
Precision Synchronization of Computer Network Clocks 1,2,3

David L. Mills
Electrical Engineering Department

University of Delaware

Abstract

This paper builds on previous work involving the Network Time Protocol, which is used to
synchronize computer clocks in the Internet. It describes a series of incremental improvements in
system hardware and software which result in significantly better accuracy and stability, especially
in primary time servers directly synchronized to radio or satellite time services. These improvements
include novel interfacing techniques and operating system features. The goal in this effort is to
improve the synchronization accuracy for fast computers and networks from the tens of milliseconds
regime of the present technology to the submillisecond regime of the future.

In order to assess how well these improvements work, a series of experiments is described in which
the error contributions of various modern Unix system hardware and software components are
calibrated. These experiments define the accuracy and stability expectations of the computer clock
and establish its design parameters with respect to time and frequency error tolerances. The paper
concludes that submillisecond accuracies are indeed practical, but that further improvements will be
possible only through the use of temperature-compensated local clock oscillators.

Keywords: disciplined oscillator, computer clock, net-
work time synchronization.

1. Introduction

This is one of a series of reports and papers on the
technology of synchronizing clocks in computer net-
works. Previous works have described The Network
Time Protocol (NTP) used to synchronize computer net-
work clocks in the Internet [MIL91a], modeling and
analysis of computer clocks [MIL92b], the chronology
and metrology of network timescales [MIL91b], and
measurement programs designed to establish the accu-
racy, stability and reliability in service [MIL90]. This
paper, which is a condensation of [MIL93], presents a
series of design improvements in interface hardware,
input/output driver software and Unix operating system
kernel software which improve the accuracy and stability
of the local clock, especially when directly synchronized
via radio or satellite to national time standards. Included
are descriptions of engineered software refinements in
the form of modified driver and kernel code that reduce
jitter relative to a precision timing source to the order of
a few tens of microseconds and timekeeping accuracy for

workstations on a common Ethernet to the order of a few
hundred microseconds.

This paper begins with an introduction describing the
NTP architecture and protocol and the local clock, which
is modeled as a disciplined oscillator and implemented
as a phase-lock loop (PLL). It describes several methods
designed to reduce clock reading errors due to various
causes at the hardware, driver and operating system
level. Some of these methods involve new or modified
device drivers which reduce latencies well below the
original system design. Others allow the use of special
PPS and IRIG signals generated by some radio clocks,
together with the audio codec included in some worksta-
tions, to avoid the latencies involved in reading serial
ASCII timecodes. Still others involve surgery on the
timekeeping software of three different Unix kernels for
Sun Microsystems and Digital Equipment machines.

The paper continues with descriptions of several experi-
ments intended to calibrate the success of these improve-
ments with respect to accuracy and stability. They
establish the latencies in reading the local clock, the
errors accumulated in synchronizing one computer clock

1 Sponsored by: Advanced Research Projects Agency under NASA Ames Research Center contract NAG 2-638,
National Science Foundation grant NCR-93-01002 and U.S. Navy Surface Weapons Center under Northeastern
Center for Engineering Education contract A30327-93.

2 Author’s address: Electrical Engineering Department, University of Delaware, Newark, DE 19716; Internet mail:
mills@udel.edu.

3 Reprinted from: Mills, D.L. Precision synchronization of computer network clocks. ACM Computer Communication
Review 24, 2 (April 1994). 16 pp.

to another and the errors due to the intrinsic instability of
the local clock oscillator. The paper concludes that it is
indeed possible to achieve reliable synchronization to
within a few hundred microseconds on an Ethernet or
FDDI network using fast, modern workstations, and that
the most important factor in limiting the accuracy is the
stability of the local clock oscillator.

2. Network Time Protocol

The Network Time Protocol (NTP) is used by Internet
time servers and their clients to synchronize clocks, as
well as automatically organize and maintain the time
synchronization subnet itself. It is evolved from the Time
Protocol [POS83] and the ICMP Timestamp Message
[DAR81b], but is specifically designed for high accu-
racy, stability and reliability, even when used over typi-
cal Internet paths involving multiple gateways and
unreliable networks. This section contains an overview
of the architecture and algorithms used in NTP. A de-
tailed description of the architecture and service model
is contained in [MIL91a], while the current protocol
specification, designated NTP Version 3, is defined by
RFC-1305 [MIL92a]. A subset of the protocol, desig-
nated Simple Network Time Protocol (SNTP), is de-
scribed in RFC-1361 [MIL92c].

NTP and its implementations have evolved and prolifer-
ated in the Internet over the last decade, with NTP
Version 2 adopted as an Internet Standard (Recom-
mended) [MIL89] and its successor NTP Version 3
adopted as a Internet Standard (Draft) [MIL92a]. NTP is
built on the Internet Protocol (IP) [DAR81a] and User
Datagram Protocol (UDP) [POS80], which provide a
connectionless transport mechanism; however, it is read-
ily adaptable to other protocol suites. The protocol can
operate in several modes appropriate to different scenar-
ios involving private workstations, public servers and
various subnet configurations. A lightweight associa-
tion-management capability, including dynamic reacha-
bility and variable poll-interval mechanisms, is used to
manage state information and reduce resource require-
ments. Optional features include message authentication

based on DES and MD5 algorithms, as well as provisions
for remote control and monitoring.

In NTP one or more primary servers synchronize directly
to external reference sources such as radio clocks. Sec-
ondary time servers synchronize to the primary servers
and others in the synchronization subnet. A typical sub-
net is shown in Figure 1a, in which the nodes represent
subnet servers, with normal level or stratum numbers
determined by the hop count from the primary (stratum
1) server, and the heavy lines the active synchronization
paths and direction of timing information flow. The light
lines represent backup synchronization paths where tim-
ing information is exchanged, but not necessarily used to
synchronize the local clocks. Figure 1b shows the same
subnet, but with the line marked x out of service. The
subnet has reconfigured itself automatically to use
backup paths, with the result that one of the servers has
dropped from stratum 2 to stratum 3. In practice each
NTP server synchronizes with several other servers in
order to survive outages and Byzantine failures using
methods similar to those described in [SHI87].

Figure 2 shows the overall organization of the NTP time
server model, which has much in common with the
phase-lock methods summarized in [RAM90]. Times-
tamps exchanged between the server and possibly many
other subnet peers are used to determine individual
roundtrip delays and clock offsets, as well as provide
reliable error bounds. As shown in the figure, the com-
puted delays and offsets for each peer are processed by
the clock filter algorithm to reduce incidental time jitter.
As described in [MIL92a], this algorithm selects from
among the last several samples the one with minimum
delay and presents the associated offset as the output.

1

2 2

3 3 3

1

2 3

3 3 3

(a) (b)

x

Figure 1. Subnet Synchronization Topologies

Clock Filter

Clock Filter

Clock Filter

Clock Selection
Clock

Combining
Loop Filter

NCO

Network

Phase-Locked Oscillator

Figure 2. Network Time Protocol

2

The clock selection algorithm determines from among
all peers a suitable subset capable of providing the most
accurate and trustworthy time using principles similar to
those described in [VAS88]. This is done using a cascade
of two subalgorithms, one based on interval intersections
to cast out faulty peers [MAR85] and the other based on
clustering and maximum likelihood principles to im-
prove accuracy [MIL91a]. The resulting offsets of this
subset are first combined on a weighted-average basis
using the algorithm described in [MIL92a] and then
processed by a phase-lock loop (PLL) using the algo-
rithms described in [MIL92b]. In the PLL the combined
effects of the filtering, selection and combining opera-
tions are to produce a phase correction term, which is
processed by the loop filter to control the numeric-con-
trolled oscillator (NCO) frequency. The NCO is imple-
mented as an adjustable-rate counter using a
combination of hardware and software components. It
furnishes the phase (timing) reference to produce the
timestamps used in all timing calculations.

Figure 3 shows how NTP timestamps are numbered and
exchanged between peers A and B. Let T1, T2, T3, T4 be
the values of the four most recent timestamps as shown
and, without loss of generality, assume T3 > T2. Also, for
the moment assume the clocks of A and B are stable and
run at the same rate. Let

a = T2 − T1 and b = T3 − T4 .

