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Abstract— The recently developed eXplicit Control Protocol
(XCP) is a congestion control system well suited for high
Bandwidth Delay Product (BDP) networks. Low proves that the
XCP equilibrium solves a constrained max-min fairness problem,
and derives the explicit formulas for the link utilization and
the common flow rate bottlenecked at the link by applying the
derived window-based dynamic model. Furthermore, a lower
bound and an upper bound of link utilization are given in Low’s
paper.

However, the derived window-based dynamic model is so
complicated that it can not be used easily. In this paper, a simple
rate-based model is proposed for analyzing XCP equilibrium
performance. Most results that appeared in Low’s paper can
be easily reproduced by applying our simple dynamic model.
Furthermore, we prove that the shuffling parameter γ is no more
than the parameter α to achieve high link utilization.

I. INTRODUCTION

The current Internet provides a connectionless, best-effort,

and end-to-end packet service by using the IP protocol.

The majority of the Internet traffic including HTTP, FTP,

TELNET, and email traffic is carried by TCP protocol. The

Van Jacobson’s congestion control algorithms [1] for TCP

guarantee the stability of today’s Internet. However, Jacobson’s

algorithm also exhibits several shortcomings, such as its poor

link utilization at high BDP, its unfairness at long round-trip

times, and confusion by lossy links. Due to the interest in the

wired network, we focus on the first two shortcomings.

Several ways are developed to improve the performance

in these environments [2], [3], [4], [5], [6], [7]. Of these,

the recently developed Explicit Control Protocol (XCP) [4]

is a congestion control system well suited for high Bandwidth

Delay Product (BDP) networks. XCP executing in the routers

explicitly allocates the feedback to each packet, and the

minimum feedback for each packet along the path is sent

back to the sender. The per-flow state information is carried

in the congestion header and the router does not maintain per-

flow state to avoid the scalability problem. XCP achieves high

link utilization, fairness among flows with different RTTs,

and reduces the packet losses. XCP is proved to be stable

in the single link case when all flows have the same RTT.

Simulations show that XCP is stable in more complicated
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topologies, although the stability with a complicated topology

is hard to be analytically proven.

Low [8] studies the XCP’s equilibrium performance and

gives some interesting results. He builds a dynamic window-

based model of XCP, proves that the XCP equilibrium solves a

constrained max-min fairness problem, and derives the explicit

formulas for the link utilization and the common flow rate bot-

tlenecked at the link. Furthermore, a lower bound and an upper

bound of link utilization are given in Low’s paper. However,

although a beautiful mathematic description of XCP is given,

the derived window-based dynamic model is so complicated

that it can not be used easily. Another shortcoming is that the

shuffling parameter γ and the parameter α can not be chosen

arbitrarily which is not proven in Low’s paper.

In this paper, we also focus on analysis of XCP’s equilib-

rium performance. A simple rate-based model is proposed for

analyzing XCP’s equilibrium performance. Most results that

appeared in Low’s paper can be easily reproduced by applying

our simple dynamic model. Furthermore, we prove that the

shuffling parameter γ is no more than the parameter α to

achieve high link utilization, which is an important constraint

for XCP.

The remainder of the paper is structured as follows. In the

next section, XCP and Low’s window-based model are intro-

duced briefly. Then, the simple rate-based model is derived

in detail. In Section III, we prove the important constraint

that γ ≤ α and analyze the equilibrium performance of XCP

briefly. Finally, we conclude in Section IV.

II. MODEL

A. XCP Congestion Control

XCP is a window-based congestion control algorithm. The

per-flow state information is carried in the congestion header

and the router does not maintain per-flow state to avoid

the scalability problem. The congestion header includes three

fields: H cwnd (sender’s current cwnd), H rtt (sender’s rtt

estimate) and H feedback ( initialized to sender’s demands).

XCP uses Efficiency Controller (EC) and Fairness Con-

troller to achieve efficiency and fairness respectively. EC

determines the aggregate feedback in one control interval and

does not care about the per-flow feedback. The aggregate

feedback φ is computed each control interval:

φ = α · d · S − β · Q
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where α and β are set to 0.4 and 0.226 respectively based on

the stability analysis, d is the average RTT which is the control

interval, S is the spare bandwidth which is the difference

between the flow load and the link bandwidth, and Q is the

persistent queue size.

