
1

AUTHENTICATION SCHEME FOR DISTRIBUTED, UBIQUITOUS, REAL-TIME PROTOCOLS 1,2

David L. Mills
University of Delaware

Newark, DE 19716

ABSTRACT

Cryptographic authentication methodology proposed for
use in the Internet require substantial resources when very
large client populations are involved. Resource provision-
ing becomes especially important when time-critical ser-
vices are involved. In the cast of time- synchronization
services, a special case exists, since cryptographic keys
must enforce valid lifetimes, but validating key lifetimes
requires cryptographic keys. This paper proposes a scheme
which minimizes server resources while resolving the
apparent circularity.

INTRODUCTION

The Network Time Protocol (NTP) is widely used in the
Internet to synchronize computer time to national stan-
dards. The current NTP population includes well over 200
primary (stratum-1) servers and 100,000 secondary (stra-
tum-2 and above) servers and clients. It provides compre-
hensive mechanisms to access national time and frequency
dissemination services, organize the hierarchical time-syn-
chronization subnet and adjust the clock in each participat-
ing subnet peer. The protocol uses redundant servers,
diverse network paths and crafted algorithms which discard
bogus servers and minimize errors due to various causes. It
can operate in several modes, including peer-peer, client-
server and multicast. In most places of the Internet of today,
NTP provides accuracies of 1-20 ms, depending on the
characteristics of the synchronization sources and subnet
paths.

The NTP architecture model and supporting algorithms are
described in [5], the NTP Version 3 protocol specification
in RFC-1305 [6], and recent algorithm improvements in
[7]. Additional information can be found at the NTP home
page http://www.eecis.udel.edu/~ntp and the author’s home
page http://www.eecis.udel.edu/~mills.

A reliable and ubiquitous network time service such as
NTP requires some provision to prevent accidental or mali-
cious attacks on the servers and their clients. Reliability
requires that clients can determine that received messages
are authentic; that is, were actually sent by the intended
server and not manufactured or modified by an intruder.
Ubiquity requires that any client can verify the authenticity
of any server using only public information. The NTP secu-
rity model and authentication scheme are designed with
these requirements in mind.

In many ways, the NTP requirements are shared by other
ubiquitous, distributed applications, such as directory ser-
vices, web servers and archive repositories. However, an
effective design requires it operate efficiently in all modes
supported, including peer-peer, client-server and multicast
modes. Current IETF key-agreement schemes like Photuris
[3], SKIP [1] and ISAKMP [4] could be used with NTP as
with other protocols in peer-peer mode, but are unsuitable
for client-server mode, where persistent state cannot be
maintained by servers for client populations which may
number in the thousands, and multicast mode, where clients
do not ordinarily send messages to the servers.

While the current NTP security model and authentication
scheme have been in use for well over a decade, they have
several drawbacks, the most serious being the requirement
that keys must be securely distributed in advance. There are
no provisions in the NTP architecture for key distribution
or management on the assumption these functions would be
provided by a designated protocol other than NTP. Even if
such functions were available, the large number of associa-
tions, well over 250,000 in the current NTP subnet, would
make the management operations to distribute keys and
manage their lifetimes infeasible. In a truly survivable net-
work, these functions cannot rely on centralized key man-
agement; they require a distributed network design with
redundant paths and diverse servers.

1. Prepared through collaborative participation in the Advanced Telecommunications/Information Distribution Research
Program (ATIRP) sponsored by U.S. Army Research Laboratories Cooperative Agreement DAAL01-96-2-0002 This
work is also supported by DARPA Information Technology Office Contract DABT 63-95-C-0046, NSF Grant NCR
93-01002, and U.S. Navy Contract A303 276-93.

2. This paper has been accepted for publication in Advanced Telecommunications/Information Distribution
(ATIRP) Conference, College Park MD, January 1997. It should not be cited or redistributed prior to publica-
tion.



2

CURRENT NTP SECURITY MODEL AND 
AUTHENTICATION SCHEME

The authentication scheme described in the NTP Version 3
specification RFC-1305 is the basis of the current NTP
security model. Its goal is to provide universal access to
data products of the protocol, while preventing an intruder
from modifying a message or manufacturing a fake mes-
sage which is acceptable to a client. It is not necessary, nor
would it be politically expedient, to encrypt the timestamps
or otherwise hide the data in NTP messages, since these are
public values. Furthermore, it is not the intent in the model
to include access controls; other mechanisms based on IP
address and UDP port filtering are available for that. It is
not necessarily the case that the model includes protections
from message loss, duplication or corruption, since these
protections are an intrinsic capability of the NTP protocol
itself.

It is important to note that the NTP security model specifi-
cally recognizes that authentication service may not be con-
tinuously available. The model assumes that individual
peers can fail or operate incorrectly or even attempt to
modify messages or jam the subnet in one form or another.
In addition, transmission lines can fail, routes can change
or become congested, and cryptographic keys and even
security policies can change while the subnet is in regular,
continuous operation. This requires that clients utilize
redundant servers and diverse paths for the authentication
function, as well as the synchronization function.

The hierarchical organization of the NTP subnet requires
the construction of an unbroken chain of authentication
from a given client via intermediate servers to the primary
(stratum 1) servers, which are assumed authenticated by
external means. Each server at a given stratum level in the
hierarchy individually authenticates its assigned servers at
the next lower stratum level. If at least one of them is
authenticated, the server synchronizes with it and reports
itself as authenticated to its dependent servers at the next
higher stratum level. Whether a server is authenticated or
not, the client maintains state variables for it, including its
time offset relative to the client clock.