If the delay difference from A to B and from B to A, called
differential delay, is small, the roundtrip delay δ and
clock offset θ of B relative to A at time T4 are close to

δ = a − b and θ =
a + b

2
.

Each NTP message includes the latest three timestamps
T1, T2 and T3, while the fourth timestamp T4 is deter-
mined upon arrival of the message. Thus, both peers A
and B can independently calculate delay and offset using
a single bidirectional message stream. This is a symmet-
ric, continuously sampled, time-transfer scheme similar
to those used in some digital telephone networks
[LIN80]. Among its advantages are that errors due to
missing or duplicated messages are avoided (see

[MIL92b] and [MIL93] for an extended discussion of
these issues and a comprehensive analysis of errors).

2.1. The NTP Local Clock Model

The Unix 4.3bsd clock model requires a periodic hard-
ware timer interrupt produced by an oscillator operating
in the 100-1000 Hz range. Each interrupt causes an
increment tick to be added to the kernel time variable.
The value of the increment is chosen so that the counter,
plus an initial offset established by the settimeofday()
call, is equal to the time of day in seconds and microsec-
onds. When the tick does not evenly divide the second in
microseconds, an additional increment fixtick is added to
the kernel time once each second to make up the differ-
ence.

The Unix clock can actually run at three different rates,
one at the intrinsic oscillator frequency, another at a
slightly higher frequency and a third at a slightly lower
frequency. The adjtime() system call can be used to
adjust the local clock to a given time offset. The argu-
ment is used to select which of the three rates and the
interval ∆t to run at that rate in order to amortize the
specified offset.

The NTP local clock model described in [MIL92b] in-
corporates the Unix local clock as a disciplined oscillator
controlled by an adaptive parameter, type-II phase-lock
loop. Its characteristics are determined by the transient
response of the loop filter, which for a type-II PLL
includes an integrator with a lead network for stability.
As a disciplining function for a computer clock, the NTP
model can be implemented as a sampled-data system
using a set of recurrence equations. A capsule overview
of the design extracted from [MIL92b] may be helpful in
understanding how the model operates.

The local clock is continuously adjusted in small incre-
ments at fixed adjustment intervals σ. The increments
are computed from state variables representing the fre-
quency offset f and phase offset g. These variables are
determined from the timestamps in messages received at
nominal update intervals µ, which are variable from
about 16 s to over 17 minutes. As part of update process-
ing, the compliance h is computed and used to adjust the
time constant τ. Finally, the poll interval ρ for transmit-
ted NTP messages is determined as a multiple of τ.
Details on how τ is computed from h and how ρ is
determined from τ are given in [MIL92a].

θ0

T1 T4

T2 T3
B

A

Figure 3. Measuring Delay and Offset

t(i − 1) t(i) t(i + 1)

µ(i + 1)µ(i)

time

Figure 4. Update Nomenclature

3

Updates are numbered from zero, with those in the
neighborhood of the ith update shown in Figure 4. All
variables are initialized at i = 0 to zero. After an interval
µ(i) = t(i) − t(i − 1) (i > 0) from the previous update the
ith update arrives at time t(i) including the time off-
set vs(i). When the update vs(i) is received, the frequency
error f(i + 1) and phase error g(i + 1) are computed:

f(i + 1) = f(i) +
µ(i)vs(i)

τ2 , g(i + 1) =
vs(i)

τ .

The factor τ in the above determines the PLL time
constant, which determines its response to transient time
and frequency changes relative to the disciplining
source. It is determined by the NTP daemon as a function
of prevailing time dispersions measured by the clock
filter and clock selection algorithms. When the disper-
sions have been low over some relatively long period, τ
is increased and the bandwidth is decreased. In this mode
small timing fluctuations due to jitter in the subnet are
suppressed and the PLL attains the most accurate phase
estimate. On the other hand, if the dispersions become
high due to network congestion or a systematic fre-
quency change, for example, τ is decreased and the
bandwidth is increased. In this mode the PLL is most
adaptive to transients due to these causes and others due
to system reboot or missed timer interrupts.

The NTP daemon simulates the above recurrence rela-
tions and provides offsets to the kernel at intervals of
σ = 1 s using the adjtime() system call and the ntp_ad-
jtime() system call described later. However, provisions
have to be made for the additional jitter which results
when the timer interval does not evenly divide the second
in microseconds. Also, since the adjustment process
must complete within 1 s, larger adjustments must be
parceled out in a series of system calls. Finally, provi-
sions must be made to compensate for the roundoff error
in computing ∆t. These factors add to the error budget,
increase system overhead and complicate the daemon
implementation.

3. Hardware and Software Interfaces for Preci-
sion Timekeeping

It has been demonstrated in previous work cited that it is
possible using NTP to synchronize a number of hosts on
an Ethernet or a moderately loaded T1 network within a
few tens of milliseconds with careful selection of timing
sources and the configuration of the time servers on the
network. This may be adequate for the majority of appli-
cations; however, modern workstations and high speed
networks can do much better than that, generally to
within some fraction of a millisecond, by taking special
care in the design of the hardware and software inter-
faces. The following sections discuss issues related to the

design of interfaces for external time sources such as
radio clocks and associated timing signals.

3.1. Interfaces for the ASCII Timecode

Most radio clocks produce an ASCII timecode with a
resolution of 1 ms. Depending on the system implemen-
tation, the maximum reading errors range from one to ten
milliseconds. For systems with microsecond-resolution
local clocks, this results in a maximum peak-to-peak
(p-p) jitter of 1 ms. However, assuming the read requests
are statistically independent of the clock update times,
the average over a large number of readings will make
the clock appear 0.5 ms late. To compensate for this, it
is only necessary to add 0.5 ms to the reading before
further processing by the NTP algorithms. For example,
Figure 5 shows the time offsets between a WWVB
receiver and the local clock over a typical day. The
readings are distributed over the approximate interval
-400 to -1400 µs, with mean about -900 µs; thus, with
the above assumptions, the true offset of the radio clock
is -400 µs.

Radio clocks are usually connected to the host computer
using a serial port operating at a speed of 9600 bps. The
on-time reference epoch for the timecode is usually the
beginning of the start bit of a designated character of the
timecode. The UART chip implementing the serial port
most often has a sample clock of eight to 16 times the
basic bit rate. Assuming the sample clock starts midway
in the start bit and continues to midway in the first stop
bit and there are eight bits per character, this creates a
processing delay of 9.5 bit times, or about 1 ms relative
to the start bit of the character. The jitter contribution is
usually no more than a couple of sample clock periods,
or about 26 µs p-p. This is small compared to the clock
reading jitter and can be ignored. Thus, the UART delay
can be considered constant, so the hardware contribution
to the total mean delay budget is 0.5 + 1.0 = 1.5 ms.

In some kernel serial port drivers, in particular, the Sun
zs driver, an intentional delay is introduced when char-
acters are received after an idle period. A batch of char-

MJD 49117 Time (s)

O
ffs

et
 (

us
)

0 20000 40000 60000 80000

-1
50

0
-1

00
0

-5
00

Figure 5. Time Offsets with Serial ASCII Timecode

4

acters is passed to the calling program when either (a) a
timeout in the neighborhood of 10 ms expires or (b) an
input buffer fills up. The intent in this design is to reduce
the interrupt load on the processor by batching the char-
acters where possible. Obviously, this can cause severe
problems for precision timekeeping. Judah Levine of the
National Institute of Science and Technology (NIST) has
developed patches for the zs driver which fixes this
problem for the native serial ports of the Sun SPARCsta-
tion4.