The fairness controller (FC) adopts Additive-Increase

Multiplicative-Decrease (AIMD) policy to achieve fairness.

Additive-Increase means that the throughput of each flow

increases same when φ > 0, and Multiplicative-Decrease

means that the flow’s throughput decreases proportionally to

its throughput when φ < 0.

Moreover, XCP uses bandwidth shuffling to prevent con-

vergence stalling when efficiency is close to optimal. It means

allocation and deallocation bandwidth are executed at the same

time. The shuffled traffic is:

h = max(0, γ · y − |φ|)
where y is the input traffic in an average RTT and γ is a

constant set to 0.1. This equation assures that at least 10%
of traffic is redistributed according to AIMD at every average

RTT.

The feedback assigned to packet i is a combination of a

positive feedback pi and a negative feedback ni.

H feedbacki = pi − ni

The per-packet positive feedback is proportional to the square

of the flow’s RTT, and inversely proportional to its congestion

window divided by its packet size. The per-packet negative

feedback is proportional to the packet size multiplied by its

flow’s RTT.

pi = ξp
rtt2i · si

cwndi
(1)

ni = ξn · rtti · si (2)

where

ξp =
h + max(φ, 0)
d · ∑L

rtti·si

cwndi

ξn =
h + max(−φ, 0)

d · ∑L si

ξp and ξn are computed each control interval.

B. Low’s Window-based Dynamic Model

Low derives a window-based dynamic model for XCP with

multiple links and multiple flows. Consider a network with L
links shared by N flows. Let R be the L×N routing matrix:

Rli = 1 if flow i uses link l and 0 otherwise. Let L(i) be the

set of links in the path of flow i: L(i) := {l|Rli = 1} and

I(l) be the set of flows that use link l: I(l) := {i|Rli = 1}.

For flow i, four variables are defined:

wi(t): window size at time t, in packets.

τi: round-trip propagation (and fixed processing) delay.

Ti(t): round-trip time (RTT) at time t.
xi(t): = wi(t)/Ti(t): flow rate at time t.

For link l, four variables are defined:

nl: the number of flows at link l.
Cl: link capacity, in packets/sec.

bl(t): backlog at time t, in packets.

yl(t): =
∑

i Rlixi(t): aggregate input rate at link l at time

t.
The window-based dynamic model of XCP is described by

the following equations:

ẇi(t) =
wi(t)
d2

min
l∈L(i)

Fli(t)

ḃl(t) =
{

yl(t) − Cl if bl(t) > 0
max(yl(t) − Cl, 0) if bl(t) = 0

where

Fli(t) =
hl(t) + φ+

l (t)
nlxi(t)

− hl(t) + φ−
l (t)

yl(t)

φl(t) = αd(Cl − yl(t)) − βbl(t)

hl(t) = max(γdyl(t) − |φl(t)|, 0)

xi(t) =
wi(t)
Ti(t)

yl(t) =
∑

i

Rlixi(t)

Ti(t) = τi +
∑

l

Rli
bl(t)
Cl

The complicated mathematic description prevents us from

analyzing the equilibrium performance of XCP intuitively. In

other words, the window-based model is not easily to be used.

C. Simple Rate-based Dynamic Model

In this section, we derive a simple rate-based dynamic

model to study the equilibrium performance of XCP. We also

do not consider the feedback delay because we only care about

the equilibrium performance.

From the previous section of XCP, the aggregate positive

change in one control interval is hl + max(φl, 0), and the

aggregate negative change in one control interval is hl +
max(−φl, 0) for any link l. It is interesting to see the values

of aggregate positive and negative feedbacks of link l based

on the relationship of φl and γyl.

