
A Kernel Model for Precision Timekeeping

Technical Memorandum

Sponsored by: ARPA/ARMY contract DABT63-95-C-0046, NSF grant NCR-93-01002 and
NSWC/NCEE contract A30327-93

David L. Mills
Electrical Engineering Department

University of Delaware
14 October 1994

Revised 13 December 1994
Revised 31 January 1996

Abstract

This memorandum is a substantial revision and update of RFC-1589, "A Kernel Model for Precision
Timekeeping," [MIL94a]. It contains information from a technical report of the same name in
PostScript format [MIL94b], together with some new information. This revision includes several
changes to the daemon and user interfaces to provide more detail in performance monitoring and
to support symmetric multiprocessor systems. It provides a new feature which disciplines the CPU
clock oscillator in both time and frequency to a source of precision time signals, as well as provisions
to operate with good accuracy at much higher poll intervals up to several hours.

The version of this memorandum dated 14 October 1994 describes a revised clock discipline model
useful for update intervals greater than 1024 s, which was formerly the maximum consistent with
reasonable accuracy using standard onboard clock oscillators. The new model is a hybrid in which
the old design based on a phase-lock loop is used at and below 1024 s, while a new design based
on a frequency-lock loop is used above this.

The version of this memorandum dated 13 December 1994 describes a new model which supports
symmetric multiprocessor systems in which each processor contains an integral counter which runs
at some multiple of 1 MHz. In this model, a master processor maintains the time of day using the
standard Unix logical clock, while the counters are used to interpolate the microseconds between
ticks of the logical clock. The new model explicitly compensates for the small differences between
the operating frequencies of the counters in order to synthesize a consistent, reliable system clock.

The version of this memorandum dated 31 January 1996 describes an alternative model peculiar to
the Sun Microsystems Solaris kernel for symmetric multiprocessor systems. This model uses a single
oscillator, together with two counters to implement a tick interrupt and a time-of-day clock.
Information on measurment technique is contained in a companion memorandum [MIL96a]; a
candidate operating systems interface for precision timing signals is contained in [MIL96b].

This memorandum is included in the documentation for the NTP Version 3 distribution for Unix,
as well as distributions for SunOS, Ultrix, OSF/1 and HP-UX kernel modifications which support
precision time functions. Detailed technical information, including source code segments imple-
menting these functions, is also available. Availability of the kernel distributions, which involve
licensed code, will be announced separately.

1. Executive Summary

This memorandum describes an engineering model which implements a precision time-of-day
function for a generic operating system. The model is based on the principles of disciplined
oscillators using phase-lock loops (PLL) and frequency-lock loops (FLL) often found in the
engineering literature. It has been implemented in the Unix kernels for several workstations,
including those made by Sun Microsystems, Digital and Hewlett Packard. The model changes the
way the system clock is adjusted in time and frequency, as well as provides mechanisms to discipline
its time and frequency to an external precision timing source, such as a pulse-per-second (PPS)
signal. The model incorporates a generic system-call interface for use with the Network Time
Protocol (NTP) or similar time synchronization protocol. The NTP Version 3 daemon xntpd operates
with this model to provide synchronization limited in principle only by the accuracy and stability
of the external timing source.

This memorandum does not propose a standard protocol, specification or algorithm. It is intended
to provoke comment, refinement and implementations for kernels not considered herein. While a
working knowledge of NTP is not required for an understanding of the design principles or
implementation of the model, it may be helpful in understanding how the model behaves in a fully
functional timekeeping system. The architecture and design of NTP is described in [MIL91], while
the current NTP Version 3 protocol specification is given in RFC-1305 [MIL92a] and a subset of
the protocol, the Simple Network Time Protocol (SNTP), is given in RFC-1361 [MIL92c].

The model has been implemented in the Unix kernels for Sun Microsystems, Digital and Hewlett
Packard workstations. In addition, for the Digital machines the model provides improved precision
to one microsecond (us). Since these specific implementations involve modifications to licensed
code, they cannot be provided directly. Inquiries should be directed to the manufacturer’s repre-
sentatives. However, the engineering model for these implementations, including a simulator with
code segments almost identical to the implementations, but not involving licensed code, is available
via anonymous FTP.

The NTP Version 3 distribution and technical information distributions can be obtained via
anonymous ftp from louie.udel.edu in the directory pub/ntp. The compressed tar archive
xntp3.v.tar.Z contains the NTP Version 3 distribution, where v is the version identifier and may be
incremented in future versions. In order to utilize all features described in this memorandum, the
NTP version identifier should be 4f or later. The compressed tar archive kernel.tar.Z contains
additional technical information, as well as this file.

2. Introduction

This memorandum describes a model and programming interface for generic operating system
software that manages the system clock and timer functions. The model provides improved accuracy
and stability for most computers using the Network Time Protocol (NTP) or similar time synchro-
nization protocol. This memorandum describes the design principles and implementations of the
model, while related technical reports discuss the design approach, engineering analysis and
performance evaluation of the model as implemented in Unix kernels for modern workstations. The
NTP Version 3 daemon xntpd operates with these implementations to provide improved accuracy
and stability, together with diminished overhead in the operating system and network. In addition,
the model supports the use of external timing sources, such as precision pulse-per-second (PPS)

2

signals and the industry standard IRIG timing signals. The NTP daemon automatically detects the
presence of the new features and utilizes them when available.

There are four prototype implementations of the model presented in this memorandum, one each
for the Sun Microsystems SPARCstation with the SunOS 4.x kernel and Solaris 2.x kernel, Digital
DECstation 5000 with the Ultrix 4.x kernel, Digital 3000 AXP Alpha with the OSF/1 V3.x kernel,
and Hewlett Packard 9000 with the HP-UX 9.x kernel. In addition, for the DECstation 5000/240
and 3000 AXP Alpha machines, a special feature provides improved precision to 1 us (stock Sun
and HP kernels already do provide this precision). Other than improving the system clock accuracy,
stability and precision, these implementations do not change the operation of existing Unix system
calls which manage the system clock, such as gettimeofday(), settimeofday() and adjtime();
however, if the new features are in use, the operations of gettimeofday() and adjtime() can be
controlled instead by new system calls ntp_gettime() and ntp_adjtime() as described below.

A detailed description of the variables and algorithms that operate upon them is given in the hope
that similar functionality can be incorporated in Unix kernels for other machines. The algorithms
involve only minor changes to the system clock and interval timer routines and include interfaces
for application programs to learn the system clock status and certain statistics of the time synchro-
nization process. Detailed installation instructions are given in a specific README files included
in the kernel distributions.

In this memorandum, NTP Version 3 and the Unix implementation xntp3 are used as an example
application of the new system calls for use by a synchronization daemon. In principle, these system
calls can be used by other protocols and implementations as well. Even in cases where the local
time is maintained by periodic exchanges of messages at relatively long intervals, such as with
modem services operated by NIST [LEV89] and USNO in the U.S. and PTB in Germany. In these
cases the ability to precisely adjust the system clock frequency simplifies the synchronization
procedures and allows the toll telephone call frequency to be considerably reduced.

3. Design Approach

While not strictly necessary for an understanding or implementation of the model, it may be helpful
to briefly describe how NTP operates to control the system clock in a client computer. As described
in [MIL91], the NTP protocol exchanges timestamps with one or more peers sharing a synchroni-
zation subnet to calculate the time offsets between peer clocks and the local clock. These offsets
are processed by several algorithms which refine and combine the offsets to produce an ensemble
average, which is then used to adjust the local clock time and frequency. The manner in which the
local clock is adjusted represents the main topic of this memorandum. The goal in the enterprise is
the most accurate and stable system clock possible with the available computer hardware and kernel
software.

In order to understand how the new model works, it is useful to review how most Unix kernels
maintain the system clock. In the Unix design a hardware counter interrupts the kernel at a fixed
rate: 100 Hz in the SunOS and HP-UX kernels, 256 Hz in the Ultrix kernel and 1024 Hz in the
OSF/1 kernel. Since the Ultrix timer interval (reciprocal of the rate) does not evenly divide one
second in microseconds, the kernel adds 64 us once each second, so the timescale consists of 255
advances of 3906 us plus one of 3970 us. Similarly, the OSF/1 kernel adds 576 us once each second,
so its timescale consists of 1023 advances of 976 us plus one of 1552 us.