Good timekeeping depends strongly on the means avail-
able to capture an accurate timestamp at the instant the
stop bit of the on-time character is found; therefore, the
code path delay between the character interrupt routine
and the first place a timestamp can be captured is very
important, since on some systems, such as Sun
SPARCstations, this path can be astonishingly long. The
Unix scheduling mechanisms involve both a hardware
interrupt queue and a software interrupt queue. Entries
are made on the hardware queue as the interrupt is
signaled and generally with the lowest latency, estimated
at 20-30 µs for a Sun SPARCstation IPC5. Then, after
minimal processing, an entry is made on the software
queue for later processing in order of software interrupt
priority. Finally, the software interrupt unblocks the NTP
daemon, which then calculates the current local clock
offset and introduces corrections as required.

Opportunities exist to capture timestamps at the hard-
ware interrupt time, software interrupt time and at the
time the NTP daemon is activated, but these involve
various degrees of kernel trespass and hardware gim-
micks. To gain some idea of the severity of the errors
introduced at each of these stages, measurements were
made using a Sun IPC and a test setup that results in an
error between the local clock and a precision timing
source (calibrated cesium clock) no greater than 0.1 ms.
The total delay from the on-time epoch to when the NTP
daemon is activated was measured at 8.3 ms in an other-
wise idle system, but increased on rare occasion to over
25 ms under load, even when the NTP daemon was
operated at a relatively high software priority level. Since
1.5 ms of the total delay is due to the hardware, the
remaining 6.8 ms represents the total code path delay
accounting for all software processing from the hardware
interrupt to the NTP daemon.

On Unix systems which include support for the SIGIO
facility, it is possible to intervene at the time the software
interrupt is serviced. The NTP daemon code uses this
facility, when available, to capture a timestamp and save
it along with the timecode data in a buffer for later

processing. This reduces the total code path delay from
6.8 ms to 3.5 ms on an otherwise idle system. This design
is used for all input processing, including network inter-
faces and serial ports.

By far the best place to capture a serial-port timestamp
is right in the kernel interrupt routine, but this generally
requires intruding in the kernel code itself, which can be
intricate and architecture dependent. The next best place
is in some routine close to the interrupt routine on the
code path. There are two ways to do this, depending on
the ancestry of the Unix operating system variant. Older
systems based primarily on the original Unix 4.3bsd
support line discipline modules, which are hunks of code
with more-or-less well defined interface specifications
that can get in the way, so to speak, of the code path
between the interrupt routine and the remainder of the
serial port processing. Newer systems based on System
V Streams can do the same thing using streams modules.

Both approaches are supported in the NTP daemon im-
plementation. The CLK line discipline and streams mod-
ule operate in the same way. They look for a designated
character, usually <CR>, and stuff a Unix timeval times-
tamp in the data stream following that character when-
ever it is found. Eventually, the data arrive at the clock
driver, which then extracts the timestamp as the actual
time of arrival. In order to gain some insight as to the
effectiveness of this approach, measurements were made
using the same test setup described above. The total delay
from the on-time epoch to the instant when the timestamp
is captured was measured at 3.5 ms. Thus, the net code
path delay is this value less the hardware delay 3.5 - 1.5
= 2.0 ms. This represents close to the best that can be
achieved using the ASCII timecode.

3.2. Interf aces for the PPS Signal

Many radio clocks produce a 1 pulse-per-second (PPS)
signal of considerably better precision than the ASCII
timecode. Using this signal, it is possible to avoid the
1-ms p-p jitter and 1.5 ms hardware timecode adjustment
entirely. However, a device called a gadget box is re-
quired to interface this signal to the hardware and oper-
ating system. The gadget box includes a level converter
and pulse generator that turns the PPS signal on-time
transition into a valid character. Although many different
circuit designs could be used, a typical design generates
a single 26-µs start bit for each PPS signal on-time
transition. This appears to the UART operating at 38.4K
bps as an ASCII DEL (hex FF).

The character resulting from each PPS signal on-time
transition is intercepted by the CLK facility and a times-

5

4 Judah Levine, personal communication

5 Craig Leres, personal communication

tamp inserted in the data stream. Since the timestamp is
captured at the on-time transition, the seconds-fraction
portion is the offset between the local clock and the
on-time epoch less the UART delay. If the local clock is
within ±0.5 s of this epoch, as determined by other
means, such as the ASCII timecode, the local clock
correction is taken as the offset itself, if between zero and
0.5 s, and the offset minus one second, if between 0.5 and
1.0 s.

The baseline delay between the on-time transition and
the timestamp capture was measured at 400±10 µs on an
otherwise idle Sun IPC. As the UART delay at 38.4K bps
is about 270 µs, the difference, 130 µs, must be due to
the hardware interrupt latency plus the time to capture a
timestamp, perform register window and context switch-
ing, and manage various incidental system operations.

An interesting feature of this approach is that the PPS
signal is not necessarily associated with any particular
radio clock and, indeed, there may be no such clock at
all. Some precision timekeeping equipment, such as ce-
sium clocks, VLF receivers and LORAN-C receivers
produce only a precision PPS signal and rely on other
mechanisms to resolve the second of the day and day of
the year. It is possible for an NTP-synchronized host to
derive the latter information using other NTP peers,
presumably properly synchronized within ±0.5 second,
and to remove residual jitter using the PPS signal. This
makes it quite practical to deliver precision time to local
clients when the subnet paths to remote primary servers
are heavily congested. This scheme is now in use at the
Norwegian Telecommunications Research Estab-
lishment in Oslo, Norway.

For the ultimate accuracy and lowest jitter, it would be
best to eliminate the UART entirely and capture the PPS
on-time transition directly using an appropriate interface.
This has been done using a modified serial port driver
and modem status lead. In this scheme, described in
detail in the NTP Version 3 distribution6, the PPS source
is connected via a gadget box to the carrier-detect lead
of a serial port. When a transition is detected, a times-
tamp is captured and saved for later retrieval using a Unix
ioctl() system call. The NTP daemon uses the timestamp
in a way similar to the scheme described above. Figure
6 shows the offsets between the local clock and the PPS
signal from a Global Positioning System (GPS) receiver
measured over a typical day using this implementation.

However, this scheme is specific to the SunOS 4.1.x
kernel and requires a special streams module. Except for
special-purpose interface modules, such as the
KSI/Odetics TPRO IRIG-B decoder and the modified
audio driver for the IRIG-B signal to be described, this

scheme provides the most accurate and precise timing .
There is essentially no latency and the timestamp is
captured within 20-30 µs of the on-time epoch, depend-
ing on the system architecture.

3.3. Interf aces for the IRIG Signal

The PPS schemes have the disadvantage that two inter-
faces are required, one for the PPS signal and the other
for the ASCII timecode. There is another signal produced
by some radio clocks that can be used for both of these
purposes, the Inter-Range Instrumentation Group (IRIG)
signal, which was developed to synchronize instrumen-
tation recorders in the early days of the U.S. space
program. There are several radio clocks that can produce
IRIG signals, including those made by Austron,
TrueTime, Odetics and Spectracom, among others.

Among the several IRIG formats is one particularly
suited for computer clock synchronization and desig-
nated IRIG-B. The signal modulation encodes the day of
year and time of day in binary-coded decimal (BCD)
format, together with a set of control functions used for
housekeeping. Roy LeCates at the University of Dela-
ware designed and implemented an IRIG driver with
which the IRIG-B signal can be connected to the audio
codec of some workstations, demodulated and used to
synchronize the local clock [MIL93]. There are two
components of the IRIG facility, a set of modifications
to the BSD audio driver for the Sun SPARCstation,
which was designed and implemented by Van Jacobson
and collaborators at Lawrence Berkeley National Labo-
ratory, and a companion clock driver for the NTP
daemon. This scheme does not require any external
circuitry other than a resistor voltage divider, but can
synchronize the local clock in principle to within a few
microseconds.

In operation, the 1000-Hz modulated IRIG signal is
sampled at an 8-kHz rate by the audio codec and proc-
essed by the IRIG driver, which synchronizes to the

MJD 49080 Time (s)

O
ffs

et
 (

us
)

0 20000 40000 60000 80000

-1
0

0
10

20

Figure 6. Time Offsets with PPS Signal

6

6 Information on how to obtain the NTP Version 3 distribution can be obtained from the author.

carrier and frame phase. The driver then demodulates the
symbols and develops a raw binary timecode and de-
coded ASCII timecode. A good deal of attention was
paid in the software design to noise suppression and
efficient demodulation technique. A matched filter is
used to synchronize the frame and the zero crossing
determined by interpolation to within a few microsec-
onds. An automatic gain control function is implemented
in order to cope with varying IRIG signal levels and
codec sensitivities.