As the synchronization subnet, evolves in response to
server failures and restarts, prevailing network delay paths,
etc., the authentication hierarchy evolves in response. It
may happen that protocol operations can proceed normally;
but, due to temporary lack of cryptographic key material,
for example, individual servers may become isolated from
their sources, even if the timekeeping data itself remains
valid. If a server ordinarily synchronized via authenticated
sources loses contact with all of these sources, it coasts at

its current rate for a time specified by the protocol or until
all key lifetimes have expired.

A client is usually configured with a number of servers,
each identified by source and destination IP addresses and
assigned a secret key and key identifier, which is stored in a
secure database. The key is used to construct a message
digest (one-way hash function) of the contents with either
keyed MD5 [10] or DES-CBC [8]. The session key identi-
fier and message digest form a message authentication code
(MAC), which is transmitted with the message. A server is
usually stateless and does not retain data from one client
request to the next. It uses the key identifier in the client
message to retrieve the secret key from its own database
and construct the MAC in messages sent to the client. This
assumes that the server has the same secret key as the client
and uses the same key identifier.

In the present scheme, it is possible to share a single key
among a set of servers and clients. It is also possible to
engineer some interesting and useful security topologies
using this scheme. For example, a closely cooperating
clique of primary servers operating in peer-peer modes can
share a single key, in order to provide backup for each other
if a radio clock fails. This avoids having to distribute a dif-
ferent key for every pairwise association to every server in
the clique. In another example, a set of servers can operate
in multicast mode with a single key, so that a client popula-
tion can synchronize to any of them without requiring sepa-
rate keys for each one. These examples point up the need to
authenticate an aggregate of servers as a unit, where it is
not necessary to distinguish among the servers in the aggre-
gate, at least not with respect to authentication.

DESIGN ISSUES

In a perfect world with inexhaustible processing time and
memory resources, a public-key cryptosystem such as RSA
[9] would be a good foundation on which to build the NTP
authentication scheme. In a public- key cryptosystem, each
server computes a public/private key pair, or a clique of
servers is assigned a public/private key pair using a secure
secondary channel. The private key is held by the server
and never divulged. A necessary property of public-key
cryptosystems is that knowledge of the public key and
ciphertext does not compromise the private key or plain-
text. The user name, address, public key and related values
are stored in a database maintained by directory servers.

In order to minimize the vulnerability to attack, public-key
cryptography requires every message to be individually
signed using the server private key. The same technique
can be used to construct a digital signature for a unit of data
or a message and later verify the signature. In order to min-
imize the processing required, the server constructs a digest



3

of the message contents using a one-way hash function
such as MD5, then encrypts it using RSA and the server
private key. The result is stored in the MAC and transmit-
ted with the message. The client constructs the message
digest, then compares it with the MAC decrypted using the
server public key.

Public/private key pairs are normally generated by the
server. The public key, together with identification infor-
mation, is signed by one or more trusted agents functioning
as notaries, to construct a certificate, which is then submit-
ted to the directory service. Certificates bind the public key
and related values to identification data, such as a digitized
photograph, handwritten signature or voiceprint. These
data are not necessarily secure; only the server private key
is considered secure, but it is never divulged. In order to
verify that an information source is authentic and that the
source is in fact in possession of the private key, it is neces-
sary to verify all notary signatures on the certificate trail as
well.

Constructing the MD5 message digest is a relatively fast
operation; for instance, the time to compute a NTP message
digest on a Hewlett Packard 9000/735 is 31 us and 263 us
on a Sun Microsystems SPARC 1. However, even when the
plaintext is a 128-bit MD5 hash, RSA encryption is pain-
fully slow. For instance, the mean time to sign a NTP mes-
sage ranges form 80 ms on a Digital 266-MHz Alpha to 2.1
s on a Sun SPARC 1; while the mean time to verify the sig-
nature ranges from 7.9 ms on the Alpha to 201 ms on the
SPARC 1. While the MD5 running times are independent
of data and key, the RSA running times are highly variable,
depending on the population of one bits in the key and
other factors. For example, with random bit strings as keys,
the verification time on a SPARC 1 ranges from 198 ms to
273 ms. Variations as large as these would result in unac-
ceptable loss of accuracy in many NTP applications.

Another approach uses some variant of the Station-to-Sta-
tion (STS) protocol, such as Photuris to compute a shared
secret used as a session key. Since the numbers involved
can be very large (512 bits is typical), these operations are
slow, but need to be computed only when the keys are
changed. However, these protocols require persistent state
at the servers, thus are not appropriate for use in NTP cli-
ent-server and multicast modes with large numbers of serv-
ers and clients. Either the server must be able to regenerate
the session key as each client request is received, or some
means must be provided to authenticate the current session
key with respect to a previously used session key which has
been cryptographically authenticated.

A basic rule in all key distribution and management
schemes is that cryptographic keys and associated values

must have enforceable lifetimes. Valid keys should be
replaced from time to time, in order to frustrate potential
cryptanalysis. Once destroyed, a key should never be used
again. This implies a specific vulnerability to an attack on
the timekeeping system, specifically NTP. If secure time-
keeping is dependent on reliable authentication and, which
itself requires keys sensitive to time, an interesting circular-
ity results.

When a key with enforceable lifetime is created or used for
cryptographic computations, the results of the computa-
tions cannot be validated, unless the entity performing the
computations has been correctly synchronized to a source
which has been authenticated by a valid certificate trail.
Thus, a digital signature cannot be generated, unless the
server has authentic time. On the other hand, the signature
can be verified at any time, but validated only when the cli-
ent has authentic time.