3

The time-of-day function is developed in slightly different ways on the various kernels. In the SunOS
kernels, an auxiliary counter operating at some multiple of 1 MHz is read at each tick interrupt, then
the counter is cleared and the value read is added to the system time variable. The time returned by
gettimeofday() is determined as the value of the system time variable at the last tick interrupt plus
the value read from the auxiliary counter at the time of the gettimeofday() call. In the SunOS 4.x
kernel, the auxiliary counter runs at 1 MHz and the system time variable is in units of seconds and
microseconds. In the Solaris 2.x kernel, the counter runs at 2 MHz and the system time variable is
in units of seconds and nanoseconds. Conventional Unix time in seconds and microseconds is
developed using a fast divide operation on the nanoseconds portion.

In the stock Digital Ultrix 4.x and OSF/1 3.x kernels, there is no provision for an auxiliary counter
to interpolate between tick interrupts. However, the DECstation 5000/240 has an undocumented
IOASIC counter that counts system bus cycles at a rate of 25 MHz and can be mapped into kernel
virtual memory. In the kernel modifications described here, conventional Unix time is developed
using a table lookup operation and this counter. The Digital Alpha architecture includes a counter
that counts CPU cycles at the system clock rate or submultiple and can be read by a special CPU
instruction. In the kernel modifications described here, conventional Unix time is developed using
a divide instruction, which is actually a subroutine on the Alpha, and this counter.

3.1. Mechanisms to Adjust Time and Frequency

In most Unix kernels it is possible to slew the system clock to a new offset relative to the current
time by using the adjtime() system call. To do this the clock frequency is changed by adding or
subtracting a fixed amount (tickadj) at each timer interrupt (tick) for a calculated number of timer
interrupts. Since this calculation involves dividing the requested offset by tickadj, it is possible to
slew to a new offset with a precision only of tickadj, which is usually in the neighborhood of 5 us,
but sometimes much larger. This results in a roundoff error which can accumulate to an unacceptable
degree, so that special provisions must be made in the clock adjustment procedures of the
synchronization daemon.

In order to implement a frequency discipline function, it is necessary to provide time offset
adjustments to the kernel at regular adjustment intervals using the adjtime() system call. In order to
reduce the system clock jitter to the regime consistent with the model, it is necessary that the
adjustment interval be relatively small, in the neighborhood of 1 s. However, the Unix adjtime()
implementation requires each offset adjustment to complete before another one can be begun, which
means that large adjustments must be amortized over possibly many adjustment intervals. The
requirement to implement the adjustment interval and compensate for roundoff error considerably
complicates the synchronizing daemon implementation.

In the case of the HP-UX 9.x kernel, there is no provision for the adjtime() system call. A special
daemon has been developed by Ken Stone at HP to perform this function. While this is considered
a temporary hack and the adjtime() function is planned for the HP-UX 10.x release, the resulting
behavior is the same as the adjtime() system call.

In the new model, the adjtime() scheme is replaced by a one that represents the system clock as a
multiple-word, precision-time variable in order to provide very precise clock adjustments. At each
timer interrupt a precisely calibrated quantity is added to this variable and overflows propagated as
required. The new model operates in two modes, depending on the interval between updates. At
intervals less than about 1024 s, it operates as an adaptive-parameter, first-order, type-II phase-lock

4

loop (PLL) as described in [MIL92b]. However, this type of discipline is not suitable for update
intervals greater than 1024 s.

The second mode is appropriate for update intervals greater than 1024 s, as used in the Automatic
Computer Time Service (ACTS), a telephone time system operated by NIST. In this mode the
discipline operates as a hybrid phase/frequency-lock loop (FLL), in which the frequency is estimated
directly, rather than inferred from phase observations. In principle, the hybrid PLL/FLL design can
provide precision control of the system clock oscillator within 1 us and frequency to within parts
in 10^11. While precisions of this order are surely well beyond the capabilities of the CPU clock
oscillator used in typical workstations, they are appropriate using precision external oscillators, as
described below.

In the original NTP design, the software daemon xntpd simulates the PLL using the adjtime() system
call; however, the daemon implementation is considerably complicated by the considerations
described above. The modified kernel routines implement the PLL/FLL in the kernel using precision
time and frequency representations, so that these complications are avoided. A new system call
ntp_adjtime() is called only as each new time update is determined, which in NTP occurs at intervals
of from 16 s to 1024 s. In addition, doing frequency compensation in the kernel means that the
system clock runs true even if the daemon were to cease operation or the network paths to the primary
synchronization source fail.

In the new model this scheme is replaced by another that represents the system clock as a
multiple-word, precision-time variable in order to provide very precise clock adjustments. At each
timer interrupt a precisely calibrated quantity is added to the kernel time variable and overflows
propagated as required. The quantity is computed as in the NTP local clock model described in
[MIL92b], which operates as an adaptive-parameter, first-order, type-II phase-lock loop (PLL). In
principle, this PLL design can provide precision control of the system clock oscillator within 1 us
and frequency to within parts in 10^11. While precisions of this order are surely well beyond the
capabilities of the CPU clock oscillator used in typical workstations, they are appropriate using
precision external oscillators, as described below.

The PLL design is identical to the one originally implemented in NTP and described in [MIL92b].
In the original design the software daemon simulates the PLL using the adjtime() system call;
however, the daemon implementation is considerably complicated by the considerations described
above. The modified kernel routines implement the PLL in the kernel using precision time and
frequency representations, so that these complications are avoided. A new system call ntp_adjtime()
is called only as each new time update is determined, which in NTP occurs at intervals of from 16
s to 1024 s. In addition, doing frequency compensation in the kernel means that the system clock
runs true even if the daemon were to cease operation or the network paths to the primary
synchronization source fail.

In the new model the new ntp_adjtime() operates in a way similar to the original adjtime() system
call, but does so independently of adjtime(), which continues to operate in its traditional fashion.
When used with NTP, it is the design intent that settimeofday() or adjtime() be used only for system
clock adjustments greater than +-128 ms, although the dynamic range of the new model is much
larger at +-512 ms. It has been the Internet experience that the need to change the system clock in
increments greater than +-128 ms is extremely rare and is usually associated with a hardware or
software malfunction or system reboot. The easiest way to set the time is with the settimeofday()
system call; however, this can under some conditions cause the clock to jump backwards. If this

5

cannot be tolerated, adjtime() can be used to slew the clock to the new value without running
backward or affecting the frequency discipline process. Once the system clock has been set within
+-128 ms, the ntp_adjtime() system call is used to provide periodic updates including the time offset,
maximum error, estimated error and PLL time constant. With NTP the update interval and time
constant depend on the measured delay and dispersion; however, the scheme is quite forgiving and
neither moderate loss of updates nor variations in the update interval are serious.

3.2. Daemon and Application Interface

Unix application programs can read the system clock using the gettimeofday() system call, which
returns only the system time and timezone data. For some applications it is useful to know the
maximum error of the reported time due to all causes, including clock reading errors, oscillator
frequency errors and accumulated latencies on the path to the primary synchronization source.
However, in the new model the PLL adjusts the system clock to compensate for its intrinsic
frequency error, so that the time error expected in normal operation will usually be much less than
the maximum error. The programming interface includes a new system call ntp_gettime(), which
returns the system time, as well as the maximum error and estimated error. This interface is intended
to support applications that need such things, including distributed file systems, multimedia
teleconferencing and other real-time applications. The programming interface also includes a new
system call ntp_adjtime(), which can be used to read and write kernel variables for time and
frequency adjustment, PLL time constant, leap-second warning and related data.

In addition, the kernel adjusts the indicated maximum error to grow by an amount equal to the
maximum oscillator frequency tolerance times the elapsed time since the last update. The default
engineering parameters have been optimized for update intervals in the order of 64 s. As shown in
[MIL93], this is near the optimum interval for NTP used with ordinary room-temperature quartz
oscillators. For other intervals the PLL time constant can be adjusted to optimize the dynamic
response over intervals of 16-1024 s. Normally, this is automatically done by NTP. In any case, if
updates are suspended, the PLL coasts at the frequency last determined, which usually results in
errors increasing only to a few tens of milliseconds over a day using typical modern workstations.

While any synchronization daemon can in principle be modified to use the new system calls, the
most likely will be users of the NTP Version 3 daemon xntpd. The xntpd code determines whether
the new system calls are implemented and automatically reconfigures as required. When imple-
mented, the daemon reads the frequency offset from a system file and provides it and the initial time
constant via ntp_adjtime(). In subsequent calls to ntp_adjtime(), only the time offset and time
constant are affected. The daemon reads the frequency from the kernel using ntp_adjtime() at
intervals of about one hour and writes it to a system file. This information is recovered when the
daemon is restarted after reboot, for example, so the sometimes extensive training period to learn
the frequency separately for each oscillator can be avoided.