The NTP clock driver converts the ASCII timecode
returned by the read() system call to Unix timeval format
and subtracts it from the kernel timestamp included in
the structure. The result is an adjustment that can be
subtracted from the kernel time, as returned in a get-
timeofday() call, to correct for the deviation between
IRIG time and kernel time. The result can always be
relied on to within 128 µs, the audio codec sampling
interval, and ordinarily to within a few microseconds, as
determined by the interpolation algorithm.

4. Unix Kernel Modifications for Precision Time-
keeping

The following sections describe modifications to Unix
kernel routines that manage the local clock and timer
functions. They provide improved accuracy and stability
through the use of a disciplined-oscillator model for use
with NTP or another synchronization protocol such as
DTSS [DEC89]. There are three versions of this soft-
ware, one each for the Sun SPARCstation with the
SunOS 4.1.x kernel, Digital Equipment DECstation
5000 with the Ultrix 4.x kernel and Digital Equipment
3000 AXP Alpha with the OSF/1 V1.x kernel. The
software involves minor changes to the local clock and
interval timer routines and includes interfaces for appli-
cation programs to learn the local clock status and certain
statistics of the time-synchronization process. A detailed
description of the programming model, including data
structures and calling sequences, is given in [MIL93].
Detailed installation instructions are given in the soft-
ware distributions. However, the software distributions
are provided only by special arrangement, since they
involve changes to licensed code.

The principal feature added to the kernels is to change
the way the local clock is controlled, in order to provide
precision time and frequency adjustments. Another fea-
ture of the Ultrix and OSF/1 kernel modifications im-
proves the local clock resolution to 1 µs. This feature can
in principle be used with any Ultrix-based or OSF/1-
based machine that has the required hardware counters,
although this has not been verified. Other than improving
the local clock resolution, the addition of these features
does not affect the operation of existing Unix system
calls which affect the local clock, such as gettimeofday(),

settimeofday() and adjtime(). The NTP daemon automat-
ically detects the presence of these features and changes
behavior accordingly.

In the original Unix design a hardware timer interrupts
the kernel at a fixed rate: 100 Hz in the SunOS kernel,
256 Hz in the Ultrix kernel and 1024 Hz in the OSF/1
kernel. Since the Ultrix timer interval (reciprocal of the
rate) does not evenly divide one second in microseconds,
the kernel adds 64 microseconds once each second, so
the timescale consists of 255 advances of 3906 µs plus
one of 3970 µs. Similarly, the OSF/1 kernel adds 576
µs once each second, so its timescale consists of 1023
advances of 976 µs plus one of 1552 µs. In this design
and with the original NTP daemon design, the adjust-
ment interval σ is fixed at 1 s.

In the original NTP design, the NTP daemon provides
offset adjustments to the kernel at periodic adjustment
intervals of 1 s using the adjtime() system call. However,
this process is complicated by the need to parcel out large
adjustments and to compensate for roundoff error. In the
new software this scheme is replaced by another that
represents the local clock as a multiple-word, precision
time variable in order to provide very precise clock
adjustments. At each timer interrupt a precisely cali-
brated quantity is added to the time variable and carries
propagated as required. The quantity is computed as in
the NTP local clock model, which operates as a type-II
phase-lock loop. In principle, this PLL design can pro-
vide precision control of the local clock oscillator within
±1 µs and frequency to within parts in 1011. While
precisions of this order are surely well beyond the capa-
bilities of the local oscillator used in typical worksta-
tions, they are appropriate using precision external
oscillators where available.

The type-II PLL model is identical to the one imple-
mented in the NTP daemon, except that the daemon
needs to call the kernel only as each new update is
received at update intervals µ, not at the much smaller
adjustment intervals σ required by the original scheme.
In addition, the need to parcel large updates, account for
odd timer rates and compensate for roundoff error is
completely avoided.

In the new scheme, a system call ntp_adjtime() operates
in a way similar to the original adjtime(), but does not
affect the original system call, which continues to oper-
ate in its traditional fashion. It is the intent in the design
that settimeofday() or adjtime() be used for changes in
system time greater than ±128 ms. It has been the Internet
experience that the need to change the system time in
increments greater than ±128 ms is extremely rare and is
usually associated with a hardware or software malfunc-
tion or system reboot. The easiest way to do this is with
the settimeofday() system call; however, this can under

7

some conditions cause the clock to jump backward. If
this cannot be tolerated, adjtime() can be used to slew the
clock to the new value without running backward or
affecting the frequency discipline process.

Once the local clock has been set within ±128 ms, the
ntp_adjtime() system call is used to provide periodic
updates including the time offset, maximum error, esti-
mated error and PLL time constant. With NTP the update
interval depends on the measured dispersion and time
constant; however, the scheme is quite forgiving and
neither moderate loss of updates nor variations in the
polling interval are serious.

The stock microtime() routine in the Ultrix kernel returns
system time to the precision of the timer interval. How-
ever, in the DECstation 5000 /240 and possibly other
machines of that family, there is an undocumented IO-
ASIC hardware register that counts system bus cycles at
a rate of 25 MHz. The new microtime() routine for the
Ultrix kernel uses this register to interpolate system time
between timer interrupts. This results in a precision of
±1 µs for all time values obtained via the gettimeofday()
system call. For the Digital Equipment 3000 AXP Alpha,
the architecture provides a hardware Process Cycle
Counter and a machine instruction rpcc to read it. This
counter operates at the fundamental frequency of the
CPU clock or some submultiple of it, 133.333 MHz for
the 3000/400 for example. The new microtime() routine
for the OSF/1 kernel uses this counter in the same fashion
as the Ultrix routine uses the IOASIC counter. In both
the Ultrix and OSF/1 kernels the gettimeofday() system
call uses the new microtime() routine, which returns the
actual interpolated value.

The SunOS kernel already includes a time-of-day clock
with microsecond resolution; so, in principle, no mi-
crotime() routine is necessary. There is in fact an existing
kernel routine uniqtime() which implements this func-
tion, but it is coded in the C language and is rather slow
at 42-85 µs per call7. A replacement microtime() routine
coded in assembler language is available in the NTP
Version 3 distribution and is much faster at about 3 µs
per call.

In order to evaluate how well the kernel modifications
work, it is useful to compare the operation over a typical
day in the life of a DECstation 5000/240 both with and
without the kernel PLL and microtime() routines. Figure
7 shows the cumulative probability distribution of time
offsets between a primary server on the same Ethernet
segment and the local clock. These curves show the
probability that a randomly selected sample offset ex-
ceeds a particular value. The upper curve shows the clock
behavior without the kernel modifications; the maximum

sample offset is 7.95 ms in this case. The lower curve
shows the clock behavior with the modifications; the
maximum sample offset is 0.93 ms in this case. Clearly,
the modifications do significantly improve timekeeping
performance.

Most Unix programs read the local clock using the
gettimeofday() system call, which returns only the sys-
tem time and timezone data. For some applications it is
useful to know the maximum error of the reported time
due to all causes, including clock reading errors, oscilla-
tor frequency errors and accumulated latencies on the
path to a primary reference source. The new user appli-
cation interface includes a new system call ntp_get-
time(), which returns the system time, as well as the
maximum error, estimated error and local clock status.

It is a design feature of the NTP architecture that the local
clocks in a synchronization subnet are to read the same
or nearly the same values before during and after a
leap-second event, as declared by national standards
bodies. The new kernel software is designed to imple-
ment the leap event upon command by an ntp_adjtime()
argument. The intricate and sometimes arcane details of
the model and implementation are discussed in
[MIL91b] and [MIL93].