This raises the issue that NTP must function in scenarios
where reliable network timekeeping has not yet been estab-
lished, or when the certificates have not yet been verified.
The most common case occurs when a client is first started
and before its clock has been set. In this such cases, the
synchronization and authentication functions must operate
even before the clock has been reliably set. Thus, any pro-
tocols used by NTP itself to initiate cryptographic associa-
tions must not depend on prior key exchanges which are
themselves dependent on synchronized clocks. This design
requirement is unique among all other known network ser-
vices.

The client operations to synchronize the clock and authenti-
cate the servers cannot depend on which of these functions
is done first. In the present NTP protocol model, state vari-
ables are developed for each remote server separately,
including its apparent time offset relative to the local clock.
This process takes from one to several packet exchanges, in
order to suppress outlyers and establish reliable offsets.
While this is going on, the client may be in process of
retrieving certificates from directory services and verifying
signatures. As this process involves only public values, it
can be performed while NTP is collecting data to set the
time. Only after reliable server time and authenticated
server identification have been achieved can the local clock
be set.

There is a subtle problem when considering the design of
secure directory services and related transport protocols.
Ordinarily, clients of these services assume the various
cryptographic keys and certificates have enforceable life-
times; that is, the services will not themselves use keys or
certificates, unless the lifetimes can be enforced. When
used with NTP, no assumption can be made about the life-



4

times, since the clocks may not yet be synchronized. In the
present approach, this does not matter, since determining
the local clock offset and authenticating the server are per-
formed independently. Designers of secure services must
be prepared to deliver the data requested, even if unable to
securely authenticate it at the moment.

NTP VERSION 4 SECURITY MODEL AND 
AUTHENTICATION SCHEME

The Version 4 security model and authentication scheme is
designed to be backwards compatible with previous ver-
sions, except in a few unavoidable cases. The model adds
new features that provide for a self-keyed style of operation
in conjunction with new directory and certificate retrieval
services now in the planning process in the IETF. The new
scheme uses cryptographic message digests in the same
way as the original scheme. The contents of the NTP
header are hashed with keyed MD5 and a 16-octet session
key, yielding a 16-octet message digest. The MAC trans-
mitted following the NTP header consists of a four-octet
key identifier followed by a 16-octet message digest.

A client authenticates the server by first obtaining the
server name, IP address, public key and related certificate
media. Obtaining the public values may involve additional
network operations, such as traversing the directory tree,
decrypting signatures, verifying certificates, etc. In princi-
ple, provisions must be made to change any of the public
values; however, it is anticipated that the need to do this
will be relatively infrequent and the computational burden
will not affect the accuracy of ongoing NTP operations.
Should any of these values change, the natural result is to
fail the authentication test, timeout and terminate the asso-
ciation, then attempt to restart it.

In the new scheme, each server maintains a private random
value which is used together with its private key and other
values to generate session keys. The private random value
is replaced at relatively short intervals, such as a day,
depending on the needs of the security model, but never
divulged. The private key is replaced at longer intervals,
such as a week, since this requires all clients to indepen-
dently verify its authenticity using relatively tedious opera-
tions. The RSA public-key cryptosystem is used to encrypt
and decrypt data in some messages exchanged between the
server and its clients. In addition, secure directory services
are assumed available from which public keys and certifi-
cates can be obtained. The mechanisms used to obtain the
public keys and verify the certificates are the subject of cur-
rent proposals, but are not discussed further in this paper.

A server generates a public-private key pair using algo-
rithms well-known in the art. It then generates a certificate
binding the public key to identification values and sends it

to one or more trusted agents for signatures, then sends it to
the directory service for public access. A client authenti-
cates a server by sending either its name or address,
depending on how it first learned of its existence, and
retrieves the public key and related certificate media. It
then verifies the public key using the certificates as neces-
sary. This need be done only once, after which the public
key can be cached at the client. These operations use stan-
dard procedures, so are not discussed further here.

The scheme works differently for peer-peer, client-server
and multicast modes; however, the message digest is calcu-
lated in the same way in all modes. The MD5 algorithm is
used to hash the concatenated server private random value,
private key, IP source address, IP destination address and
MAC key identifier fields. The resulting 16-octet value is
the session key used to construct the message digest, which
is computed as in the original scheme. Note that the new
scheme in effect includes all significant fields of the mes-
sage, not just the NTP header as in the original scheme, and
thus provides additional security.

The scheme adds new key-request and key-response mes-
sages to the suite of control messages already defined. The
key-request message sent by a client includes a copy of the
client public key. The key-response message sent by the
server includes the current session key encrypted first by
the server private key and then by the public key in the key-
request message. Since the only use of the client public-pri-
vate key pair is to verify and obscure the response, the pub-
lic key need not be certificated.

The three modes of NTP operation: peer-peer, client-server
and multicast present quite different security models. In
peer-peer modes, both peer associations are persistent, so
predistributed session keys cause little additional burden
other than as now with the current authentication scheme.
In the current reference implementation, the keys are stored
in a protected file. Presumably, the contents of this file can
be accessed and updated by means external to the protocol
without impinging on the current NTP protocol specifica-
tion or reference implementation. This can be done using
schemes proposed by the IETF and are not discussed fur-
ther here, other than to point out the scheme described
below for client- server modes can be used as well.

In client-server mode, the server maintains no per-client
state between client requests, either for timekeeping data or
cryptographic media. Therefore, the session key must be
regenerated for each received client request. In order to
prevent forgery, it must not be possible for an intruder to
eavesdrop on an exchange between a client and a legitimate
server to mimic the key generation process for that client or
server. The scheme described below, which was originally



5

suggested by Steven Kent of BBN3, requires that the server
regenerate a secret key upon each message arrival from the
client; however, the computations to regenerate the key are
relatively minor.