Pl = hl + max(φl, 0) = max(0, γyl − |φl|) + max(φl, 0)

=

⎧⎪⎪⎨
⎪⎪⎩

0 φl ≤ −γyl

γyl − |φl| −γyl < φl ≤ 0
γyl 0 < φl ≤ γyl

φl γyl < φl

Nl = hl + max(−φl, 0) = max(0, γyl − |φl|) + max(−φl, 0)
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=

⎧⎪⎪⎨
⎪⎪⎩

|φl| φl ≤ −γyl

γyl −γyl < φl ≤ 0
γyl − φl 0 < φl ≤ γyl

0 γyl < φl

Thus, the aggregate feedback for link l is

Pl − Nl =

⎧⎪⎪⎨
⎪⎪⎩

−|φl| φl ≤ −γyl

−|φl| −γyl < φl ≤ 0
φl 0 < φl ≤ γyl

φl γyl < φl

The simultaneous allocation and deallocation of bandwidth

do not change the aggregate feedback φl at link l. Therefore,

it shows that the efficient controller (EC) is decoupled from

the fairness controller (FC).

Assume the packets from the same flow have the same

cwndi, si, and rtti during a sufficiently small time interval

dt. The number of flow i’s packets during the time interval dt
is

numi =
cwndi · dt

rtti · si

where cwndi is the flow’s congestion window size, si is the

packet size, rtti is the flow’s round trip time. Thus, the flow i’s
aggregate positive congestion window feedback for the time

interval dt at link l is derived from (1):

pia l = pi l · numi = dt · rtti · ξpl

where pi l is pi at link l. Furthermore, the flow i’s aggregate

positive throughput feedback during the interval dt at link l
is:

pithrough l =
pia l

rtti
= dt · ξpl

Similarly, the flow i’s aggregate negative congestion win-

dow and throughput feedbacks can be obtained respectively

for the interval dt at link l.

nia l = ni l · numi = dt · cwndi · ξnl

nithrough l =
nia l

rtti
= dt · cwndi

rtti
· ξnl

The change of the flow i’s congestion window size dwi is

equal to the minimum aggregate congestion window feedback

during the interval dt along the path.

dwi = min
l∈L(i)

{dt · rtti · ξpl − dt · cwndi · ξnl}

Assume the flow i’s throughput xi is equal to cwndi

rtti
. The

change of the flow’s throughput d xi is equal to the aggregate

throughput feedback during the interval dt. Thus,

d xi =
dwi

rtti
= min

l∈L(i)
{dt · (ξpl − xi · ξnl)}

Therefore, the equation can be written as:

d xi(t)
dt

= min
l∈L(i)

{ξpl − xi(t) · ξnl} (3)

This shows that XCP implements the AIMD algorithm for

each flow at each link. In the equilibrium, all flows bottle-

necked in the same link have the same flow rate, and the flows

bottlenecked in other links cause under-utilization problem for

this link.

Since XCP is a window-based congestion control protocol,

some variables are redefined to match the rate-based model.

We redefine the parameter φnew = φ/d as the aggregate

throughput feedback.

φnew = α · S − β · Q

d

And we redefine the parameter ynew = y/d as the aggregate

flow rate. In the following sections, we still use the notation

φ to represent the aggregate throughput feedback and y to

represent the aggregate flow rate for convenience. Then, P and

N represent the aggregate positive and negative throughput

feedbacks respectively. From (3) we know,

Pl = nl · ξp

Nl =
∑

i∈I(l)

xi(t) · ξn = yl · ξn

where yl is the aggregate flow rate and nl is the number of

flows at link l.
In summary, the simple rate-based dynamic model is de-

scribed by the following equations.

d xi(t)
dt

= min
l∈L(i)

{ξpl − xi(t) · ξnl} (4)

where

ξpl =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 φl ≤ −γyl
γyl−|φl|

nl
−γyl < φl ≤ 0

γyl

nl
0 < φl ≤ γyl

φl

nl
γyl < φl

(5)

ξnl =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|φl|
yl

φl ≤ −γyl

r −γyl < φl ≤ 0
γyl−φl

yl
0 < φl ≤ γyl

0 γyl < φl

(6)

Note: The flow i’s rate is determined by the bottleneck link.

This means that we only need to consider the bottleneck link

for flow i to determine the flow i’s rate.

