ��

Fig. 1. An instance of queue busy period.

Therefore, another way to look at (2) is that it expresses the
double of the growth rate of the average queue in this busy pe-
riod.
� has the following characteristics:
� Since � characterizes the growth rate of the average queue

in a busy period, it is only related to high-order traffic
statistics.

� Since � is determined only by first-order traffic statistics,
� and � are independent. Consequently, the two control
loops are decoupled.

� Both � and � are dimensionless, and change in the same
range of [0, 1]. We assume
 ��� has been normalized by
the link speed.

� For the extreme bursty case, such as when all packets
served in the same busy period arrive at the same time, we
have � � �, while for the smoothest case, such as when
the packets are evenly scattered in the busy period, we then
have � � �, implying that � can somehow monotonically
indicate the burstiness of arrivals.

In practice, we define a minimum value ��. Only when the
length of a busy period is larger than �� will it invoke the calcu-
lation of �. Tiny busy periods are merged together, and treated
as a single artificial busy period. When the time scale of the
artificial one ��, a round of � calculation is then launched.

C. Packet Marking Scheme

TDQM marks the packet header with two bits (called �-bit
and �-bit, respectively). The marking scheme is similar to
RED. A general algorithm is shown in Figure 2.

As in RED, the TDQM scheme needs the support of filter
algorithms to calculate ��, ��, �� and �	 . These algorithms are
very similar to that used in RED [5]. Due to space limitations,
we do not repeat them here.

III. TRANSPORT CONTROL

In this section, we present a skeleton design of a transport
control protocol, which can adjust both the sending rate and the
burstiness of traffic with the aid of TDQM.

for each packet arrival
calculate the average utilization factor ��
if ������ � �� � ������

calculate probability ��
with probability ��, mark the arriving packet with a �-bit

else if ������ � ��
mark the arriving packet with a �-bit

calculate the average burstiness factor �	
if ������ � �	 � ������

calculate probability ��
with probability �� , mark the arriving packet with a 	-bit

else if ������ � �	
mark the arriving packet with a 	-bit

Fig. 2. A general algorithm of TDQM

A. Control Model

The current flow control model of TCP is a mono-window
model. In the mono-window model, a single window is used to
play three roles:

� tracking the sent data to achieve reliability
� receiver buffer protection
� network congestion control

There is some inefficiency with the mono-window model.
First, the TCP sender uses the returned ACKs as a “clock” to
step forward and open up the control window [1]. The ide-
alized stable state scenario behind the original design of the
TCP flow control is that each ACK serves as a signal to indi-
cate that a packet has been safely delivered to the receiver, and
the buffer within the network used to hold this packet is emptied
(or more precisely, a unit of the network pipe is empty). Each
new ACK warrants the sender to inject a new packet into the
network. Therefore, the mono-window model actually accom-
plishes buffer resource control. With the growth in scale and us-
age of computer networks, network buffers are heavily shared
by huge number of various flows that are statistically multi-
plexed together. The dynamics and the burstiness of the merged
traffic have broken the idealized stable state scenario of the TCP
flow control—a new ACK cannot guarantee the existence of
empty buffer in the network. In this situation, it may be de-
sirable to tune the control mechanism from the current precise
ACK-clocking to a statistical ACK-clocking, meaning that each
new ACK may not necessarily and immediately clock a new
packet into the network, but rather certain statistical congestion
measurements derived or explicitly piggybacked by ACKs may
preferably be used to adapt the sender behavior.

Second, since the receiver buffer state is independent of the
network congestion state, the functionalities for buffer protec-
tion and network congestion control should be decoupled from
each other. An ideal flow control model should be able to
respond to different state changes independently. The mono-
window model lacks the flexibility to decouple the control func-
tionalities, and jeopardizes the control efficiency under some
conditions. To overcome the inefficiency of mono-window con-
trol model, a dual-window control model, which decouples re-
ceiver buffer protection from congestion control, was first in-
troduced in [13].