First, the client sends a key-request message to the server,
which then generates and encrypts the session key as above
and returns it in a key- response message to the client. The
client decrypts the session key and caches it in its secure
database. This method prevents a man-in-the- middle
attack, but does consume significant server and client
resources. However, the exchange needs to be done only
infrequently when the client is first started up and when the
server private values are changed. Alternatively, if the dan-
ger of a man-in-the-middle attack can be avoided through
the use of secure address filtering, for example, the session
key can be considered a public value with controlled scope.
In this case, the session key can be transmitted as plaintext,
since it is not useful for any other source address.

The cached session key is used by the client to compute the
message digest in the usual way. The server recomputes the
session key as each request is received. This is done exactly
as above when generating the hash returned to the client as
the session key. The session key and message digest are
then computed as above. The session key is unique to the
particular server and client involved and need not be
retained by the server between requests. Note that an
intruder cannot modify and replay a message as valid, even
if it forges the source address, since only the server and cli-
ent can construct the correct session key.

In multicast mode, servers send messages at a controlled
rate and respond only to key-request messages. A server
first calculates a list of 16-octet session keys for later use,
as in the S/KEY system [2]. It first computes the session
key as in client-server mode and uses this as the first entry
in the list. For this purpose, the IP source and destination
addresses are the server address and assigned multicast
group address, respectively, and the key identifier is a ran-
dom roll. The low order four octets of this session key are
used to generate the next session key and become the key
identifier associated with that key. The server uses the same
IP addresses and this session key to generate the next ses-
sion key. Continuing in this way, the server fills the list,
which may have from a few to several hundred entries.

The server uses the list in inverse order; that is, the last
entry is used first, then the next before that, and so on until
all entries except the first have been used. At this point, the
server generates a new private random value and recom-

putes the list. Each time the server uses an entry, it stores
the low order four octets of the previous session key in the
key identifier field.

A client authenticates each message relative to the message
that immediately preceded it. It computes the session key
and message digest as described above. It then extracts the
low order four octets of the session key and compares with
the key identifier field in the last message received. If the
values agree, the current message is considered valid. If
not, a message might have been discarded in transit, so the
client hashes again. This procedure may continue for a
fixed number of hashes, following which the client aban-
dons the attempt and sends a key- request message to
obtain the current session key.

The session key applies only to the current message and is
not useful for any subsequent message. However, an
intruder (man-in-the-middle) could intercept a query
response message and learn the current session key, from
which all session keys used prior to this message can be
determined. While these session keys will not be used
again, it is conceivable, although unlikely, that the intruder
could trick a client who has not yet heard a prior message
into accepting a bogus message. In order to succeed, the
intruder would have to impersonate at least the IP source
address of any messages it sends to the unsuspecting client
which, although possible, is unlikely.

It is important to understand that the session key obtained
in this way is not a secret in the ordinary sense, since any
client can obtain it or forge it without cryptographic
authentication or encryption of any kind. Its purpose is to
provide a shared value dependent upon a secret value held
only by the server and used in subsequent steps to generate
the message digest of each transmitted message. Thus,
while the shared value can be obtained by any intruder and
used subsequently as a key to generate a message digest,
the actual secret used to generate the shared value is not
divulged and, presumably, cannot be obtained by an
intruder. Neither can future secrets be predicted by an
intruder. In this sense, the scheme has perfect forward
secrecy.

SUMMARY AND CONCLUSIONS

With relevance to Army battlefield systems, The level of
intricate dependencies in this paper confirms that good
authentication scheme design is a tricky business and
invites vulnerabilities in surprising places. With particular
relevance to network timekeeping, the most significant
requirement is that time synchronization and source
authentication must be decoupled and allowed to proceed
independently until a sufficient set of timely servers are
found and their authenticity confirmed.

3. Personal communication.



6

The authentication schemes described for NTP client-
server and multicast modes have direct application to Army
tactical networks and command/control networks, where
survivability and independence from centralized control is
essential.

REFERENCES

1. Aziz, A., T. Markson, H. Prafullchandra. SKIP
extensions for IP multicast. Internet Draft, Sun
Microsystems, December 1995, 11 pp. Eastlake,
D., 3rd., and C. Kaufman. Domain Name System
security extensions. Internet Draft, CyberCash,
December 1995, 45 pp.

2. Haller, N. The S/KEY one-time password sys-
tem. Network Working Group Report RFC-1760.
Bellcore, February 1995, 12 pp.

3. Karn, P., and W.A. Simpson. The Photuris ses-
sion key management protocol. Network Work-
ing Group Internet Draft (ipsec-photuris),
Qualcomm, November 1995, 66 pp.

4. Maughan, D., M. Schertler. Internet security
association and key management protocol

(ISAKMP). Internet Draft, National Security
Agency, November 1995, 59 pp.

5. Mills, D.L. Internet time synchronization: the
Network Time Protocol. IEEE Trans. Communi-
cations COM-39, 10 (October 1991), 1482-1493.

6. Mills, D.L. Network Time Protocol (Version 3)
specification, implementation and analysis. Net-
work Working Group Report RFC-1305, Univer-
sity of Delaware, March 1992, 113 pp.

7. Mills, D.L. Improved algorithms for synchroniz-
ing computer network clocks. IEEE/ACM Trans.
Networks<D> (June 1995), 245-254.