3.3. Precision Clocks for DECstation 5000/240 and 3000 AXP Alpha

The stock microtime() routine in the Ultrix 4.x kernel for Digital Equipment MIPS-based worksta-
tions returns system time to the precision of the timer interrupt interval, which is in the 1-4 ms range.
However, in the DECstation 5000/240 and possibly other machines of that family, there is an
undocumented IOASIC hardware register that counts system bus cycles at a rate of 25 MHz. The
new microtime() routine for the Ultrix kernel uses this register to interpolate system time between
timer interrupts. This results in a precision of 1 us for all time values obtained via the gettimeofday()

6

and ntp_gettime() system calls. For the Digital Equipment 3000 AXP Alpha, the architecture
provides a hardware Process Cycle Counter and a machine instruction (rpcc) to read it. This counter
operates at the fundamental frequency of the CPU clock or some submultiple of it, 133.333 MHz
for the 3000/400 and 175.000 MHz for the 3000/400, for example. The new microtime() routine
for the OSF/1 kernel automatically determines the counter rate and uses it in the same fashion as
the Ultrix routine. Support for this feature is conditionally compiled in the kernel only if the MICRO
option is used in the kernel configuration file.

In both the Ultrix and OSF/1 kernels the gettimeofday() and ntp_gettime() system call use the new
microtime() routine, which returns the interpolated value to 1-us resolution, but does not change
the kernel time variable. Therefore, other routines that access the kernel time variable directly and
do not call either gettimeofday(), ntp_gettime() or microtime() will continue their present behavior.
The microtime() feature is independent of other features described here and is operative even if the
kernel PLL/FLL or new system calls have not been implemented.

The SunOS and HP-UX kernels already include a system clock with 1-us resolution; so, in principle,
no microtime() routine is necessary. An existing kernel routine uniqtime() implements this function,
but it is coded in the C language and is rather slow at 42-85 us per call on a SPARCstation IPC. A
replacement microtime() routine coded in assembler language is available in the NTP Version 3
distribution and is much faster at about 3 us per call. Note that, as explained later, this routine should
be called at an interrupt priority level not greater than that of the timer interrupt routine. Otherwise,
it is possible to miss a tick increment, with result the time returned can be late by one tick. This is
always true in the case of gettimeofday() and ntp_gettime(), but might not be true in other cases,
such as when using the PPS signal described later in this memorandum.

3.4. External Time and Frequency Discipline

The overall accuracy of a time synchronization subnet with respect to Coordinated Universal Time
(UTC) depends on the accuracy and stability of the primary synchronization source, usually a radio
or satellite receiver, and the CPU clock oscillator of the primary server. As discussed in [MIL93],
the traditional interface using a ASCII serial timecode and RS232 port precludes the full accuracy
of most radio clocks. In addition, the poor frequency stability of typical CPU clock oscillators limits
the accuracy, whether or not precision time sources are available. There are, however, several ways
in which the system clock accuracy and stability can be improved to the degree limited only by the
accuracy and stability of the synchronization source and the jitter of the interface and operating
system.

The accuracy that can be achieved using a serial port is limited both by the nature of the serial data
stream and by the design of typical serial port drivers. The drivers attempt to reduce the interrupt
load by batching character arrivals. While the hardware interrupt is serviced immediately, character
are buffered temporarily until either a maximim number is reached or a specified timeout is
exceeded. The stock kernels considered here have no provision to disable the timeout, which can
increase the apparent jitter to several milliseconds. However, minor modifications to the driver code
on SunOS and Digital kernels have been implemented to disable the timeout, so that arriving
characters are passed to the user immediately upon receipt. Since this behavior may not be optimal
in cases not requiring the lowest jitter, a system call interface is proposed later in this memorandum
which can selectively enable and disable this function on a port-by-port basis.

7

Many radio clocks produce special signals that can be used by external equipment to precisely
synchronize time and frequency. Most produce a pulse-per-second (PPS) signal that can be read via
a modem-control lead of a serial port and some produce a special IRIG signal that can be read
directly by a bus peripheral, such as the KSI/Odetics TPRO IRIG SBus interface, or indirectly via
the audio codec of some workstations, as described in [MIL93]. In the NTP Version 3 daemon
xntpd, the PPS signal can be used to augment the less precise ASCII serial timecode to improve
accuracy to the order of a few tens of microseconds. Support is also included in the NTP distribution
for the TPRO interface, as well as the audio codec; however, the latter requires a modified kernel
audio driver contained in the compressed tar archive bsd_audio.tar.Z in the same host and directory
as the NTP Version 3 distribution mentioned previously.

3.4.1. PPS Signal

The most convenient way to interface a PPS signal to a computer is usually with a serial port and
RS232-compatible signal; however, the PPS signal produced by most radio clocks and laboratory
instruments is usually a TTL pulse signal. Therefore, some kind of level converter/pulse generator
is necessary to adapt the PPS signal to a serial port. An example design, including schematic and
printed-circuit board artwork, is in the compressed tar archive gadget.tar.Z in the same host and
directory as the NTP Version 3 distribution mentioned previously. There are several ways the PPS
signal can be used in conjunction with the NTP Version 3 daemon xntpd, as described in [MIL93]
and in the documentation included in the distribution.

The NTP Version 3 distribution includes a special ppsclock module for the SunOS 4.x kernel that
captures the PPS signal presented via a modem-control lead of a serial port. Normally, the ppsclock
module produces a timestamp at each transition of the PPS signal and provides it to the synchroni-
zation daemon for integration with the serial ASCII timecode, also produced by the radio clock.
With the conventional PLL implementation in either the daemon or the kernel as described in
[MIL93], the accuracy of this scheme is limited by the intrinsic stability of the CPU clock oscillator
to a millisecond or two, depending on environmental temperature variations.

The ppsclock module has been modified to in addition call a new kernel routine hardpps() once
each second. In addition, the Ultrix 4.x kernel has been modified to provide a similar functionality.
The hardpps() routine compares the timestamp with a sample of the CPU clock oscillator in order
to discipline the oscillator to the time and frequency of the PPS signal. Using this method, the time
accuracy is improved to typically 20 us or less and frequency stability a few parts in 10^8, which
is about two orders of magnitude better than the undisciplined oscillator. The new feature is
conditionally compiled in the code described below only if the PPS_SYNC option is used in the
kernel configuration file.

When using the PPS signal to adjust the time, there is a problem with some kernels which is very
difficult to fix. The serial port interrupt routine often operates at an interrupt priority level above
the timer interrupt routine. Thus, as explained below, it is possible that a tick increment can be
missed and the time returned late by one tick. It may happen that, if the CPU clock oscillator
frequency is close to the PPS oscillator frequency (less than a few ppm), this condition can persist
for two or more successive PPS interrupts. A useful workaround in the code is to use a glitch detector
and median filter to process the PPS sample offsets. The glitch detector suppresses offset bursts
greater than half the tick interval and which last less than 30 successive PPS interrupts. The median
filter ranks the offsets in a moving window of three samples and uses the median as the output and
the difference between the other two as a dispersion measure.

8

3.4.2. External Clocks

It is possible to replace the system clock function with an external bus peripheral. The TPRO device
mentioned previously can be used to provide IRIG-synchronized time with a precision of 1 us. A
driver for this device tprotime.c and header file tpro.h are included in the technical information
distribution mentioned previously. Using this device, the system clock is read directly from the
interface; however, the device does not record the year, so special provisions have been made to
obtain the year from the kernel time variable and initialize the driver accordingly. Support for this
feature is conditionally compiled in the kernel only if the EXT_CLOCK and TPRO options are used
in the kernel configuration file.

While the system clock function is provided directly by the microtime() routine in the driver, the
kernel time variable must be disciplined as well, since not all system timing functions use the
microtime() routine. This is done by measuring the time difference between the microtime() clock
and kernel time variable and using it to adjust the kernel PLL as if the adjustment were provided
by an external peer and NTP.

A good deal of error checking is done in the TPRO driver, since the system clock is vulnerable to
a misbehaving radio clock, IRIG signal source, interface cables and TPRO device itself. Unfortu-
nately, there is no practical way to utilize the extensive diversity and redundancy capabilities
available in the NTP synchronization daemon. In order to avoid disruptions that might occur if the
TPRO time is far different from the kernel time variable, the latter is used instead of the former if
the difference between the two exceeds 1000 s; presumably in that case operator intervention is
required.