Although the dual-window model decouples the receiver
buffer state and network congestion state, it is still not suffi-
cient enough to use a single window to track network conges-
tion state changes. The reason is that, the congestion could
be caused by either traffic intensity or traffic burstiness, which
may not be easily distinguished by single window. To over-
come this inefficiency and harmonize with TDQM, we propose
a new control model as below.

Our control model is illustrated in Figure 3. This model
maintains two control windows (�� and �
) and a token
bucket (TB). �� plays two control roles: tracking the sent data
to achieve reliability and protecting the receiver buffer. �
,
a virtual window controlling the generating rate of tokens to
TB, is adapted by the �-bit of TDQM. The TB has a capacity
limit (��) on its stored tokens (the maximum number of tokens
that can be found in the bucket at any time). When the number
of stored tokens in the bucket reaches ��, further tokens will
be discarded (token overflow). �� is adapted by the �-bit of
TDQM, therefore, �� essentially controls the burstiness of the
sender. Also in this figure, TDQM is responsible for marking
packets when necessary based on congestion states. If a packet
is marked with either or both of the bits, the receiver will echo
them back in the following ACK packet.

B. Operation and Property

The operation of the control model is briefly described below.
Interested readers may refer to [14] for details.
Criteria for Packet Output : A packet is sent only if its se-
quence number (��) falls in window �� and TB is not empty.
Each packet consumes a token from TB.
�� Adaptation: Always set to receiver buffer size, as explic-
itly communicated as being available by the receiver.
�
 Adaptation: Adapted by ACKs marked with a �-bit in a
similar way to RED+ECN-TCP.
Token Generation: A variable rate Poisson process governs
the token arrivals to the token packet. See Section III-C for
details.
�� Adaptation: Initialized to a maximum (���), and then
adapted down exponentially by ACKs marked with an �-bit, or
up linearly by un-marked ACKs if �� 	 ���. Always keeps
� � �� � ���. If �� reaches 1,�
 is decreased exponentially
using the �-bit instead.

This control model has the following properties.
� Decouples congestion control from buffer protection, and

burstiness control from rate control.
� The randomness introduced by the token generation pro-

cess can partially suppress the potential phase effect of
multiple senders. The output of each sender conforms to
the leaky bucket model [15] except the model parameters
are adapted by TDQM and the receiver, so that the traffic
intensity and burstiness can be tuned independently.

� Serves both stream-like traffic (FTP) and impulse-like
transaction traffic very well.

� The token generation rate can be proportional to, but not
necessarily equal to, �
���� , leaving one more degree

of freedom in adapting the sending rate (see the discussion
in next section).

C. Token Generation

In order to mimic TCP behavior, the rate of the token gen-
eration process is designed to be adaptively proportional to
�
���� , which has the dimension of packet/second. Figure 4
shows a general algorithm for token generation.

whenever the token generation timer expires
if there is an uncleared timeout event

keep only one token in the bucket
else if the number of stored tokens does not reach bucket limit

push one more token into the bucket
generate an exponentially distributed random number rand

with mean equal to
���
��

reschedule the token generation timer at rand

Fig. 4. The token generation algorithm

As shown in this algorithm the rate can be adjusted by vary-
ing �. If � �, then the rate will be less than�
���� , imply-
ing less aggressive than normal TCP. This feature is very useful
especially when the router is so nearly full that each flow’s fair
share is less than one packet per round-trip time. By choosing
� �, the sender can decrease the rate to less than one to-
ken per round-trip time. Conversely, if � 	 �, the sender will
be more aggressive than normal TCP. In cases where only a few
flows share a huge pipe, each flow should be increased more ag-
gressively than normal linear adaptation to exploit unused link
capacity quickly.

IV. SIMULATION

In this section, we explore the performance of our control
architecture using simulator ns-2 [16]. We extended ns-2 to
support our control model.

A. Simulated Network

Figure 5 shows the topology of the simulated network. Node
1 is a TDQM-enabled router. All user nodes comprise modified
TCP senders capable of implementing our designed controls.
Node 0 is a common sink. Link A, with a bandwidth of 45
Mbps, is the bottleneck of the network. All other links have
much higher capacities, such as 1 Gbps. Node 2 is comprises a
ping agent for measuring path delays whenever we want.