8. DES modes of operation. FIPS Publication 81,
National Bureau of Standards, December 1980.

9. PKCS #1: RSA encryption standard, Version 1.5.
RSA Laboratories, November 1993.

10. Rivest, R. The MD5 message-digest algorithm.
Network Working Group Report RFC-1321, MIT
and RSA, April 1992, 21 pp.



1

AUTHENTICATION SCHEME FOR DISTRIBUTED, UBIQUITOUS, REAL-TIME PROTOCOLS 1,2

David L. Mills
University of Delaware

Newark, DE 19716

ABSTRACT

Cryptographic authentication methodology proposed for
use in the Internet require substantial resources when very
large client populations are involved. Resource provision-
ing becomes especially important when time-critical ser-
vices are involved. In the cast of time- synchronization
services, a special case exists, since cryptographic keys
must enforce valid lifetimes, but validating key lifetimes
requires cryptographic keys. This paper proposes a scheme
which minimizes server resources while resolving the
apparent circularity.

INTRODUCTION

The Network Time Protocol (NTP) is widely used in the
Internet to synchronize computer time to national stan-
dards. The current NTP population includes well over 200
primary (stratum-1) servers and 100,000 secondary (stra-
tum-2 and above) servers and clients. It provides compre-
hensive mechanisms to access national time and frequency
dissemination services, organize the hierarchical time-syn-
chronization subnet and adjust the clock in each participat-
ing subnet peer. The protocol uses redundant servers,
diverse network paths and crafted algorithms which discard
bogus servers and minimize errors due to various causes. It
can operate in several modes, including peer-peer, client-
server and multicast. In most places of the Internet of today,
NTP provides accuracies of 1-20 ms, depending on the
characteristics of the synchronization sources and subnet
paths.

The NTP architecture model and supporting algorithms are
described in [5], the NTP Version 3 protocol specification
in RFC-1305 [6], and recent algorithm improvements in
[7]. Additional information can be found at the NTP home
page http://www.eecis.udel.edu/~ntp and the author’s home
page http://www.eecis.udel.edu/~mills.

A reliable and ubiquitous network time service such as
NTP requires some provision to prevent accidental or mali-
cious attacks on the servers and their clients. Reliability
requires that clients can determine that received messages
are authentic; that is, were actually sent by the intended
server and not manufactured or modified by an intruder.
Ubiquity requires that any client can verify the authenticity
of any server using only public information. The NTP secu-
rity model and authentication scheme are designed with
these requirements in mind.

In many ways, the NTP requirements are shared by other
ubiquitous, distributed applications, such as directory ser-
vices, web servers and archive repositories. However, an
effective design requires it operate efficiently in all modes
supported, including peer-peer, client-server and multicast
modes. Current IETF key-agreement schemes like Photuris
[3], SKIP [1] and ISAKMP [4] could be used with NTP as
with other protocols in peer-peer mode, but are unsuitable
for client-server mode, where persistent state cannot be
maintained by servers for client populations which may
number in the thousands, and multicast mode, where clients
do not ordinarily send messages to the servers.

While the current NTP security model and authentication
scheme have been in use for well over a decade, they have
several drawbacks, the most serious being the requirement
that keys must be securely distributed in advance. There are
no provisions in the NTP architecture for key distribution
or management on the assumption these functions would be
provided by a designated protocol other than NTP. Even if
such functions were available, the large number of associa-
tions, well over 250,000 in the current NTP subnet, would
make the management operations to distribute keys and
manage their lifetimes infeasible. In a truly survivable net-
work, these functions cannot rely on centralized key man-
agement; they require a distributed network design with
redundant paths and diverse servers.

1. Prepared through collaborative participation in the Advanced Telecommunications/Information Distribution Research
Program (ATIRP) sponsored by U.S. Army Research Laboratories Cooperative Agreement DAAL01-96-2-0002 This
work is also supported by DARPA Information Technology Office Contract DABT 63-95-C-0046, NSF Grant NCR
93-01002, and U.S. Navy Contract A303 276-93.

2. This paper has been accepted for publication in Advanced Telecommunications/Information Distribution
(ATIRP) Conference, College Park MD, January 1997. It should not be cited or redistributed prior to publica-
tion.



2

CURRENT NTP SECURITY MODEL AND 
AUTHENTICATION SCHEME

The authentication scheme described in the NTP Version 3
specification RFC-1305 is the basis of the current NTP
security model. Its goal is to provide universal access to
data products of the protocol, while preventing an intruder
from modifying a message or manufacturing a fake mes-
sage which is acceptable to a client. It is not necessary, nor
would it be politically expedient, to encrypt the timestamps
or otherwise hide the data in NTP messages, since these are
public values. Furthermore, it is not the intent in the model
to include access controls; other mechanisms based on IP
address and UDP port filtering are available for that. It is
not necessarily the case that the model includes protections
from message loss, duplication or corruption, since these
protections are an intrinsic capability of the NTP protocol
itself.

It is important to note that the NTP security model specifi-
cally recognizes that authentication service may not be con-
tinuously available. The model assumes that individual
peers can fail or operate incorrectly or even attempt to
modify messages or jam the subnet in one form or another.
In addition, transmission lines can fail, routes can change
or become congested, and cryptographic keys and even
security policies can change while the subnet is in regular,
continuous operation. This requires that clients utilize
redundant servers and diverse paths for the authentication
function, as well as the synchronization function.

The hierarchical organization of the NTP subnet requires
the construction of an unbroken chain of authentication
from a given client via intermediate servers to the primary
(stratum 1) servers, which are assumed authenticated by
external means. Each server at a given stratum level in the
hierarchy individually authenticates its assigned servers at
the next lower stratum level. If at least one of them is
authenticated, the server synchronizes with it and reports
itself as authenticated to its dependent servers at the next
higher stratum level. Whether a server is authenticated or
not, the client maintains state variables for it, including its
time offset relative to the client clock.