3.4.3. External Oscillators

Even if a source of PPS or IRIG signals is not available, it is still possible to improve the stability
of the system clock through the use of a specialized bus peripheral. In order to explore the benefits
of such an approach, a special SBus peripheral called HIGHBALL has been constructed. The device
includes a pair of 32-bit hardware counters in Unix timeval format, together with a precision,
oven-controlled quartz oscillator with a stability of a few parts in 10^9. A driver for this device
hightime.c and header file high.h are included in the technical information distribution mentioned
previously. Support for this feature is conditionally compiled in the kernel only if the EXT_CLOCK
and HIGHBALL options are used in the kernel configuration file.

Unlike the external clock case, where the system clock function is provided directly by the
microtime() routine in the driver, the HIGHBALL counter offsets with respect to UTC must be
provided first. This is done using the ordinary kernel PLL, but controlling the counter offsets
directly, rather than the kernel time variable. At first, this might seem to defeat the purpose of the
design, since the jitter and wander of the synchronization source will affect the counter offsets and
thus the accuracy of the time. However, the jitter is much reduced by the PLL and the wander is
small, especially if using a radio clock or another primary server disciplined in the same way. In
practice, the scheme works to reduce the incidental wander to a few parts in 10^8, or about the same
as using the PPS signal.

As in the previous case, the kernel time variable must be disciplined as well, since not all system
timing functions use the microtime() routine. However, the kernel PLL cannot be used for this, since
it is already in use providing offsets for the HIGHBALL counters. Therefore, a special correction
is calculated from the difference between the microtime() clock and the kernel time variable and

9

used to adjust the kernel time variable at the next timer interrupt. This somewhat roundabout
approach is necessary in order that the adjustment does not cause the kernel time variable to jump
backwards and possibly lose or duplicate a timer event.

3.5. Other Features

It is a design feature of the NTP architecture that the system clocks in a synchronization subnet are
to read the same or nearly the same values before during and after a leap-second event, as declared
by national standards bodies. The new model is designed to implement the leap event upon command
by an ntp_adjtime() argument. The intricate and sometimes arcane details of the model and
implementation are discussed in [MIL92b] and [MIL93]. Further details are given in the technical
summary later in this memorandum.

4. Technical Summary

In order to more fully understand the workings of the model, a stand-alone simulator kern.c and
header file timex.h are included in the technical information distribution mentioned previously. In
addition, an example kernel module kern_ntptime.c which implements the ntp_gettime() and
ntp_adjtime() system calls is included. Neither of these programs incorporate licensed code. Since
the distribution is somewhat large, due to copious comments and ornamentation, it is impractical
to include a listing of these programs in this memorandum. In any case, implementors may choose
to snip portions of the simulator for use in new kernel designs; but, due to formatting conventions,
this would be difficult if included in this memorandum.

In the kern.c program, the system clock is implemented using a set of variables and algorithms
defined in the simulator and driven by explicit offsets generated by the main() routine in the program.
The algorithms include code fragments almost identical to those in the machine-specific kernel
implementations and operate in the same way, but the operations can be understood separately from
any licensed source code into which these fragments may be integrated. The code fragments
themselves are not derived from any licensed code. The following discussion assumes that the
simulator code is available for inspection.

4.1. PLL/FLL Simulation

The simulator kern.c operates in conformance with the analytical models described in [MIL92b]
and [MIL95]. The main() program operates as a driver for the routines hardupdate(), hardpps() and
microtime(), and the code fragments hardclock and second_overflow, although not all functions
implemented in these routines and fragments are simulated. The program simulates the selected
mode, PLL or FLL, at each timer interrupt and prints a summary of critical program variables at
each time update. The simulator is not fancy; in its present form, the mode and various operational
features are selected by changing defines and in some cases the code itself and rebuilding the
program.

There are four defined options in the kernel configuration file specific to each implementation. The
PPS_SYNC option provides support for a pulse-per-second (PPS) signal, which can be used to
discipline the time and frequency of the CPU clock oscillator. The EXT_CLOCK option provides
support for an external kernel-readable clock. External clocks are implemented as the microtime()
clock driver, with the specific driver selected by an option in the kernel configuration file. The
TPRO option selects the KSI/Odetics TPRO IRIG interface for the SBus, while the HIGHBALL
option selects the HIGHBALL precision oscillator interface for the SBus.

10

The kernel code can operate in various modes and with various features enabled or disabled, as
selected by the ntp_adjtime() system call, which is not simulated here. The bits of the time_status
variable are used to control these functions and record error conditions as they exist. The program-
ming interface is described later in this memorandum. In addition, the PPS signal is carefully
monitored for error conditions which can affect accuracy, stability and reliability.

In following sections the operation of each routine and code fragment is described in exhaustive
detail. The intent is not only to describe how the algorithms work, but also to demonstrate assertions
on the ability of the algorithms to work correctly over the entire range of input variables and
algorithm states. Although the most demanding proofs involve machines with an intrinsic word size
of 32 bits, such as those using 32-bit SPARC and MIPS processors, the assertion is made at the
outset that the proofs apply equally to machines with larger word sizes, including the 64-bit Alpha
processor. It should also be pointed out at the outset that the routines and fragments are in fact
virtually identical to those used in the SunOS, Ultrix, OSF/1 and HP-UX kernels mentioned
previously. From all available evidence, their operations in the simulator and the actual machine
are identical.

4.1.1. The hardupdate() Routine

The hardupdate() routine is called by the ntp_adjtime() system call to adjust the system clock phase
and frequency. The offset variable is passed in the hardupdate() argument. The phase adjustment
time_offset is computed as offset scaled by SHIFT_UPDATE (12), which is sufficient to protect
the low-order bits in later operations, and leaves 20 bits on a 32-bit machine to represent the phase
adjustment in microsecond units. The result is clamped to a maximum MAXPHASE that can be
defined as high as 512 ms, but in practice is much lower at about 128 ms.

The current frequency is represented by the variable time_freq. This variable is scaled by
SHIFT_USEC (16), which leaves 16 bits on a 32-bit machine to represent the frequency in ppm
units. The method of frequency adjustment depends on whether the PLL or FLL mode is selected
(by the STA_FLL bit in the status word). In FLL mode, the adjustment is calculated directly from
offset and the time since last update. The result updates time_freq, which in this mode is
exponentially averaged with time constant SHIFT_KH (2). In PLL mode, the adjustment is
calculated as the product of offset and time since last update divided by the frequency gain factor
SHIFT_KF (16) and the square of the time constant time_constant. The result is added directly to
time_freq. Note that gain factors and time constants are powers of two, so that most multiply/divide
operations can be done by simple shifts. In either mode, time_freq is clamped not to exceed the
frequency tolerance MAXFREQ, which can be defined as high as 512 ppm, but usually is much
lower in the order of 300 ppm. Note that all shifts are assumed to be positive and that a shift of a
signed quantity to the right requires a little dance.

It is necessary to carefully evaluate the possibility of overflow and loss of significance in the above
operations, especially in the case of 32-bit machines. The signed offset provided by hardclock() is
clamped upon entry not to exceed MAXPHASE (512000) or 20 bits (including sign) and shifted
left by SHIFT_UPDATE (12) bits. The resulting value of time_offset cannot overflow a 32-bit
word. In FLL mode, time_offset is used directly; in PLL mode, time_offset is shifted right
SHIFT_KG (6) plus time_constant in bits. Since time_constant is positive and limited to MAXTC
(6), no significance is lost in the process.

11

In PLL mode, the interval since last update cannot exceed MAXSEC (1024). Thus, the intermediate
product time_offset times this interval requires at most 20 bits. Since time_constant is greater than
or equal to zero and SHIFT_KF (16) is greater than or equal to SHIFT_USEC (16), the shift is
always to the right. The maximum value of the adjustment cannot overflow a 32-bit word and the
clamp involving time_tolerance cannot produce anomalous results. In FLL mode, the interval since
last update is at least MINSEC (16). The intermediate term, time_offset divided by this interval,
requires only 16 bits; therefore, this quantity left shifted by SHIFT_USEC (16) cannot overflow a
32 bit word.