D. Simple analysis of link utilization

In this section, we analyze the XCP’s equilibrium perfor-

mance briefly. Let us consider a link l. The flows traversing

through link l are classified into three sets. One set denoted by

ϕ contains the flows which are bottlenecked at the downstream

links. Another set denoted by χ contains the flows which are

bottlenecked at the upstream links. The last set denoted by ψ
contains the flows which are bottlenecked at link l itself.

Furthermore, all links can be classified into five typical

classes based on the flows traversing through.
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Class 1: ψ = ∅; χ do not care; ϕ do not care

All flows are bottlenecked elsewhere. Since the router can not

allocate any spare bandwidth to flows, it is not meaningful to

discuss the link utilization in this case. The link utilization can

be arbitrarily small as the link bandwidth is arbitrarily large

when all flows are controlled by other routers.

Class 2: ψ �= ∅; χ = ∅; ϕ = ∅
In the equilibrium, all flows in set ψ have the flow rate:

xi =
ξpl

ξnl

From the equation (7),

yl = Nl · xi =
γy2

l

γyl − α · (Cl − yl)

Thus, the aggregate flow rate yl is equal to the link capacity

Cl, and the link is fully utilized. Furthermore, the per-flow

rate is xi = Cl/Nl and the max-min fairness is achieved.

Class 3: ψ �= ∅; χ = ∅; ϕ �= ∅
All flows are bottlenecked in the downstream links and the

current link. In the equilibrium the feedback for flows in set

ψ is

ξpl − xi · ξnl = 0 i ∈ ψ

It is obvious that the flows in set ψ have a higher flow rate than

the flows in set ϕ. Otherwise, the flows will be bottlenecked

in the current link. Thus, the feedback for flows in set ϕ is

ξpl − xj · ξnl > 0 j ∈ ϕ

The feedback for flows j ∈ ϕ is eliminated at the downstream

links, and the under-utilization problem of XCP appears. The

detailed discussion is given in the following section.

Class 4: ψ �= ∅; χ �= ∅; ϕ = ∅
All flows are bottlenecked in the upstream links and the current

link. In the equilibrium, the feedback for flows in set χ is 0,

but the current link still allocates feedbacks to flows in set χ.

In fact, XCP treats the flows in set χ the same as the flows in

set ψ due to the AIMD. It causes the same under-utilization

problem as that of Class 3.

Since the flows in set χ can be detected at the current link

in the equilibrium, Katabi [4] tries to alleviate the negative

effects caused by the flows in set χ with the pseudo code in

Fig. 1.

feedback = pos_fbk – neg_fbk  

if (H_feedback  feedback) then 

     …… 

else

if (H_feedback  0) 

     residue_pos_fbk -= H_feedback / H_rtt 

     residue_neg_fbk -= (feedback – H_feedback) / H_rtt 

else

     residue_pos_fbk += H_feedback / H_rtt 

     if (feedback  0) then  residue_neg_fbk -= feedback  / H_rtt 

Fig. 1. Compensation pseudo code of XCP

The compensation policy affects the equilibrium, but it only

increases the link utilization by several percentage points. The

deterministic factor is still the derivative equation which is

the description of XCP. The detailed analysis of the above

compensation policy is a topic for further research.

Class 5: ψ �= ∅; χ �= ∅; ϕ �= ∅
In the equilibrium, the link utilization should be not worse

than that of Class 3 and not better than that of Class 4 if the

compensation policy is adopted. Otherwise, it is same as Class

3.

In summary, we call the network analysis Downstream case

if the compensation policy is not adopted. Otherwise, we call

it Upstream case. In Low’s analysis, the compensation policy

is not considered. The flows bottlenecked at the upstream

links and downstream links are treated equally according to

AIMD. Therefore, Low’s analysis is same as our analysis

of Downstream case. In the following section, we focus on

studying Downstream case and give some interesting analysis.

III. LINK UTILIZATION OF DOWNSTREAM CASE

If all flows are bottlenecked at other links and link l can

not allocate any spare bandwidth to any flows, it is not

meaningful to analyze the link utilization in this case since

the link utilization can be arbitrarily small as the link capacity

approaches to infinite. Thus, we have an important assumption

for all of our analysis.