As the synchronization subnet, evolves in response to
server failures and restarts, prevailing network delay paths,
etc., the authentication hierarchy evolves in response. It
may happen that protocol operations can proceed normally;
but, due to temporary lack of cryptographic key material,
for example, individual servers may become isolated from
their sources, even if the timekeeping data itself remains
valid. If a server ordinarily synchronized via authenticated
sources loses contact with all of these sources, it coasts at

its current rate for a time specified by the protocol or until
all key lifetimes have expired.

A client is usually configured with a number of servers,
each identified by source and destination IP addresses and
assigned a secret key and key identifier, which is stored in a
secure database. The key is used to construct a message
digest (one-way hash function) of the contents with either
keyed MD5 [10] or DES-CBC [8]. The session key identi-
fier and message digest form a message authentication code
(MAC), which is transmitted with the message. A server is
usually stateless and does not retain data from one client
request to the next. It uses the key identifier in the client
message to retrieve the secret key from its own database
and construct the MAC in messages sent to the client. This
assumes that the server has the same secret key as the client
and uses the same key identifier.

In the present scheme, it is possible to share a single key
among a set of servers and clients. It is also possible to
engineer some interesting and useful security topologies
using this scheme. For example, a closely cooperating
clique of primary servers operating in peer-peer modes can
share a single key, in order to provide backup for each other
if a radio clock fails. This avoids having to distribute a dif-
ferent key for every pairwise association to every server in
the clique. In another example, a set of servers can operate
in multicast mode with a single key, so that a client popula-
tion can synchronize to any of them without requiring sepa-
rate keys for each one. These examples point up the need to
authenticate an aggregate of servers as a unit, where it is
not necessary to distinguish among the servers in the aggre-
gate, at least not with respect to authentication.

DESIGN ISSUES

In a perfect world with inexhaustible processing time and
memory resources, a public-key cryptosystem such as RSA
[9] would be a good foundation on which to build the NTP
authentication scheme. In a public- key cryptosystem, each
server computes a public/private key pair, or a clique of
servers is assigned a public/private key pair using a secure
secondary channel. The private key is held by the server
and never divulged. A necessary property of public-key
cryptosystems is that knowledge of the public key and
ciphertext does not compromise the private key or plain-
text. The user name, address, public key and related values
are stored in a database maintained by directory servers.

In order to minimize the vulnerability to attack, public-key
cryptography requires every message to be individually
signed using the server private key. The same technique
can be used to construct a digital signature for a unit of data
or a message and later verify the signature. In order to min-
imize the processing required, the server constructs a digest



3

of the message contents using a one-way hash function
such as MD5, then encrypts it using RSA and the server
private key. The result is stored in the MAC and transmit-
ted with the message. The client constructs the message
digest, then compares it with the MAC decrypted using the
server public key.

Public/private key pairs are normally generated by the
server. The public key, together with identification infor-
mation, is signed by one or more trusted agents functioning
as notaries, to construct a certificate, which is then submit-
ted to the directory service. Certificates bind the public key
and related values to identification data, such as a digitized
photograph, handwritten signature or voiceprint. These
data are not necessarily secure; only the server private key
is considered secure, but it is never divulged. In order to
verify that an information source is authentic and that the
source is in fact in possession of the private key, it is neces-
sary to verify all notary signatures on the certificate trail as
well.

Constructing the MD5 message digest is a relatively fast
operation; for instance, the time to compute a NTP message
digest on a Hewlett Packard 9000/735 is 31 us and 263 us
on a Sun Microsystems SPARC 1. However, even when the
plaintext is a 128-bit MD5 hash, RSA encryption is pain-
fully slow. For instance, the mean time to sign a NTP mes-
sage ranges form 80 ms on a Digital 266-MHz Alpha to 2.1
s on a Sun SPARC 1; while the mean time to verify the sig-
nature ranges from 7.9 ms on the Alpha to 201 ms on the
SPARC 1. While the MD5 running times are independent
of data and key, the RSA running times are highly variable,
depending on the population of one bits in the key and
other factors. For example, with random bit strings as keys,
the verification time on a SPARC 1 ranges from 198 ms to
273 ms. Variations as large as these would result in unac-
ceptable loss of accuracy in many NTP applications.

Another approach uses some variant of the Station-to-Sta-
tion (STS) protocol, such as Photuris to compute a shared
secret used as a session key. Since the numbers involved
can be very large (512 bits is typical), these operations are
slow, but need to be computed only when the keys are
changed. However, these protocols require persistent state
at the servers, thus are not appropriate for use in NTP cli-
ent-server and multicast modes with large numbers of serv-
ers and clients. Either the server must be able to regenerate
the session key as each client request is received, or some
means must be provided to authenticate the current session
key with respect to a previously used session key which has
been cryptographically authenticated.

A basic rule in all key distribution and management
schemes is that cryptographic keys and associated values

must have enforceable lifetimes. Valid keys should be
replaced from time to time, in order to frustrate potential
cryptanalysis. Once destroyed, a key should never be used
again. This implies a specific vulnerability to an attack on
the timekeeping system, specifically NTP. If secure time-
keeping is dependent on reliable authentication and, which
itself requires keys sensitive to time, an interesting circular-
ity results.

When a key with enforceable lifetime is created or used for
cryptographic computations, the results of the computa-
tions cannot be validated, unless the entity performing the
computations has been correctly synchronized to a source
which has been authenticated by a valid certificate trail.
Thus, a digital signature cannot be generated, unless the
server has authentic time. On the other hand, the signature
can be verified at any time, but validated only when the cli-
ent has authentic time.