The STA_PLL, STA_FLL and STA_PPSTIME status bits, which are set by the ntp_adjtime()
system call, serve to enable or inhibit the kernel PLL/FLL and PPS time-discipline functions. The
STA_PPSSIGNAL status bit is set by the hardpps() code fragment when the PPS signal is present
and operating within nominal bounds. Time discipline from the PPS signal operates only if both the
STA_PPSTIME and STA_PPSSIGNAL bits are set; otherwise, the discipline operates from the
offset given in the ntp_adjtime() system call. In the intended mode of operation, the synchronization
daemon sets STA_PLL to enable the PLL when first initialized, then sets STA_PPSTIME when
reliable synchronization to within MAXPHASE has been achieved with either a radio clock or
external peer. The daemon can detect and indicate this condition for monitoring purposes by noting
that both STA_PPSTIME and STA_PPSSIGNAL are set.

4.1.2. The hardclock Fragment

The hardclock fragment is inserted in the timer interrupt routine at the point the system clock is to
be incremented by the timer interrupt interval, or tick. Previous to this fragment the time_update
variable has been initialized to the value of tick, the value of which depends on the particular kernel.
Optionally, the stock Unix adjtime() system call can be used to augment time_update by the (signed)
value of the kernel variable tickadj, which is usually in the order of 5 us. This adjustment is outside
the PLL/FLL discipline loop and therefore does not affect the system clock frequency. The adjtime()
code to do this is part of the licensed Unix kernel and not normally used with the kernel modifications
described here. However, this feature allows the stock Unix functionality to be preserved when the
modified kernel functions are not in use.

Regardless of whether the adjtime() or ntp_adjtime() system calls are in use, the time_phase variable,
which represents the instantaneous phase of the system clock, is advanced by time_adj, which is
calculated in the second_overflow fragment described below. If the value of time_phase exceeds 1
us in units scaled by SHIFT_SCALE (22), time_update is increased by the (signed) excess and
time_phase is decreased by the same amount.

In those cases where a PPS signal is connected by a serial port operating at an interrupt priority level
greater than the timer interrupt, special consideration should be given the location of the hardclock
fragment in the timer interrupt routine. The system clock should be advanced as early in the routine
as possible, preferably before the hardware timer interrupt flag is cleared. This reduces or eliminates
the possibility that the microtime() routine may latch the time after the flag is cleared, but before
the system clock is advanced, which results in a returned time late by one tick.

Except in the case of an external oscillator/counter such as the HIGHBALL interface, the hardclock
fragment advances the system clock by the value of tick plus time_update. However, in the case of
an external (undisciplined) oscillator and counter, the system clock is obtained directly from the
counter and time_update used to discipline the oscillator. However, the existing kernel clock must

12

still be disciplined as explained previously, since system functions such as the interval timer depend
on it. The value of clock_cpu computed by the second_overflow fragment is used for this purpose.

4.1.3. The second_overflow Fragment

The second_overflow fragment is inserted in the timer interrupt routine at the point after the
hardclock fragment, where the microseconds field of the system time variable has been incremented,
and then checked if greater than 1000000 (one second). If not, the second_overflow fragment has
no effect. If true, this fragment first runs the leap-second state machine described below. Then, the
maximum error time_maxerror is increased by time_tolerance. This represents the increment
necessary to satisfy correctness assertions described in the specification, but is otherwise not used
by the kernel.

Next, the increment time_adj to advance the kernel time variable at each timer interrupt is calculated
from the phase (time_offset) and frequency (time_freq) variables previously computed by the
hardclock fragment. In FLL mode, the phase increment is equal to the value of time_offset itself;
while, in PLL mode, the increment is equal to the value of time_offset divided by the product of
the phase gain factor SHIFT_KG (6) times time_constant. In either case, the phase increment is
clamped so as not to exceed the maximum slew rate, which occurs at the maximum offset
MAXPHASE (512000) divided by the minimum update interval MINSEC (16) and scaled by
SHIFT_UPDATE (12). The result requires no more than 28 bits, so cannot overflow a 32-bit word.

The actual phase adjustment is the increment calculated as above, which is then subtracted from
time_offset, yielding a residual to be incorporated at the next seconds overflow. This technique
provides a rapid convergence for large adjustments, together with good resolution for small ones.
In FLL mode, the maximum slew rate clamp above insures that the phase correction rate is not larger
than that necessary to amortize the entire phase correction of as much as 512 ms before the next
update. While in PLL mode the adjustments may not be entirely amortized by the time of the next
update, the affect on loop stability and accuracy is very small.

Finally, the fraction point of the phase increment is aligned to SHIFT_SCALE (22), which requires
a left shift of SHIFT_SCALE minus SHIFT_UPDATE (12) or 10 bits, and divided by the hardware
timer frequency, represented as a right shift of SHIFT_HZ (7, 8 or 10, depending on the kernel)
bits. In order to prevent overflow, the shifts are combined in one operation, which results in a net
left shift of no more than 3 bits, and means the 28-bit result cannot overflow a 32-bit word. A safe
shift requires SHIFT_SCALE be no less than the sum of SHIFT_UPDATE plus SHIFT_HZ, which
is the case for SHIFT_HZ values up to 10 (1024 Hz). For interval timer frequencies greater than
1024 Hz, the various shifts will have to be adjusted; however, this is likely only for machines with
word sizes greater than 32 bits, which considerably simplifies the analysis. As a matter of interest,
the lower limit of SHIFT_HZ can be made as small as 6 (32 Hz) without overflow, should that ever
be useful.

In both PLL and FLL modes, the clock frequency offset time_freq has already been calculated by
the hardupdate() routine. The system clock frequency is maintained by adding time_freq to time_adj
once each second. First, the fraction point of time_freq is aligned to SHIFT_SCALE (22), which
requires a left shift of SHIFT_SCALE minus SHIFT_USEC or 6 bits. The result then must be divided
by the hardware clock frequency as above, which results in a net right shift. As above, the shifts are
combined in one operation, so the result cannot overflow a 32-bit word. Note that, in the case the
tick does not exactly divide the second in microseconds, an auxiliary variable fixtick is used to trim

13

the frequency to account for the remainder. The sum of the phase and frequency contributions is
then divided by the number of timer ticks per second, which becomes the final value of time_adj.

The scheme of approximating exact multiply/divide operations with shifts produces good results,
except when an exact calculation is required, such as when the PPS signal is being used to discipline
the CPU clock oscillator frequency as described below. As long as the actual oscillator frequency
is a power of two in Hz, no correction is required. However, in the SunOS and HP-UX kernels the
clock frequency is 100 Hz, which results in an error factor of 0.78. In this case the code increases
time_adj by a factor of 1.25, which results in an overall error less than three percent.

To complete the analysis, the above operations can be seen to conserve the microsecond resolution
provided in the hardupdate() routine argument. The resolution of the frequency variable time_freq
is 16 bits in ppm, which is comparable to the stability of a cesium oscillator. The resolution of the
resolution of the phase variable time_adj depends on the timer frequency and decreases as the
frequency increases. At a frequency of 1024 Hz, for example, the resolution is 12 bits in ppm, which
is less than even the best temperature-stabilized quartz crystal oscillator.

On rollover of the day, the leap-second state machine described below determines whether a second
is to be inserted or deleted in the timescale. The microtime() routine described below insures that
the reported time is always monotonically increasing.

4.1.4. The hardpps() Fragment

The hardpps() fragment is operative only if the PPS_SYNC option is specified in the kernel
configuration file. It is called from the serial port driver or equivalent interface at the on-time
transition of the PPS signal. The code operates as a first-order, type-I, frequency-lock loop (FLL)
controlled by the difference between the frequency represented by the pps_freq variable and the
frequency of the hardware clock oscillator. It also provides offsets to the hardupdate() fragment in
order to discipline the system clock time.

In order to avoid calling the microtime() routine more than once for each PPS transition, the interface
requires the calling program to capture the system time and hardware counter contents at the on-time
transition of the PPS signal and provide a pointer to the timestamp (Unix timeval) and counter
contents as arguments to the hardpps() call. The hardware counter contents are determined by saving
the microseconds field of the system time, calling the microtime() routine, and subtracting the saved
value. If a microseconds overflow has occurred during the process, the resulting microseconds value
will be negative, in which case the caller adds 1000000 to normalize the microseconds field.

In order to avoid large jitter when the PPS interrupt occurs during the timer interrupt routine before
the system clock is advanced, a glitch detector is used. The detector latches when an offset exceeds
a threshold tick/2 and stays latched until either a subsequent offset is less than the threshold or a
specified interval MAXGLITCH (30 s) has elapsed. As long as the detector remains latched, it
outputs the offset immediately preceding the latch, rather than the one received.