Assumption: Assume the set ψ of link l is not empty in all

analysis.

A. Simple and Important Results

In this section, we derive some simple and important results

of XCP.

Lemma 1: In the equilibrium, 0 ≤ φl ≤ γyl.

Proof: In the equilibrium, assume γyl < φl, the aggregate

positive feedback Pl = φl and the aggregate negative feedback

Nl = 0. Thus, the negative feedback for all flows is 0.

However, the flows in set ψ satisfy

d xi

d t
= ξpl > 0

It means that these flows are not in the equilibrium. By

contradiction, we know that φl ≤ γyl.

If φl < 0, the feedback filled in the packet header is negative

no matter whether the flow is bottlenecked in the upstream

link or this link. Moreover, downstream links can replace this

negative feedback only if they have more negative feedback.

Thus, the final feedback is always negative and the flow rate

has to be decreased. It means that the flows are not in the

equilibrium. We conclude that 0 ≤ φl ≤ γyl. �
Lemma 2: In the equilibrium, the queue Ql is empty and

the aggregate throughput feedback is φl = α · (Cl − yl).
Proof: In the equilibrium, the aggregate flow rate is no more

than the link capacity. Otherwise, the flows can not achieve

the equilibrium.

If the aggregate flow rate yl is less than the link capacity

Cl, it is obviously that the queue Ql is empty. If the aggregate
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flow rate yl is equal to the link capacity Cl, we assume the

queue Ql is not empty in the equilibrium. Then

φl = α · (Cl − yl) − β · Ql

d
< 0

Thus, the flows are not in the equilibrium from Lemma 1.

We conclude that Ql is empty. Furthermore, the aggregate

throughput feedback is φl = α · (Cl − yl). �
Theorem 1: In the equilibrium, if all links have γ → 0, the

network approaches the max-min fairness.

Proof: We only need to consider the bottlenecks in the

network. From lemma 1 and 2, we know that set ψ of

link l is not empty and link l has the aggregate feedback

φl = α(Cl − yl) → 0 as γ → 0. Then, link l is fully utilized

and all flows bottlenecked at link l have the same flow rate

xl = ξpl/ξnl which is also the maximum allowable flow rate

at link l. Moreover, xl can not be increased without decreasing

the rates of flows which are not bottlenecked at link l because

xl is the maximum flow rate and link l is fully utilized.

Similarly, every bottleneck link works like link l. Thus, the

network approaches the max-min fairness. �
Note: If we substitute r = 0 to Low’s derived common flow

rate formula, the max-min fairness can also be proven.

B. Reproduce Low’s Results

Low derives a dynamic window-based model for XCP and

analyzes the link utilization and the fairness. It gives many

encouraging results. To compare with Low’s results, we use

the same notations in our following analysis.

Nl: the number of flows at link l
Nl0: the number of flows bottlenecked at other routers

yl0: the aggregate flow rate bottlenecked at other routers

ρl := Nl0/Nl

σl := yl0/Cl

Since the compensation policy is not considered here, the

flows bottlenecked at the upstream links and downstream

links are treated equally by XCP. We can use the above

notations without differentiating the upstream and downstream

bottlenecked flows in the theoretical analysis.

Let us see Low’s work first. The formula given by Low to

calculate the equilibrium flow rate bottlenecked at link l is

based on the following equation.

yl − yl0

Nl − Nl0
= rl =

γ · y2
l

Nl · (γyl − α(C − yl))
This is a key equation in Low’s paper. Most of his results are

obtained from this equation directly or indirectly, such as the

aggregate flow rate yl, the equilibrium flow rate xr at link l,
and the upper and lower bounds of link utilization.

In our model, the same formula can be easily derived for

Downstream case. The equilibrium flow rate bottlenecked at

link l is

xr =
ξpl

ξnl

where

ξpl =
γ · yl

Nl

ξnl =
γ · yl − α(Cl − yl)

yl

Thus,

yl − yl0

Nl − Nl0
= xr =

γ · y2
l

Nl · (γyl − α(Cl − yl))
(7)

which is same as Low’s formula. Therefore, most of Low’s

results can be reproduced by applying our model.