5. Errors in Time and Frequency

In preceding sections a number of improvements in
driver software and hardware are described, along with
modifications to the SunOS, Ultrix and OSF/1 kernels.
These provide increased accuracy and stability of the
local clock without requiring an external precision oscil-
lator. However, there is only so much improvement
possible when the clock oscillator is not specifically
engineered for good stability. The basic question to
answer is: can the residual sources of error be systemati-
cally controlled so that the dominant factor remaining is
the stability of the oscillator itself? The software and

x (ms)

P
[E

rr
or

 >
 x

] (
%

)

0.001 0.010 0.100 1.000 10.000

0.
1

1.
0

10
.0

10
0.

0

Figure 7. Probability of Error with Ultrix Kernel

8

7 Van Jacobson, personal communication

hardware previously described are designed to do just
that.

There are two major components of error remaining in
the local clock itself, the timing accuracy, or precision,
with which it can be set and read and the frequency
accuracy, or stability, it can maintain after being set. For
the following experiments, the PPS signal from a GPS
radio clock was used as the disciplining source and all
hardware and software improvements and kernel modi-
fications described previously were in place.

5.1. Clock Reading Errors

In order to calibrate the error in reading the local clock
in an ordinary application, the delay to cycle through the
kernel and retrieve a timestamp using the gettimeofday()
system call was measured on each of three Unix work-
stations: a SPARCstation IPC (4/65) SPARC processor
running SunOS 4.1.1, a Digital Equipment DECstation
5000/240 MIPS 3000 processor running Ultrix 4.2a and
a Digital Equipment 3000/400 AXP Alpha 21064 proc-
essor running OSF/1. For the purposes of these measure-
ments, the workstations were performing no tasks other
than routine system maintenance and the application task
making the measurements.

The experiment involves first touching up to 250,000
words (64 bits in the OSF/1 kernel, 32 bits in the others)

of a main-memory array in turn. Since for this experi-
ment the workstations were otherwise idle, this insures
that the virtual memory pages are in main memory and
that old data are flushed from the various caches and
lookaside buffers. Following this, up to 250,000 calls on
gettimeofday() are made and the timestamps returned are
saved in the array. Finally, the array is saved in a file for
later processing and display.

Figures 8 and 9 show the latencies of the gettimeofday()
system call on the SunOS and OSF/1 kernels, respec-
tively. The figures are basically similar and reflect the
architecture of the processor and memory system and
kernel code paths. Characteristic of these figures is a
constant baseline, representing the minimum latency in
microseconds of the code path through the kernel, inter-
rupted at intervals with spikes up to several times the
baseline. These spikes are due to the timer interrupt
routine hardclock(), which is called at each tick of the
local clock and reflects the time to update the kernel time
variable and perform certain scheduling and statistics
tasks.

The apparent regularity evident in these figures is belied
by Figure 10, which shows the latencies of the SunOS
kernel over a much longer interval than in Figure 8. The
fine structure evident in this figure is due to the charac-
teristics shown in Figure 8, but the much larger excur-

Time (s)

D
el

ay
 (

us
)

1.00 1.01 1.02 1.03 1.04 1.05

5
10

50
10

0
50

0

Figure 8. Kernel Latency for SPARCstation IPC - 1

Time (s)

D
el

ay
 (

us
)

1.000 1.001 1.002 1.003 1.004 1.005

5
10

50
10

0
50

0

Figure 9. Kernel Latency for DEC 3000/400 AXP

Time (s)

D
el

ay
 (

us
)

1 2 3 4 5 6

10
50

50
0

50
00

Figure 10. Kernel Latency for SPARCstation IPC - 2

x (ms)

P
[J

itt
er

 >
 x

] (
%

)

0.05 0.10 0.50 1.000.
00

1
0.

10
0

10
.0

00

Figure 11. Probability of Error for SPARCstation IPC

9

sions up to a millisecond or more are most likely due to
system daemon housekeeping functions. The figure sug-
gests a basic heartbeat of three beats per second with
somewhat longer latencies beating on the second. Obvi-
ously, the time intervals of the previous figures were
selected to avoid these beats. The on-second beats are in
part due to the NTP daemon, which is activated once per
second for housekeeping purposes. The cause(s) of the
other beats are undetermined, but very likely due to
housekeeping functions on the part of other system
daemons.

Note that the characteristics shown in these figures are
specific to an application process running at a relatively
low system priority. It would ordinarily be expected that
real-time processes are assigned a higher priority, so that
latencies could be controlled with respect to other appli-
cation and daemon processes. In fact, this is the case with
the NTP daemon. In this way at least some of the spikes
evident in Figure 10 could probably be avoided. Never-
theless, the measurements reported previously in this
paper reveal delay excursions over 25 ms on rare occa-
sions, even for the NTP daemon.

In many real-time applications it is more important to
assign a precision timestamp to an event than it is to
launch it at an exact prearranged epoch. In fact, in all
three workstations considered here, internally timed
events can be launched only as the result of a timer
interrupt, and this limits the timing precision to that of
the interval timer itself, which is in the range 1-10 ms.
However, when it is necessary to derive a precision
timestamp before launching an event, a simple trick can
suffice to insure a precision approaching the minimum
latency shown in the above figures. The algorithm con-
sist of calling gettimeofday() repeatedly until the interval
between two calls is less than a prescribed value. There
is of course a tradeoff between the precision achievable
in this way and the overhead of repeated calls, since the
smaller values will cause the calls to be repeated more
times.

Figure 11 illustrates the results of this technique using
the Sun IPC. The graph shows the cumulative probability
distribution for the gettimeofday() latency over one full
day, from which a conclusion can be drawn that the
probability of exceeding even a threshold as low as about
60 µs is about 0.5 percent, or about the probability of
colliding with a timer interrupt on a random request. Note
that the probability of exceeding this value is roughly a
straight line on log-log coordinates and that only a few
of some 100,000 samples show latencies greater than 1
ms.

5.2. Clock Frequency Stab ility

With respect to computer network clocks, such as those
discussed in this paper, three components of frequency
error can be identified: noise, with characteristic inter-
vals less than a minute or so, short-term stability (wan-
der), with intervals from a minute to an hour or so, and
long-term stability (mean frequency error), with inter-
vals greater than an hour. The noise component depends
on such things as power supply regulation and vibration,
but is not ordinarily a problem. The wander component
depends primarily on the ambient temperature and is the
major source of timing errors in the quartz oscillators
used in modern computers. In a type-II PLL the mean
frequency error is minimized by the discipline imposed
by the PLL and is normally not significant, except for an
initial transient while the intrinsic frequency offset of the
local clock oscillator is being learned.

Since the major contribution to frequency error is due to
temperature fluctuations, it would make sense to stabi-
lize the operating temperature of the circuitry. While the
oscillator stability of modern workstations is typically
within a couple of parts-per-million (ppm) in normal
office environments, stabilities one or two orders of
magnitude better than this are necessary to reliably re-
duce incidental timing errors to the order of a few tens
of microseconds. However, a good temperature-com-
pensated quartz oscillator can be a relatively expensive
component not likely to be found in cost-competitive
workstations. Therefore, it is assumed in this paper that

Day (MJD)

F
re

qu
en

cy
 (

pp
m

)

49256 49258 49260 49262 49264 49266

-9
.0

-8
.5

-8
.0

-7
.5

Figure 12. Wander of Typical Clock Oscillator

*

*

*

*

*

*

* *
* *

*
*

*
*

Time (s)

A
lla

n
D

ev
ia

tio
n

(p
pm

)

100 1000 10000 100000

0.
1

0.
2

0.
5

1.
0

2.
0

Figure 13. Allan Variance of Typical Local Oscillator

10

the time synchronization system must accept what is
available, and this is what the following experiments are
designed to evaluate.

For an example of the frequency wander in a typical
workstation, consider Figure 12, which shows the fre-
quency of the clock oscillator over a ten-day period for
a DECstation 5000/240. The figure shows variations
over a 2.5 ppm range, with marked diurnal variations on
MJD days 49262 and 49263. These happened to be
pleasant Fall days when the laboratory windows were
open and the ambient temperature followed the climate.
Nevertheless, the conclusion drawn from this figure is
that frequency variations up to a couple of ppm must be
expected as the norm for typical modern workstations.