This raises the issue that NTP must function in scenarios
where reliable network timekeeping has not yet been estab-
lished, or when the certificates have not yet been verified.
The most common case occurs when a client is first started
and before its clock has been set. In this such cases, the
synchronization and authentication functions must operate
even before the clock has been reliably set. Thus, any pro-
tocols used by NTP itself to initiate cryptographic associa-
tions must not depend on prior key exchanges which are
themselves dependent on synchronized clocks. This design
requirement is unique among all other known network ser-
vices.

The client operations to synchronize the clock and authenti-
cate the servers cannot depend on which of these functions
is done first. In the present NTP protocol model, state vari-
ables are developed for each remote server separately,
including its apparent time offset relative to the local clock.
This process takes from one to several packet exchanges, in
order to suppress outlyers and establish reliable offsets.
While this is going on, the client may be in process of
retrieving certificates from directory services and verifying
signatures. As this process involves only public values, it
can be performed while NTP is collecting data to set the
time. Only after reliable server time and authenticated
server identification have been achieved can the local clock
be set.

There is a subtle problem when considering the design of
secure directory services and related transport protocols.
Ordinarily, clients of these services assume the various
cryptographic keys and certificates have enforceable life-
times; that is, the services will not themselves use keys or
certificates, unless the lifetimes can be enforced. When
used with NTP, no assumption can be made about the life-



4

times, since the clocks may not yet be synchronized. In the
present approach, this does not matter, since determining
the local clock offset and authenticating the server are per-
formed independently. Designers of secure services must
be prepared to deliver the data requested, even if unable to
securely authenticate it at the moment.

NTP VERSION 4 SECURITY MODEL AND 
AUTHENTICATION SCHEME

The Version 4 security model and authentication scheme is
designed to be backwards compatible with previous ver-
sions, except in a few unavoidable cases. The model adds
new features that provide for a self-keyed style of operation
in conjunction with new directory and certificate retrieval
services now in the planning process in the IETF. The new
scheme uses cryptographic message digests in the same
way as the original scheme. The contents of the NTP
header are hashed with keyed MD5 and a 16-octet session
key, yielding a 16-octet message digest. The MAC trans-
mitted following the NTP header consists of a four-octet
key identifier followed by a 16-octet message digest.

A client authenticates the server by first obtaining the
server name, IP address, public key and related certificate
media. Obtaining the public values may involve additional
network operations, such as traversing the directory tree,
decrypting signatures, verifying certificates, etc. In princi-
ple, provisions must be made to change any of the public
values; however, it is anticipated that the need to do this
will be relatively infrequent and the computational burden
will not affect the accuracy of ongoing NTP operations.
Should any of these values change, the natural result is to
fail the authentication test, timeout and terminate the asso-
ciation, then attempt to restart it.

In the new scheme, each server maintains a private random
value which is used together with its private key and other
values to generate session keys. The private random value
is replaced at relatively short intervals, such as a day,
depending on the needs of the security model, but never
divulged. The private key is replaced at longer intervals,
such as a week, since this requires all clients to indepen-
dently verify its authenticity using relatively tedious opera-
tions. The RSA public-key cryptosystem is used to encrypt
and decrypt data in some messages exchanged between the
server and its clients. In addition, secure directory services
are assumed available from which public keys and certifi-
cates can be obtained. The mechanisms used to obtain the
public keys and verify the certificates are the subject of cur-
rent proposals, but are not discussed further in this paper.

A server generates a public-private key pair using algo-
rithms well-known in the art. It then generates a certificate
binding the public key to identification values and sends it

to one or more trusted agents for signatures, then sends it to
the directory service for public access. A client authenti-
cates a server by sending either its name or address,
depending on how it first learned of its existence, and
retrieves the public key and related certificate media. It
then verifies the public key using the certificates as neces-
sary. This need be done only once, after which the public
key can be cached at the client. These operations use stan-
dard procedures, so are not discussed further here.

The scheme works differently for peer-peer, client-server
and multicast modes; however, the message digest is calcu-
lated in the same way in all modes. The MD5 algorithm is
used to hash the concatenated server private random value,
private key, IP source address, IP destination address and
MAC key identifier fields. The resulting 16-octet value is
the session key used to construct the message digest, which
is computed as in the original scheme. Note that the new
scheme in effect includes all significant fields of the mes-
sage, not just the NTP header as in the original scheme, and
thus provides additional security.

The scheme adds new key-request and key-response mes-
sages to the suite of control messages already defined. The
key-request message sent by a client includes a copy of the
client public key. The key-response message sent by the
server includes the current session key encrypted first by
the server private key and then by the public key in the key-
request message. Since the only use of the client public-pri-
vate key pair is to verify and obscure the response, the pub-
lic key need not be certificated.

The three modes of NTP operation: peer-peer, client-server
and multicast present quite different security models. In
peer-peer modes, both peer associations are persistent, so
predistributed session keys cause little additional burden
other than as now with the current authentication scheme.
In the current reference implementation, the keys are stored
in a protected file. Presumably, the contents of this file can
be accessed and updated by means external to the protocol
without impinging on the current NTP protocol specifica-
tion or reference implementation. This can be done using
schemes proposed by the IETF and are not discussed fur-
ther here, other than to point out the scheme described
below for client- server modes can be used as well.

In client-server mode, the server maintains no per-client
state between client requests, either for timekeeping data or
cryptographic media. Therefore, the session key must be
regenerated for each received client request. In order to
prevent forgery, it must not be possible for an intruder to
eavesdrop on an exchange between a client and a legitimate
server to mimic the key generation process for that client or
server. The scheme described below, which was originally



5

suggested by Steven Kent of BBN3, requires that the server
regenerate a secret key upon each message arrival from the
client; however, the computations to regenerate the key are
relatively minor.