A three-stage median filter is used to suppress jitter less than the glitch threshold. The median sample
drives the PLL, while the difference between the other two samples represents the time dispersion.
Time dispersion samples are averaged and used as a jitter estimate. If this estimate exceeds a
threshold MAXTIME/2 (100 us), an error bit STA_PPSJITTER is raised in the status word.

The frequency of the hardware oscillator is determined from the difference in hardware counter
readings at the beginning and end of the calibration interval divided by the duration of the interval.

14

However, the oscillator frequency tolerance, as much as 100 ppm, may cause the difference to
exceed the tick value, creating an ambiguity. In order to avoid this ambiguity, the hardware counter
value at the beginning of the interval is increased by the current pps_freq value once each second,
but computed modulo the tick value. At the end of the interval, the difference between this value
and the value computed from the hardware counter is the control signal for the FLL.

Control signal samples which exceed the frequency tolerance MAXFREQ (100 ppm) are discarded,
as well as samples resulting from excessive interval duration jitter. In these cases an error bit
STA_PPSERROR is raised in the status word. Surviving samples are then processed by a three-stage
median filter. The median sample drives the FLL, while the difference between the other two
samples represents the frequency dispersion. Frequency dispersion samples are averaged and used
as a stability estimate. If this estimate is below a threshold MAXFREQ/4 (25 ppm), the median
sample is used to correct the oscillator frequency pps_freq with a weight expressed as a shift
PPS_AVG (2).

Initially, an approximate value for the oscillator frequency is not known, so the duration of the
calibration interval must be kept small to avoid overflowing the tick. The time difference at the end
of the calibration interval is measured. If greater than tick/4, the interval is reduced by half. If less
than this fraction for four successive calibration intervals, the interval is doubled. This design
automatically adapts to nominal jitter in the PPS signal, as well as the value of tick. The duration
of the calibration interval is set by the pps_shift variable as a shift in powers of two. The minimum
value PPS_SHIFT (2) is chosen so that with the highest CPU oscillator frequency 1024 Hz and
frequency tolerance 100 ppm the tick will not overflow. The maximum value PPS_SHIFTMAX (8)
is chosen such that the maximum averaging time is about 1000 s as determined by measurements
of Allan variance [MIL93].

Should the PPS signal fail, the current frequency estimate pps_freq continues to be used, so the
nominal frequency remains correct subject only to the instability of the undisciplined oscillator. The
procedure to save and restore the frequency estimate works as follows. When setting the frequency
from a file, the time_freq value is set as the file value minus the pps_freq value; when retrieving
the frequency, the two values are added before saving in the file. This scheme provides a seamless
interface should the PPS signal fail or the kernel configuration change. Note that the frequency
discipline is active whether or not the synchronization daemon is active. Since all Unix systems
take some time after reboot to build a running system, usually by that time the discipline process
has already settled down and the initial transients due to frequency discipline have damped out.

4.1.5. The microtime() Routines

While the basic system clock has a granularity of the timer interrupt interval, many systems have
an auxiliary hardware counter that runs at some multiple of 1 MHz and can be used to interpolate
the microseconds between ticks of the system clock. When the auxiliary counter is available and
the MICRO option is used in the kernel configuration file, the microtime() routine returns the current
system clock updated to the microsecond. If the counter runs at some frequency other than 1 MHz,
its values must be divided by a suitable factor to obtain the microseconds. In most cases the divisor
can be computed at boot time, either from a configuration variable or measured directly.

However, consideration must be given the fact that the timer counter and the auxiliary counter are
normally not derived from the same source, so that errors can accumulate, unless the auxiliary
oscillator is disciplined to the system clock. In addition, with the faster workstations such as the

15

DEC 3000 and HP 9000, small differences between the two oscillator frequencies can result in small
but significant discontinuities in the system timescale. In multiprocessor systems with an auxiliary
counter in each processor, the discipline process must be performed separately for each counter.

In the kern.c simulator, the microset() routine is called once per second from the hardclock() routine
in order to discipline the auxiliary oscillator to the system clock. This routine latches the kernel time
variable and auxiliary counter and calculates the divisor used by the microtime() routine. This is
done separately for each processor in a multiprocessor system. The microtime() routine reads the
auxiliary counter on the running processor, calculates the microseconds since the last microset()
call and adds it to the kernel time latched at that call to determine the current time. Additional
comments are given in the source listing kern.c.

The external clock driver interface is implemented with two routines, microtime(), which returns
the current clock time, and clock_set(), which furnishes the apparent system time derived from the
kernel time variable. The latter routine is called only when the clock is set using the settimeofday()
system call, but can be called from within the driver, such as when the year rolls over, for example.

In the stock SunOS and HP-UX kernels and modified Ultrix and OSF/1 kernels, the microtime()
routine returns the kernel time variable plus an interpolation between timer interrupts based on the
contents of a hardware counter. In the case of an external clock, such as described above, the system
clock is read directly from the hardware clock registers. Examples of external clock drivers are in
the tprotime.c and hightime.c routines included in the kernel.tar.Z distribution.

The external clock routines return a status code which indicates whether the clock is operating
correctly and the nature of the problem, if not. The return code is interpreted by the ntp_gettime()
system call, which transitions the status state machine to the TIME_ERR state if an error code is
returned. This is the only error checking implemented for the external clock in the present version
of the code.

The simulator has been used to check the PLL operation over the design envelope of +-512 ms in
time error and +-100 ppm in frequency error. This confirms that no overflows occur and that the
loop initially converges in about 15 minutes for timer interrupt rates from 50 Hz to 1024 Hz. The
loop has a normal overshoot of a few percent and a final convergence time of several hours,
depending on the initial time and frequency error.

4.2. Leap Seconds

It does not seem generally useful in the user application interface to provide additional details private
to the kernel and synchronization protocol, such as stratum, reference identifier, reference timestamp
and so forth. It would in principle be possible for the application to independently evaluate the
quality of time and project into the future how long this time might be "valid." However, to do that
properly would duplicate the functionality of the synchronization protocol and require knowledge
of many mundane details of the platform architecture, such as the subnet configuration, reachability
status and related variables. For the curious, the ntp_adjtime() system call can be used to reveal
some of these mysteries.

However, the user application may need to know whether a leap second is scheduled, since this
might affect interval calculations spanning the event. A leap-warning condition is determined by
the synchronization protocol (if remotely synchronized), by the timecode receiver (if available), or
by the operator (if awake). This condition is set by the synchronization daemon on the day the leap

16

second is to occur (30 June or 31 December, as announced) by specifying in a ntp_adjtime() system
call a status bit of either STA_DEL, if a second is to be deleted, or STA_INS, if a second is to be
inserted. Note that, on all occasions since the inception of the leap-second scheme, there has never
been a deletion, nor is there likely to be one in future. If the bit is STA_DEL, the kernel adds one
second to the system time immediately following second 23:59:58 and resets the clock state to
TIME_WAIT. If the bit is STA_INS, the kernel subtracts one second from the system time
immediately following second 23:59:59 and resets the clock state to TIME_OOP, in effect causing
system time to repeat second 59. Immediately following the repeated second, the kernel resets the
clock status to TIME_WAIT.

Following the leap operations, the clock remains in the TIME_WAIT state until both the STA_DEL
and STA_INS status bits are reset. This provides both an unambiguous indication that a leap recently
occurred, as well as time for the daemon or operator to clear the warning condition.

Depending upon the system call implementation, the reported time during a leap second may repeat
(with the TIME_OOP return code set to advertise that fact) or be monotonically adjusted until system
time "catches up" to reported time. With the latter scheme the reported time will be correct before
and shortly after the leap second (depending on the number of microtime() calls during the leap
second), but freeze or slowly advance during the leap second itself. However, Most programs will
probably use the ctime() library routine to convert from timeval (seconds, microseconds) format to
tm format (seconds, minutes,...). If this routine is modified to use the ntp_gettime() system call and
inspect the return code, it could simply report the leap second as second 60.

4.3. Clock Status State Machine

The various options possible with the system clock model described in this memorandum require
a careful examination of the state transitions, status indications and recovery procedures should a
crucial signal or interface fail. In this section is presented a prototype state machine designed to
support leap second insertion and deletion, as well as reveal various kinds of errors in the
synchronization process. The states of this machine are decoded as follows:

TIME_OK If a PPS signal or external clock is present, it is working properly and the system clock
is derived from it. If not, the synchronization daemon is working properly and the system clock
is synchronized to a radio clock or one or more peers.