The stability of a free-running frequency source is com-
monly characterized by a statistic called Allan variance
[ALL74], which is defined as follows. Consider a series
of time offsets measured between a local clock oscillator
and some external standard. Let θ(i) be the ith measure-
ment and T be the interval between measurements. De-

f ine the fractional frequency y(i) ≡
θ(i) − θ(i − 1)

T
.

Consider a sequence of n independent fractional fre-
quency samples y(j) (j = 1, 2, …, n). Let τ be the nominal
integration interval over which these samples are aver-
aged (not to be confused with the use of τ for the PLL
time constant). The 2-sample Allan variance is defined

σy
2(τ) =

1
2(n − 1)∑

j=1

n−1

[y(j + 1) − y(j)]2 .

The Allan variance σy
2(τ) or Allan deviation σy(τ) are

particularly useful when comparing the intrinsic stability
of the local clock oscillator used in typical workstations,
as it can be used to refine the PLL time constants and
update intervals. Figure 13 shows the results of an ex-
periment designed to determine the Allan deviation of a
DECstation 5000/240 under typical room temperature
conditions. For the experiment the oscillator was first
synchronized to a primary server on the same LAN using
NTP to allow the frequency to stabilize, then uncoupled
from NTP and allowed to free-run for about seven days.
The local clock offsets during this interval were meas-
ured using NTP and the primary server. This model is
designed to closely duplicate actual operating condi-
tions, including the jitter of the LAN and operating
systems involved.

It is important to note that both the x and y scales of
Figure 13 are logarithmic. The characteristic falls rapidly
from the lowest τ to a minimum of 0.1 ppm and then rises
again to about 0.2 ppm at the highest. The conclusion to
be drawn is that adjusting the integration interval much

below or much above τ = 1000 s does not improve the
oscillator stability.

The PLL time constant is directly related to the integra-
tion interval. With the default PLL parameters specified
in [MILL92b], for a PLL time constant of 4 the integra-
tion interval is about 900 s, or near the optimum. How-
ever, while a type-II PLL can in principle eliminate
residual timing errors due to a constant frequency offset,
the PLL is quite sensitive to changes in frequency, such
as might occur due to the room temperature variations
illustrated in Figure 12. Figure 14 shows the timing errors
induced by a 2-ppm step change in frequency as deter-
mined by a simulation model. The error reaches a peak
of 600 µs, which is large in comparison with other
sources of error considered in this section. The amplitude
of this characteristic scales directly with the temperature
change.

The PLL characteristics shown in Figure 14 are calcu-
lated for a time constant τ = 4, which requires the update
interval µ ≤ 64 s. For subnet paths spanning a WAN,
such frequent updates are impractical and much longer
update intervals are appropriate. The design of the NTP
PLL allows µ to be increased in direct proportion to τ
while preserving the PLL characteristics. To do this, the
optimum value of τ is determined on the basis of meas-
ured network delays and dispersions. For the longer
network paths with higher delays and dispersions, this
allows τ to be increased and with it µ. However, a large
τ limits the PLL response to temperature-induced fre-
quency changes. Analysis confirms the x and y axes of
the characteristic shown in Figure 14 scale directly as τ,
which means the timing errors will scale as well. In
principle, this could result in errors up to a few tens of
milliseconds; however, as shown in the following sec-
tion, this rarely occurs in practice.

6. Timekeeping in the Global Internet

The preceding sections suggest that submillisecond
timekeeping on a primary server connected directly to a

Time (s)

O
ffs

et
 (

us
)

0 5000 10000 15000 20000

0
10

0
20

0
30

0
40

0
50

0

Figure 14. Transient Response of NTP PLL -
Frequency

11

precision source of time is possible most of the time,
where the exceptions are almost always due either to
system disruptions like reboot or such things as kernel
error messages or large temperature surges. As a practi-
cal matter, it is useful to explore just how well the
timekeeping function can be managed in an ordinary
LAN workstation and in WAN paths of various kinds. In
this section are presented the results from several experi-
ments meant to calibrate the expectations in accuracy.
As before, all hardware and software improvements and
kernel modifications have been done on the LAN work-
stations, although this is not the case on systems outside
the LAN.

It is important to note that, in all measurements reported
in this section, time offsets relative to the local clock are
measured at the output of the clock filter on Figure 2, so
include the smoothing effect of that filter. However, the
local clock itself is controlled by that output and others
and processed further by the clock selection and combin-
ing algorithms before processing by the local clock algo-
rithm. The local clock algorithm acts as a low-pass filter
to suppress transients, so that solitary spikes shown in the
data are almost always suppressed. Thus, while it is not
possible to infer the exact local clock offset between two
NTP time servers, it is certain that the actual offsets tend
to the mean as shown in the figures.

6.1. NTP Timekeeping in LANs and WANs

Figure 15 shows the timekeeping behavior of a primary
server synchronized to the PPS signal of a GPS radio
clock over one full day. The data from which this figure
was generated consist of measured offsets between the
PPS signal and the local clock, where the measurements
were taken every 16 s. This particular machine is a
dedicated, primary server with both GPS and WWVB
radio clocks and supporting over 400 clients, some of
which use the computationally intense cryptographic
authentication procedures outlined in the NTP Version 3
specification RFC-1305 [MIL92a]. Both noise and wan-
der components are apparent from the figure, as well as
a 400-µs glitch that may be due to something as arcane
as a daemon restart or radio glitch, for example. The
behavior shown in Figure 15 should be contrasted with
the behavior shown in Figure 6, which is for a similarly
configured primary server restricted to a lessor number
of private clients. These data suggest a conclusion that,
even with over 400 clients and two radio clocks, the local
clock can be stabilized to well within the millisecond.

Figure 16 shows the time offsets between two primary
servers, each synchronized to the same PPS signal and
connected by a moderately loaded Ethernet. One of these
servers is the dedicated primary server mentioned above,
while the other is both a primary time server and a file

MJD 49059 Time (s)

O
ffs

et
 (

us
)

0 20000 40000 60000 80000

0
10

0
20

0
30

0

Figure 15. Time Offsets of a Primary Server

MJD 49059 Time (s)

O
ffs

et
 (

us
)

0 20000 40000 60000 80000

-1
50

0
-5

00
0

50
0

15
00

Figure 16. Time Offsets Between Primary Servers

MJD

O
ffs

et
 (

us
)

49061 49062 49063 49064 49065-2
00

0
0

20
00

Figure 17. Time Offsets of a LAN Secondary Server

MJD 49107 Time (s)

O
ffs

et
 (

us
)

0 20000 40000 60000 80000

-2
00

0
0

10
00

Figure 18. Time Offsets of a NSFnet Secondary Server

12

server for a network of about two dozen client worksta-
tions, so the experiment is typical of working systems.
The jitter apparent in the figure is due to queueing delays,
Ethernet collisions and all the ordinary timing noise
expected in a working environment. There are occasional
spikes of 1 ms or more due to various causes, but these
are suppressed by the PLL. Note the 400-µs spike near
second 72,000, which matches the spike of Figure 15
taken on the same day, and the occurrence of an apparent
bias of 50-100 µs. The reason for the bias is not readily
apparent, since the SPARC IPC and SPARC 1+ ma-
chines used in the experiment are identically configured
with respect to NTP and the serial port interfaces and
operate with the same ASCII timecode and PPS signal.
Further tests are planned to resolve this issue.

Figure 17 shows the time offsets between a primary
server and a secondary (stratum 2) client on the DCnet,
a multi-segment LAN with Ethernet and FDDI segments
[MIL93], over five full days. The PLL time constant
τ = 4 and the update interval µ = 64 s. Clearly, the wan-
der due to ambient temperature variations has increased;
there is a hint of diurnal variation as well. This particular
machine is located in a room with a window air condi-
tioner, so is subject to relatively large and sudden tem-
perature changes. Similar graphs were obtained using
several LAN workstations of various manufacture and
comparable speeds using both Ethernet and FDDI trans-
mission media.