Other common settings of the simulation: maximum values
of ��, �
 and �� are all set to 240, packet size to 1000 bytes;
delay of link A to 40 ms, queue buffer to 240 packets, and de-
lays of other links to 1 ms.

Two types of traffic generators were used: infinite FTP
sources and impulse sources. Impulse sources can be con-
structed by configuring an Exponential On/Off traffic generator
of ns-2 with a very short On period but a relatively long Off
period. We set up 30 user nodes in the simulation.

Application Data

Acked Unacked

Left edge Right edge

TDQM

Receiver

η-bit

ρ-bit

bW

pW

cT

Virtual window

Packet to send

Consume
 a token

Cross traffic

Available buffer to adapt bW

Generate token
at rate rttWp /

Adapt

Adapt

pW

cT

Fig. 3. The architecture of the TCP Newark control model.

12 0
A

ping agent router sinker

users

Fig. 5. The topology of the simulated network

B. Results

We have conducted extensive simulation studies on the dy-
namic performance and robust properties of our control archi-
tecture with various TDQM settings and different combinations
of traffic sources. Due to space limitations, we only present one
simulation case here to illustrate the obvious benefits of having
two decoupled control loops. We also summarize the observa-
tions from our other simulations following this case study.

In this case, half of the user nodes comprise infi-
nite FTP sources and the other half impulse sources.
	������ �������
 � 	���� ���
. 	���	�� ����	��
 = 	���� ���

or 	���� ���
. With settings of �-loop of 	���� ���
, this loop is
essentially disabled. We run the simulation 50 times; each run
lasts for 100 sec of simulation time. Half of the runs have the
�-loop enabled while the other half have it disabled. In all
runs, we set �� to half of the queue buffer drainage time and
�� � ����� �� (corresponding to a busy period of three packets).

Figure 6 shows the average � and average queue length of
each simulation. We can clearly see the benefits of having the
�-loop control: under the same �-loop settings and statistically
similar traffic conditions, when �-loop is enabled, the simula-
tions show higher throughput, which is closer to the configured
range [0.9,1.0], but shorter queue lengths than when �-loop is
disabled.

Other observations of our simulations:

� The �-loop is essential to the stability of the network.
Without this loop, periodic buffer overflow will occur. It
can also effectively regulate the traffic so that resource
consumption will not exceed a configured utilization fac-
tor. The �-loop can fine tune the dynamic behavior of the
queue, such as maintaining a smoother queue variation,
generating smaller delay jitter.

� Both loops can reach stable states within 12 round-trip
times. Simulated � oscillates around its settings as pre-
dicted by the fluid model in [14]. � also changes around
its settings in a small range.

0 5 10 15 20 25
0.6

0.7

0.8

0.9

simulation index

av
er

ag
e

ρ

enabled
disabled

(a)

0 5 10 15 20 25
2

3

4

5

6

7

simulation index

av
g.

 q
ue

ue
 le

ng
th

 (
pk

ts
)

enabled
disabled

(b)
Fig. 6. (a) the average �’s, and (b) the average queue lengths, with 	-loop enabled and disabled .

� Window �
 adapts in a way similar to normal TCP con-
gestion control window, and token limit �� decreases ex-
ponentially from its maximum to a stable range.

� Token accumulation is observed in senders that com-
prise impulse sources, implying that the transport con-
trol can sustain a certain burstiness, which is desirable for
medium-sized transaction-style exchanges.

More simulation results can be found in our previous work
[14].

V. SUMMARY AND DISCUSSION

In this paper we explored an interesting control architecture
that can independently tune traffic intensity and burstiness. Un-
like conventional control models that use only a single metric
(such as either rate/utilization factor, or smoothed queue length)
to characterize queueing behavior, our control model uses two
independent metrics — the utilization factor (�) and a newly
introduced burstiness factor (�) to characterize queueing state.
Consequently, two decoupled control loops (�-loop and �-loop)
can be established: one for system robustness control (first-
order control) and the other for burstiness control (second-order
control).