C. γ and α

1) The relationship of γ and α : Low does not give a

constraint on the relationship of γ and α, but his simulations

show that the link utilization is very low if γ/α approaches

to a large value. In fact, the shuffling parameter γ and the

parameter α can not be chosen arbitrarily. We show that the

shuffling parameter γ is no more than the parameter α to

achieve high link utilization in this section.

Let us see the relationship between xrNl and the link

capacity Cl first where xr represents the common flow rate

bottlenecked at link l. If all flows belong to set ψ, we can

get xrNl = Cl which is easy to check. On the other hand,

if some flows belong to set χ and set ϕ, the common flow

rate xr is obviously greater than the flow rate xj , j ∈ χ, ϕ. If

xrNl ≤ Cl, the under-utilization problem is obviously worse.

It is necessary to guarantee xrNl ≥ Cl.

Theorem 2: To guarantee xrNl ≥ Cl where xr represents

the common flow rate bottlenecked at the current link l, the

shuffling parameter γ and the parameter α must satisfy γ ≤
αCl

yl
. Furthermore, we choose γ ≤ α to guarantee that γ ≤

αCl

yl
.

Proof: In the equilibrium, the flows in set ψ have a common

flow rate xr, and the feedback of these flows is 0. Thus,

ξnl =
γ · yl − α(Cl − yl)

yl

ξpl = xr · ξnl = xr · γ · yl − α(Cl − yl)
yl

The bandwidth wasted by the flows in set ϕ or set χ is

equal to the allocated bandwidth φl in the equilibrium. Then,

α(Cl − yl) =
∑

j∈ϕ,χ

(ξpl − xj · ξnl)

=
γ · yl − α(Cl − yl)

yl
·

∑
j∈ϕ,χ

(xr − xj)

=
αyl + γyl − αCl

yl
· (xrNl0 − yl0)

Finally,

xrNl0 − yl0 =
α

α + γyl−αCl

yl

· (Cl − yl)

If γ ≤ αCl

yl
, then

xrNl0 − yl0 + yl ≥ Cl
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Therefore,

xrNl ≥ Cl

Furthermore, since we know that yl ≤ Cl, we choose γ ≤ α
to guarantee that γ ≤ αCl

yl
. �

2) Choosing values of γ and α: Low gives the lower and

upper bounds of link l’s utilization:

α

γρl + α
≤ yl

Cl
≤ 1 − γσl(ρl − σl)

γρl + α

From the control theorem, we know that the parameters γ
and α are controllable, while the parameters ρl and σl are

observable instead of controllable. Due to the diversity of ρl

and σl, the relaxed bounds are derived only based on the

controllable variables γ and α. Since the set ψ is not empty,

ρl belongs to the interval [0, 1). The relaxed bounds are given

as

α

α + γ
<

yl

Cl
≤ 1

Let us define u as the desired link utilization, and u belongs

to the interval (0.5, 1] because γ ≤ α. Therefore, the chosen

lower bound must be no less than u to guarantee the desired

link utilization u. Thus, we get a relationship of γ and α.

γ

α
≤ (1 − u)

u

Fig. 2 shows the feasible values of γ/α for the given desired

link utilization u.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

Desired Link Utilization

γ 
/ α

Fig. 2. Feasible values of α
γ

for Desired Link Utilization

IV. CONCLUSION

In this paper, we focus on analysis of XCP’s equilibrium

performance. A simple rate-based model is proposed for

analyzing the XCP’s equilibrium performance. Most results

that appeared in Low’s paper can be easily reproduced by

applying our simple dynamic model. Furthermore, we prove

that the shuffling parameter γ is no more than the parameter

α to achieve high link utilization, which is an important

constraint for XCP.

Further research includes analyzing the effect of the com-

pensation policy. The compensation policy increases the link

utilization by several percentage points, and we try to find the

rules behind it. Another topic is that the link utilization may

have more stringent bounds provided with the new constraint

γ ≤ α.
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