TIME_INS An insertion of one second in the system clock has been declared following the last
second of the current day, but has not yet been executed.

TIME_DEL A deletion of the last second of the current day has been declared, but not yet executed.

TIME_OOP An insertion of one second in the system clock has been declared following the last
second of the current day. The second is in progress, but not yet completed. Library conversion
routines should
interpret this second as 23:59:60.

TIME_WAIT The scheduled leap event has occurred, but the STA_DEL and STA_INS status bits
have not yet been cleared.

TIME_ERROR Either (a) the synchronization daemon has declared the protocol is not working
properly, (b) all sources of outside synchronization have been lost or (c) a PPS signal or external
clock is present, but not working properly.

17

In all states the system clock is derived from either a PPS signal or external clock, if present, or the
kernel time variable, if not. If a PPS error condition is recognized, the PPS signal is disabled and
ntp_adjtime() updates are used instead. If an external clock error condition is recognized, the external
clock is disabled and the kernel time variable is used instead.

The state machine makes a transition once each second at an instant where the microseconds field
of the kernel time variable overflows and one second is added to the seconds field. However, this
condition is checked when the timer overflows, which may not coincide with the actual seconds
increment. This may lead to some interesting anomalies, such as a status indication of a leap second
in progress (TIME_OOP) when the leap second has already expired. This ambiguity is unavoidable,
unless the timer interrupt is made synchronous with the system clock.

The following state transitions are executed automatically by the kernel at rollover of the microsec-
onds field:

any state - TIME_ERROR This transition occurs when an error condition is recognized and
continues as long as the condition persists. The error indication overrides the normal state
indication, but does not affect the actual clock state. Therefore, when the condition is cleared,
the normal state indication resumes.

TIME_OK-TIME_DEL This transition occurs if the STA_DEL bit is set in the status word.

TIME_OK-TIME_INS This transition occurs if the STA_INS bit is set in the status word.

TIME_INS-TIME_OOP This transition occurs immediately following second 86,400 of the current
day when an insert-second event has been declared.

TIME_OOP-TIME_WAIT This transition occurs immediately following second 86,401 of the
current day; that is, one second after entry to the TIME_OOP state.

TIME_DEL-TIME_WAIT This transition occurs immediately following second 86,399 of the
current day when a delete-second event has been declared.

TIME_WAIT-TIME_OK This transition occurs when the STA_DEL and STA_INS bits are cleared
by an ntp_adjtime() call.

The following table summarizes the actions just before, during and just after a leap-second event.
Each line in the table shows the UTC and NTP times at the beginning of the second. The left column
shows the behavior when no leap event is to occur. In the middle column the state machine is in
TIME_INS at the end of UTC second 23:59:59 and the NTP time has just reached 400. The NTP
time is set back one second to 399 and the machine enters TIME_OOP. At the end of the repeated
second the machine enters TIME_OK and the UTC and NTP times are again in correspondence. In
the right column the state machine is in TIME_DEL at the end of UTC second 23:59:58 and the
NTP time has just reached 399. The NTP time is incremented, the machine enters TIME_OK and
both UTC and NTP times are again in correspondence.

 No Leap Leap Insert Leap Delete
 UTC NTP UTC NTP UTC NTP

23:59:58|398 23:59:58|398 23:59:58|398
 | | |

18

23:59:59|399 23:59:59|399 00:00:00|400
 | | |
00:00:00|400 23:59:60|399 00:00:01|401
 | | |
00:00:01|401 00:00:00|400 00:00:02|402
 | | |
00:00:02|402 00:00:01|401 00:00:03|403
 | | |

To determine local midnight without fuss, the kernel code simply finds the residue of the time.tv_sec
(or time.tv_sec + 1) value mod 86,400, but this requires a messy divide. Probably a better way to
do this is to initialize an auxiliary counter in the settimeofday() routine using an ugly divide and
increment the counter at the same time the time.tv_sec is incremented in the timer interrupt routine.
For future embellishment.

5. Programming Model and Interfaces

This section describes the programming model for the synchronization daemon and user application
programs. The ideas are based on suggestions from Jeff Mogul and Philip Gladstone and a similar
interface designed by the latter. It is important to point out that the functionality of the original Unix
adjtime() system call is preserved, so that the modified kernel will work as the unmodified one,
should the new features not be in use. In this case the ntp_adjtime() system call can still be used to
read and write kernel variables that might be used by a synchronization daemon other than NTP,
for example.

The kernel routines use the clock state variable time_state, which records whether the clock is
synchronized, waiting for a leap second, etc. The value of this variable is returned as the result code
by both the ntp_gettime() and ntp_adjtime() system calls. It is set implicitly by the STA_DEL and
STA_INS status bits, as described previously. Values presently defined in the timex.h header file
are as follows:

TIME_OK 0 no leap second warning
TIME_INS 1 insert leap second warning
TIME_DEL 2 delete leap second warning
TIME_OOP 3 leap second in progress
TIME_WAIT 4 leap second has occurred
TIME_ERROR 5 clock not synchronized

In case of a negative result code, the kernel has intercepted an invalid address or (in case of the
ntp_adjtime() system call), a superuser violation. The meaning of these codes are defined in the
Unix system documentation.

6. The ntp_gettime() System Call

The syntax and semantics of the ntp_gettime() call are given in the following fragment of the timex.h
header file. This file is identical, except for the SHIFT_HZ define, in the SunOS, Ultrix, OSF/1 and
HP-UX kernel distributions. (The SHIFT_HZ define represents the logarithm to the base 2 of the
clock oscillator frequency specific to each system type.) Note that the timex.h file calls the syscall.h
system header file, which must be modified to define the SYS_ntp_gettime system call specific to
each system type. The kernel distributions include directions on how to do this.

19

/*
 * This header file defines the Network Time Protocol (NTP)
 * interfaces for user and daemon application programs. These are
 * implemented using private system calls and data structures and
 * require specific kernel support.
 *
 * NAME
 * ntp_gettime - NTP user application interface
 *
 * SYNOPSIS
 * #include ys/timex.h
 *
 * int system call(SYS_ntp_gettime, tptr)
 *
 * int SYS_ntp_gettime defined in syscall.h header file
 * struct ntptimeval *tptr pointer to ntptimeval structure
 *
 * NTP user interface - used to read kernel clock values
 * Note: maximum error = NTP synch distance = dispersion + delay / 2
 * estimated error = NTP dispersion.
 */
struct ntptimeval {

struct timeval time; /* current time (ro) */
long maxerror; /* maximum error (us) (ro) */
long esterror; /* estimated error (us) (ro) */

};

The ntp_gettime() system call returns three read-only (ro) values in the ntptimeval structure: the
current time in unix timeval format plus the maximum and estimated errors in microseconds. While
the 32-bit long data type limits the error quantities to something more than an hour, in practice this
is not significant, since the protocol itself will declare an unsynchronized condition well below that
limit. In the NTP Version 3 specification, if the protocol computes either of these values in excess
of 16 seconds, they are clamped to that value and the system clock declared unsynchronized.

Following is a detailed description of the ntptimeval structure members.

struct timeval time (ro) This member is the current system time expressed as a Unix timeval
structure. The timeval structure consists of two 32-bit words; the first is the number of seconds
past 1 January 1970 assuming no intervening leap-second insertions or deletions, while the
second is the number of microseconds within the second.

long maxerror (ro) This member is the value of the time_maxerror kernel variable, which represents
the maximum error of the indicated time relative to the primary synchronization source, in
microseconds. For NTP, the value is initialized by a ntp_adjtime() call to the synchronization
distance, which is equal to the root dispersion plus one-half the root delay. It is increased by a
small amount (time_tolerance) each second to reflect the maximum clock frequency error. This
variable is provided bu a ntp-adjtime() system call and modified by the kernel, but is otherwise
not used by the kernel.

20

long esterror (ro) This member is the value of the time_esterror kernel variable, which represents
the expected error of the indicated time relative to the primary synchronization source, in
microseconds. For NTP, the value is determined as the root dispersion, which represents the
best estimate of the actual error of the system clock based on its past behavior, together with
observations of multiple clocks within the peer group. This variable is provided bu a ntp-ad-
jtime() system call, but is otherwise not used by the kernel.

7. The ntp_adjtime() System Call

The syntax and semantics of the ntp_adjtime() call are given in the following fragment of the timex.h
header file. Note that, as in the ntp_gettime() system call, the syscall.h system header file must be
modified to define the SYS_ntp_adjtime system call specific to each system type. In the fragment,
rw = read/write, ro = read-only, wo = write-only.