First, the client sends a key-request message to the server,
which then generates and encrypts the session key as above
and returns it in a key- response message to the client. The
client decrypts the session key and caches it in its secure
database. This method prevents a man-in-the- middle
attack, but does consume significant server and client
resources. However, the exchange needs to be done only
infrequently when the client is first started up and when the
server private values are changed. Alternatively, if the dan-
ger of a man-in-the-middle attack can be avoided through
the use of secure address filtering, for example, the session
key can be considered a public value with controlled scope.
In this case, the session key can be transmitted as plaintext,
since it is not useful for any other source address.

The cached session key is used by the client to compute the
message digest in the usual way. The server recomputes the
session key as each request is received. This is done exactly
as above when generating the hash returned to the client as
the session key. The session key and message digest are
then computed as above. The session key is unique to the
particular server and client involved and need not be
retained by the server between requests. Note that an
intruder cannot modify and replay a message as valid, even
if it forges the source address, since only the server and cli-
ent can construct the correct session key.

In multicast mode, servers send messages at a controlled
rate and respond only to key-request messages. A server
first calculates a list of 16-octet session keys for later use,
as in the S/KEY system [2]. It first computes the session
key as in client-server mode and uses this as the first entry
in the list. For this purpose, the IP source and destination
addresses are the server address and assigned multicast
group address, respectively, and the key identifier is a ran-
dom roll. The low order four octets of this session key are
used to generate the next session key and become the key
identifier associated with that key. The server uses the same
IP addresses and this session key to generate the next ses-
sion key. Continuing in this way, the server fills the list,
which may have from a few to several hundred entries.

The server uses the list in inverse order; that is, the last
entry is used first, then the next before that, and so on until
all entries except the first have been used. At this point, the
server generates a new private random value and recom-

putes the list. Each time the server uses an entry, it stores
the low order four octets of the previous session key in the
key identifier field.

A client authenticates each message relative to the message
that immediately preceded it. It computes the session key
and message digest as described above. It then extracts the
low order four octets of the session key and compares with
the key identifier field in the last message received. If the
values agree, the current message is considered valid. If
not, a message might have been discarded in transit, so the
client hashes again. This procedure may continue for a
fixed number of hashes, following which the client aban-
dons the attempt and sends a key- request message to
obtain the current session key.

The session key applies only to the current message and is
not useful for any subsequent message. However, an
intruder (man-in-the-middle) could intercept a query
response message and learn the current session key, from
which all session keys used prior to this message can be
determined. While these session keys will not be used
again, it is conceivable, although unlikely, that the intruder
could trick a client who has not yet heard a prior message
into accepting a bogus message. In order to succeed, the
intruder would have to impersonate at least the IP source
address of any messages it sends to the unsuspecting client
which, although possible, is unlikely.

It is important to understand that the session key obtained
in this way is not a secret in the ordinary sense, since any
client can obtain it or forge it without cryptographic
authentication or encryption of any kind. Its purpose is to
provide a shared value dependent upon a secret value held
only by the server and used in subsequent steps to generate
the message digest of each transmitted message. Thus,
while the shared value can be obtained by any intruder and
used subsequently as a key to generate a message digest,
the actual secret used to generate the shared value is not
divulged and, presumably, cannot be obtained by an
intruder. Neither can future secrets be predicted by an
intruder. In this sense, the scheme has perfect forward
secrecy.

SUMMARY AND CONCLUSIONS

With relevance to Army battlefield systems, The level of
intricate dependencies in this paper confirms that good
authentication scheme design is a tricky business and
invites vulnerabilities in surprising places. With particular
relevance to network timekeeping, the most significant
requirement is that time synchronization and source
authentication must be decoupled and allowed to proceed
independently until a sufficient set of timely servers are
found and their authenticity confirmed.

3. Personal communication.



6

The authentication schemes described for NTP client-
server and multicast modes have direct application to Army
tactical networks and command/control networks, where
survivability and independence from centralized control is
essential.

REFERENCES

1. Aziz, A., T. Markson, H. Prafullchandra. SKIP
extensions for IP multicast. Internet Draft, Sun
Microsystems, December 1995, 11 pp. Eastlake,
D., 3rd., and C. Kaufman. Domain Name System
security extensions. Internet Draft, CyberCash,
December 1995, 45 pp.

2. Haller, N. The S/KEY one-time password sys-
tem. Network Working Group Report RFC-1760.
Bellcore, February 1995, 12 pp.

3. Karn, P., and W.A. Simpson. The Photuris ses-
sion key management protocol. Network Work-
ing Group Internet Draft (ipsec-photuris),
Qualcomm, November 1995, 66 pp.

4. Maughan, D., M. Schertler. Internet security
association and key management protocol

(ISAKMP). Internet Draft, National Security
Agency, November 1995, 59 pp.

5. Mills, D.L. Internet time synchronization: the
Network Time Protocol. IEEE Trans. Communi-
cations COM-39, 10 (October 1991), 1482-1493.

6. Mills, D.L. Network Time Protocol (Version 3)
specification, implementation and analysis. Net-
work Working Group Report RFC-1305, Univer-
sity of Delaware, March 1992, 113 pp.

7. Mills, D.L. Improved algorithms for synchroniz-
ing computer network clocks. IEEE/ACM Trans.
Networks<D> (June 1995), 245-254.

8. DES modes of operation. FIPS Publication 81,
National Bureau of Standards, December 1980.

9. PKCS #1: RSA encryption standard, Version 1.5.
RSA Laboratories, November 1993.

10. Rivest, R. The MD5 message-digest algorithm.
Network Working Group Report RFC-1321, MIT
and RSA, April 1992, 21 pp.