Figure 18 shows the results of a similar experiment
between a primary server and secondary client over a
1.544 Mbps circuit and several routers. The primary
server is one of the DCnet public servers mentioned
previously, while the secondary client is an IBM RS6000
which is a component of the NSFnet backbone node at
College Park, MD. There are three routers on two Eth-
ernets, the T1 circuit and a token ring on the path between
the two machines, but the T1 circuit is loaded to only a
fraction of its capacity. Again, note that, while the jitter
evident in the figure ranges over about 2.5 ms, the PLL
at the client is effectively a low-pass filter and removes

much of the apparent jitter. It would not be adventurous
to suggest the actual discrepancies between the two
clocks are not much worse than that shown in the pre-
vious experiment.

However, timekeeping accuracy using much longer
paths spanning the globe can be uneven. Figure 19 illus-
trates a path between a DCnet primary server and a
primary server at the National Institute of Science and
Technology (NIST) at Boulder, CO, which is directly
synchronized to the U.S. national standard cesium clock
ensemble. Note the apparent bias of about -5.5 ms, which
is due to the differential delays on the outbound and
return legs of the network path. The outbound leg enters
the NIST agency network at Gaithersburg, MD, while
the return leg enters the NSFnet backbone at National
Center for Atmospheric Research (NCAR) at Boulder,
CO. These two legs have different transmission delays,
undoubtedly due to different network speeds.

Finally, in a search to determine from among about 100
NTP primary time servers the one that was (a) inde-
pendently synchronized directly to national standard
time and (b) as far away as possible in the globe from the
DCnet machines, a primary server in Sydney, Australia,
was found. This is a truly heroic test, since the transmis-
sion facilities are partially by satellite, partially by un-
dersea cable and the intervening networks sometimes
slow and seriously congested. Figure 20 shows an appar-
ent -15-ms bias due to differential delays on the outbound
and return legs, as well as spikes up to a few milliseconds
due to ordinary network queueing, plus a few larger and
longer spikes probably due to a circuit outage and net-
work reroute.

6.2. NTP System Performance

The above experiments have used data collected over
only one day or a few days. In order to gain some insight
in the behavior over longer periods, a number of experi-
ments were conducted over periods spanning up to sev-
eral months. Table 1 shows a selection of client-server

MJD 49121 Time (s)

O
ffs

et
 (

us
)

0 20000 40000 60000 80000-1
20

00
-8

00
0

-4
00

0

Figure 19. Time Offsets of a NIST Primary Server
MJD 49115 Time (s)

O
ffs

et
 (

us
)

0 20000 40000 60000 80000-2
50

00
-1

50
00

-5
00

0
0

Figure 20. Time Offsets of an Australian Primary
Server

13

paths typical of the DCnet primary servers described in
[MIL93]. During the lifetime of these experiments vari-
ous software and hardware were in repair, machines were
rebooted, the network was reconfigured and different
versions of the NTP protocol daemon and Unix kernel
were in development. In the table, the first column iden-
tifies the peer or radio clock and the second the number
of days in which data were collected (data were not
collected on days when the local clock offset of the
monitoring machine was greater than 1 ms relative to its
synchronization source). The next two columns give the
mean and RMS error over all days of collection, while
the next gives the maximum absolute error relative to the
mean on the day of collection. Finally, the last four
columns give the number of days on which the maximum
absolute error exceeds 1 ms, 5 ms, 10 ms and 50 ms,
respectively.

The results of these experiments are a mixed bag. The
performance of the GPS radio clock was excellent, as
expected, but that of the WWVB radio clock is disap-
pointing. There is some evidence to suggest the problem
with the latter is due to local receiving conditions, since
receivers elsewhere in the country do not experience

errors nearly as large as shown in the table. The perform-
ance of the clients on the DCnet Ethernet and FDDI ring
confirm the claim that they can maintain RMS accuracy
better than a millisecond relative to the synchronization
source, but all of them show errors greater than a milli-
second on at least some occasions. This is a strong claim,
since all it takes is one delay spike over 1 ms and the
maximum error for the day is marked accordingly.

The performance of the global primary servers was
somewhat better than expected. These servers are near
Washington, D.C. (umd1.umd.edu), San Diego
(fuzz.sdsc.edu), NIST Boulder (t ime_a.t ime-
freq.bldrdoc.gov), Norway (fuzzy.nta.no), Switzerland
(swisstime.ethz.ch), Germany (ntps1-0.uni.erlangen.de
and Australia (swifty.dap.csiro.au). All of these servers
are independently synchronized to a local source of
standard time, either by a radio clock or calibrated ce-
sium clock. Most of these servers are many Internet hops
distant, where the networks involved are not particularly
fast and are frequently congested. For example, the Aus-
tralian server is 20 Internet hops distant from the DCnet
monitoring machine and the Switzerland server is 17
hops distant. The mean offsets shown are undoubtedly

NTP Server Days Mean RMS Error Max Error >1 >5 >10 >50
Radio Clocks

Spectracom WWVB 71 -0.974 2.179 57.600 18 4 1 1
Austron GPS 91 0.000 0.012 1.000 0 0 0 0
DCnet Servers
rackety.udel.edu 95 -0.066 0.053 2.054 11 0 0 0
mizbeaver.udel.edu 17 -0.150 0.171 1.141 2 0 0 0
churchy.udel.edu 42 -0.185 0.227 3.150 15 0 0 0
pogo.udel.edu 88 0.091 0.057 1.588 8 0 0 0
beauregard.udel.edu 187 0.016 0.108 2.688 30 0 0 0
pogo-fddi.udel.edu 113 0.001 0.059 1.643 1 0 0 0
cowbird.udel.edu 63 -0.098 0.238 2.071 13 0 0 0

Global Servers
umd1.umd.edu 78 -4.266 2.669 35.893 29 29 28 0
fuzzy.nta.no 22 0.015 5.328 70.470 2 2 2 1
swisstime.ethz.ch 37 3.102 4.533 97.291 14 14 13 4
swifty.dap.csiro.au 84 2.364 56.700 3944.471 27 27 27 13
ntps1-0.uni.erlangen.de 70 0.810 10.861 490.931 12 12 12 6
time_a.timefreq.bldrdoc.gov 85 -1.511 1.686 80.567 28 19 11 2
fuzz.sdsc.edu 77 -3.889 2.632 47.597 27 27 23 0
DARTnet Routers

la.dart.net 83 -0.650 0.771 17.849 28 8 3 0
lbl.dart.net 72 0.103 0.214 15.729 20 8 1 0
isi.dart.net 79 -0.819 0.740 8.564 21 9 0 0
NSFnet Routers
enss136.t3.ans.net 88 -0.657 1.203 32.659 38 23 10 0
enss141.t3.ans.net 87 -6.285 1.846 20.174 37 29 15 0

Table 1. Characteristics of Typical NTP Peers

14

due to differential path delays; however, the rather large
maxima are probably due to network congestion.

The data for the DARTnet routers suggest a claim of
submillisecond accuracy on a transcontinental network
composed of 1.544 Mbps T1 circuits may be adventur-
ous, since there were at least some days when the offsets
exceeded 10 ms. However, some experiments involving
DARTnet are designed to stress the network to extremes
and are likely to produce large variations in delay; it is
likely that at least some data were recorded during these
experiments and account for some of the spikes. Note
that lbl.dart.net is independently synchronized to a GPS
radio clock and that there is only one path between any
two DARTnet routers, so the mean offset shown repre-
sents true measurement error and should be compared
with the mean offsets shown for DCnet servers rack-
ety.udel.edu and pogo.udel.edu, which are also synchro-
nized directly to a GPS radio cock.