Studies have shown that single-metric models have limita-
tions. For example, using rate alone may lead to an unstable
system. Also, since queue length is a combined result of both
traffic intensity and burstiness, using smoothed queue length
as control metric may not be sufficient to guide source adapta-
tion, since it may not be clear to the source whether it should
decrease sending rate, or just smooth out burstiness. It was
reported that the RED queue suffers from configuration diffi-
culties in practice; this may be related to the limitations of its
single-metric model.

We realize that our architecture is not fully compatible with
the current Internet control model which utilizes only single-bit
feedback. However, we think it is worthwhile to think outside
the current framework so we may cast new insight on the same
issue and help us improve our design even within the current
framework.

This paper describes only a simplistic investigation of this
control architecture. More simulations are necessary to demon-
strate the advantages of this architecture over others, such as
RED + ECN-TCP. Also, some algorithms employed by this ar-
chitecture need to be further investigated.

REFERENCES

[1] V. Jacobson, “Congestion avoidance and control,” in Proceedings of ACM
SIGCOMM’88, Stanford, CA, 1988, pp. 314–329.

[2] S. Keshav, “A control-theoretic approach to flow control,” in Proceedings
of ACM SIGCOMM’91, Zurich, Switzerland, Sept. 1991.

[3] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based con-
gestion control for unicast applications,” in Proceedings of ACM SIG-
COMM 2000, Aug. 2000.

[4] K. K. Ramakrishnan and R. Jain, “A binary feedback scheme for con-
gestion avoidance in computer networks with a connectionless network
layer,” in Proceedings of ACM SIGCOMM’88, Standford, CA, Aug.
1988, pp. 303–313.

[5] S. Floyd and V. Jacobson, “Random early detection gateways for conges-
tion avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no. 4,
pp. 397–413, Aug. 1993.

[6] S. Floyd, “TCP and explicit congestion notification,” ACM Computer
Communications Review, vol. 21, no. 6, pp. 8–23, 1994.

[7] D. E. Lapsley and S. H. Low, “Random early marking for internet con-
gestion control,” in Proceedings of IEEE Globecom’99, Dec. 1999.

[8] S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, and B. Vandalore, “The
ERICA switch algorithm for ABR traffic management in ATM networks,”
IEEE/ACM Transactions on Networking, vol. 8, no. 1, pp. 87–98, Feb.
2000.

[9] D. Lin and R. Morris, “Dynamics of random early detection,” in Pro-
ceedings of ACM/SIGCOMM, 1997.

[10] V. Misra, W. B. Gong, and D. Towsley, “Fluid-based analysis for a net-
work of ARQ routers supporting TCP flows with an application to RED,”
in Proceeding of ACM/SIGCOMM, 2000.

[11] S. Shenker, “A theoretical analysis of feedback flow control,” in Proceed-
ings of ACM SIGCOMM’90, Philadelphia, PA, Sept. 1990, pp. 156–165.

[12] S. H. Low and D. E. Lapsley, “Optimization flow control, I: Basic algo-
rithm and convergence,” IEEE/ACM Transactions on Networking, vol. 7,
no. 6, pp. 861–874, Dec. 1999.

[13] Z. Wang and J. Crowcroft, “A dual-window model for flow and conges-
tion control,” The Distributed Computing Engineering Journal, Institute
of Physics/British Computer Society/IEE, vol. 1, no. 3, pp. 162–172, May
1994.

[14] Qiong Li, Delay Characterization and Performance Control of Wide-Area
Networks, Ph.D Thesis, University of Delaware, 2000.

[15] J. Turner, “New directions in communications,” IEEE Communications
Magazine, vol. 24, pp. 8–15, Oct. 1986.

[16] DARPA funded VINT project, “UCB/LBNL/VINT network simulator -
ns (version 2),” see http://www-mash.cs.berkeley.edu/ns, 1996.