Two of about two dozen NSFnet backbone routers are
shown in the table. The College Park router
enss136.t3.ans.net is the same one shown on a smaller
interval in Figure 18. The path between this router and
the monitoring machine is the main connecting link
between the DCnet and other national and regional back-
bones. Since it carries one of the “multicast tunnels”
involved in the MBONE multimedia conferencing net-
work, it is subject to relatively heavy loads on occasion,
which explains at least a few of the spikes evident in the
data. This site and the other shown operate as secondary
servers (stratum 2), with each server configured to use
different primary servers. Since these primary servers are
located in regional networks some number of hops dis-
tant from the NSFnet point of presence, differential path
delays would be expected to produce the mean time
offsets shown.

7. Summary and Conclusions

In the several years over which the NTP versions
evolved, the accuracy, stability and reliability expecta-
tions have increasingly become more ambitious. As each
new version was developed, a particular crop of error
sources was found and remedial algorithms devised. This
work led to the clock filter algorithm, intersection algo-
rithm, clustering algorithm and combining algorithms of
the NTP Version 3 specification and implementation. In
parallel, the NTP local clock model was refined and
tuned for best performance on existing Internet paths,
some of which have outrageous delay variations due to
gross overload. Previous experience has suggested that
timekeeping accuracies in most portions of the Internet
can be achieved to some tens of milliseconds.

This paper discusses issues in precision time synchroni-
zation of computer network clocks. The primary empha-
sis in the discussion is on achieving accuracies better

than a millisecond on a network with a one or more
primary servers and a number of modern workstation
clients. Networks with which this goal has been demon-
strated include Ethernet, FDDI and light to moderately
loaded 1.544-Mbps T1 circuits. As evident from meas-
urements reported herein, accuracies in the order of 10
ms can usually be achieved on heroic paths of the global
Internet, including paths to Australia and Europe. How-
ever, to do this reliably may require prior knowledge of
differential delays that are unfortunately common in
some portions of the Internet.

Much of the discussion in this paper is on methods to
improve the accuracy of primary servers and their clients
using engineered hardware and/or kernel software modi-
fications. These include mechanisms to capture a preci-
sion timestamp from the PPS or IRIG signals generated
by some radio clocks. It is apparent, however, that accu-
mulated latencies over 8 ms can accrue in some Unix
kernels, unless means are taken to capture timestamps
early in the code path between the interrupt and the
synchronization daemon. Most of the latency burden can
be avoided without kernel modifications, but some work-
stations will require additional hardware or kernel soft-
ware to achieve submillisecond accuracy.

This paper describes a number of experiments designed
to calibrate performance in various LAN and WAN
configurations. The results show, as expected, that time-
keeping accuracy depends on the calibration of differen-
tial network path delays between the time server and its
clients. However, there is no way other than using out-
side references to determine these delays. In the experi-
ments, measurements between servers independently
synchronized to national time standards were used to
calibrate them. It is in principal possible to compensate
for them using information broadcast from designated
time servers, for example.

One striking fact emerging from the experiment program
is the observation that the limiting factor to further accu-
racy improvements is the stability of the local clock,
which is usually implemented by an uncompensated
quartz oscillator. The stability of such oscillators varies
in the order of 1 ppm per degree Celsius. With normal
room temperature variations, the timing error can reach
a large fraction of a millisecond. While it is possible to
reduce these errors by more frequent updates, this is
practical only in primary servers where the radio clock
can be read more frequently without imposing additional
traffic on the network.

In future work we plan to investigate methods to stabilize
the local clock and to isolate the cause of the bias
observed between two primary servers synchronized to
the same PPS signal. We have built and are now testing
an SBus interface consisting of a precision oscillator and

15

counters readable in Unix timeval format. We are also
investigating a scheme to frequency-lock the local clock
oscillator to a PPS signal in order to reduce wander due
to room temperature variations. Preliminary results sug-
gest that residual frequency wander can be reduced about
two orders of magnitude with this scheme. Finally, we
are working on a multicast variant of NTP in which all
time data for a subnet of servers is exchanged with all
members of the subnet. This provides an exceptional
degree of robustness, together with means useful to
detect and compensate for differential delays.

8. Acknowledgments

This research was made possible with equipment grants
and loans from Sun Microsystems, Digital Equipment,
Cisco Systems, Spectracom, Austron and Bancomm Di-
visions of Datum and the U.S. Coast Guard Engineering
Center. Thanks are due especially to David Katz (Cisco
Systems), James Kermitz (U.S. Coast Guard), Judah
Levine (NIST) and Jeffrey Mogul (Digital Equipment).
Acknowledgement is also due to the over two dozen
contributors to the NTP Version 3 implementation, espe-
cially Dennis Ferguson (Advanced Network Systems),
and Lars Mathiesen (University of Copenhagen).

9. References

[ALL74] Allan, D.W., J.H. Shoaf and D. Halford. Statis-
tics of time and frequency data analysis. In: Blair,
B.E. (Ed.). Time and Frequency Theory and Funda-
mentals. National Bureau of Standards Monograph
140, U.S. Department of Commerce, 1974, 151-204.

[DAR81a] Defense Advanced Research Projects
Agency. Internet Protocol. DARPA Network Work-
ing Group Report RFC-791, USC Information Sci-
ences Institute, September 1981.

[DAR81b] Defense Advanced Research Projects
Agency. Internet Control Message Protocol.
DARPA Network Working Group Report RFC-792,
USC Information Sciences Institute, September
1981.

[DEC89] Digital Time Service Functional Specification
Version T.1.0.5. Digital Equipment Corporation,
1989.

[LIN80] Lindsay, W.C., and A.V. Kantak. Network syn-
chronization of random signals. IEEE Trans. Com-
munications COM-28, 8 (August 1980), 1260-1266.

[MAR85] Marzullo, K., and S. Owicki. Maintaining the
time in a distributed system. ACM Operating Sys-
tems Review 19, 3 (July 1985), 44-54.

[MIL89] Mills, D.L. Network Time Protocol (version 2)
- specification and implementation. DARPA Net-

work Working Group Report RFC-1119, University
of Delaware, September 1989.

[MIL90] Mills, D.L. Measured performance of the Net-
work Time Protocol in the Internet system. ACM
Computer Communication Review 20, 1 (January
1990), 65-75.

[MIL91a] Mills, D.L. Internet time synchronization: the
Network Time Protocol. IEEE Trans. Communica-
tions 39, 10 (October 1991), 1482-1493.

[MIL91b] Mills, D.L. On the chronology and metrology
of computer network timescales and their applica-
tion to the Network Time Protocol. ACM Computer
Communications Review 21, 5 (October 1991), 8-
17.

[MIL92a] Mills, D.L. Network Time Protocol (Version
3) specification, implementation and analysis.
DARPA Network Working Group Report RFC-
1305, University of Delaware, March 1992, 113 pp.

[MIL92b]Mills, D.L. Modelling and analysis of com-
puter network clocks. Electrical Engineering De-
partment Report 92-5-2, University of Delaware,
May 1992, 29 pp.

[MIL92c] Mills, D.L. Simple Network Time Protocol
(SNTP). DARPA Network Working Group Report
RFC-1361, University of Delaware, August 1992,
10 pp.

[MIL93].Mills, D.L. Precision synchronizatin of com-
puter network clocks. Electrical Engineering De-
partment Report 93-11-1, University of Delaware,
November 1993, 66 pp.

[POS80] Postel, J. User Datagram Protocol. DARPA
Network Working Group Report RFC-768, USC
Information Sciences Institute, August 1980.

[POS83] Postel, J. Time protocol. DARPA Network
Working Group Report RFC-868, USC Information
Sciences Institute, May 1983.

[RAM90] Ramanathan, P., K.G. Shin and R.W. Butler.
Fault-tolerant clock synchronization in distributed
systems. IEEE Computer 23, 10 (October 1990),
33-42.

[SHI87] Shin, K.G., and P. Ramanathan. Clock synchro-
nization of a large multiprocessor system in the
presence of malicious faults. IEEE Trans. Comput-
ers C-36, 1 (January 1987), 2-12.

[VAS88] Vasanthavada, N., and P.N. Marinos. Synchro-
nization of fault-tolerant clocks in the presence of
malicious failures. IEEE Trans. Computers C-37, 4
(April 1988), 440-448.

16