/*
 * NAME
 * ntp_adjtime - NTP daemon application interface
 *
 * SYNOPSIS
 * #include ys/timex.h
 *
 * int system call(SYS_ntp_adjtime, mode, tptr)
 *
 * int SYS_ntp_adjtime defined in syscall.h header file
 * struct timex *tptr pointer to timex structure
 *
 * NTP daemon interface - used to discipline kernel clock
 * oscillator
 */

struct timex {
unsigned int mode; /* mode selector (wo) */
long offset; /* time offset (us) (rw) */
long frequency; /* frequency offset (scaled ppm) (rw) */
long maxerror; /* maximum error (us) (rw) */
long esterror; /* estimated error (us) (rw) */
int status; /* clock status bits (rw) */
long constant; /* pll time constant (rw) */
long precision; /* clock precision (us) (ro) */
long tolerance; /* clock frequency tolerance (scaled

* ppm) (ro) */
/*
 * The following read-only structure members are implemented
 * only if the PPS signal discipline is configured in the
 * kernel.
 */
long ppsfreq; /* pps frequency (scaled ppm) (ro) */
long jitter; /* pps jitter (us) (ro) */

21

int shift; /* interval duration (s) (shift) (ro)
*/

long stabil; /* pps stability (scaled ppm) (ro) */
long jitcnt; /* jitter limit exceeded (ro) */
long calcnt; /* calibration intervals (ro) */
long errcnt; /* calibration errors (ro) */
long stbcnt; /* stability limit exceeded (ro) */

};

The ntp_adjtime() system call is used to read and write certain time-related kernel variables
summarized below. Writing these variables can only be done in superuser mode. To write a variable,
the mode structure member is set with one or more bits, one of which is assigned each of the
following variables in turn. The current values for all variables are returned in any case; therefore,
a mode argument of zero means to return these values without changing anything. Following is a
description of the timex structure members.

mode (wo) This is a bit-coded variable selecting one or more structure members, with one bit
assigned each member. If a bit is set, the value of the associated member variable is copied to
the corresponding kernel variable; if not, the member is ignored. The bits are assigned as given
in the following, with the variable name indicated in parens. Note that the precision, tolerance
and PPS variables are determined by the kernel and cannot be changed by ntp_adjtime().

MOD_OFFSET 0x0001 time offset (offset)
MOD_FREQUENCY 0x0002 frequency offset (frequency)
MOD_MAXERROR 0x0004 maximum time error (maxerror)
MOD_ESTERROR 0x0008 estimated time error (esterror)
MOD_STATUS 0x0010 clock status (status)
MOD_TIMECONST 0x0020 pll time constant (constant)
MOD_CLKB 0x4000 set clock B
MOD_CLKA 0x8000 set clock A

Note that the MOD_CLKA and MOD_CLKB bits are intended for those systems where more than
one hardware clock is available for backup, such as in Tandem Non-Stop computers. Presumably,
in such cases each clock would have its own oscillator and require a separate PLL for each.
Refinements to this model are for further study. The interpretation of these bits is as follows:

offset (rw) If selected, this member specifies the time adjustment, in microseconds. The absolute
value must be less than MAXPHASE (128000) microseconds defined in the timex.h header file.
On return, this member contains the residual offset remaining between a previously specified
offset and the current system time, in microseconds.

frequency (rw) If selected, this member replaces the value of the time_frequency kernel variable.
The value is in ppm, with the integer part in the high order 16 bits and fraction in the low order
16 bits. The absolute value must be in the range less than MAXFREQ (100) ppm defined in the
timex.h header file.

The time_freq variable represents the frequency offset of the CPU clock oscillator. It is
recalculated as each update to the system clock is determined by the offset member of the timex
structure. It is usually set from a value stored in a file when the synchronization daemon is first

22

started. The current value is usually retrieved via this member and written to the file about once
per hour.

maxerror (rw) If selected, this member replaces the value of the time_maxerror kernel variable,
in microseconds. This is the same variable as in the ntp_getime() system call.

esterror (rw) If selected, this member replaces the value of the time_esterror kernel variable, in
microseconds. This is the same variable as in the ntp_getime() system call.

int status (rw) If selected, this member replaces the value of the time_status kernel variable. This
variable controls the state machine used to insert or delete leap seconds and shows the status of
the timekeeping system, PPS signal and external oscillator, if configured.

STA_PLL 0x0001 enable PLL updates (rw)
STA_PPSFREQ 0x0002 enable PPS freq discipline (rw)
STA_PPSTIME 0x0004 enable PPS time discipline (rw)
STA_FLL 0x0008 select FLL mode (rw)

STA_INS0x0010insert leap (rw)
STA_DEL0x0020delete leap (rw)
STA_UNSYNC0x0040clock unsynchronized (rw)
STA_FREQHOLD0x0080frequency hold (rw)

STA_PPSSIGNAL0x0100PPS signal present (r)
STA_PPSJITTER0x0200PPS signal jitter exceeded (r)
STA_PPSWANDER0x0400PPS signal wander exceeded (r)
STA_PPSERROR0x0800PPS signal calibration error (r)
STA_CLOCKERR0x1000clock hardware fault (r)

The interpretation of these bits is as follows:

STA_PLL set/cleared by the caller to enable PLL updates

STA_PPSFREQ set/cleared by the caller to enable PPS frequency discipline

STA_PPSTIME set/cleared by the caller to enable PPS time discipline

STA_FLL set/cleared by the caller; set selects FLL mode, clear selects PLL mode.

STA_INS set by the caller to insert a leap second at the end of the current day; cleared by the caller
after the event

STA_DEL set by the caller to delete a leap second at the end of the current day; cleared by the caller
after the event

STA_UNSYNC set/cleared by the caller to indicate clock unsynchronized (e.g., when no peers are
reachable)

STA_FREQHOLD set/cleared by the caller to disable frequency update.

STA_PPSSIGNAL sset/cleared by the hardpps() fragment to indicate PPS signal present

STA_PPSJITTER set/cleared by the hardpps() fragment to indicates PPS signal jitter exceeded

STA_PPSWANDER set/cleared by the hardpps() fragment to indicates PPS signal wander exceeded

23

STA_PPSERROR set/cleared by the hardpps() fragment to indicates PPS signal calibration error

STA_CLOCKERR set/cleared by the external hardware clock driver to indicate hardware fault

An error condition is raised when (a) either STA_UNSYNC or STA_CLOCKERR is set (loss of
synchronization), (b) STA_PPSFREQ or STA_PPSTIME is set and STA_PPSSIGNAL is clear
(loss of PPS signal), (c) STA_PPSTIME and STA_PPSJITTER are both set (jitter exceeded), (d)
STA_PPSFREQ is set and either STA_PPSWANDER or STA_PPSERROR is set (wander ex-
ceeded). An error condition results in a system call return code of TIME_ERROR.

constant (rw) If selected, this member replaces the value of the time_constant kernel variable. The
value must be between zero and MAXTC (6) defined in the timex.h header file.

The time_constant variable determines the bandwidth or "stiffness" of the PLL. The value is
used as a shift between zero and MAXTC (6), with the effective PLL time constant equal to a
multiple of (1 < time_constant), in seconds. For room-temperature quartz oscillators, the
recommended default value is 2, which corresponds to a PLL time constant of about 900 s and
a maximum update interval of about 64 s. The maximum update interval scales directly with
the time constant, so that at the maximum time constant of 6, the update interval can be as large
as 1024 s.

Values of time_constant between zero and 2 can be used if quick convergence is necessary;
values between 2 and 6 can be used to reduce network load, but at a modest cost in accuracy.
Values above 6 are appropriate only if an precision external oscillator is present.

precision (ro)

This is the current value of the time_precision kernel variable in microseconds.

The time_precision variable represents the maximum error in reading the system clock, in
microseconds. It is usually based on the number of microseconds between timer interrupts (tick),
10000 us for the SunOS and HP-UX kernels, 3906 us for the Ultrix kernel, 976 us for the OSF/1
kernel. However, in cases where the time can be interpolated between timer interrupts with
microsecond resolution, such as in the stock SunOS and HP-UX kerneld and modified Ultrix
and OSF/1 kernels, the precision is specified as 1 us. In cases where a PPS signal or external
oscillator is available, the precision can depend on the operating condition of the signal or
oscillator. This variable is determined by the kernel for use by the synchronization daemon, but
is otherwise not used by the kernel.

tolerance (ro) This is the current value of the time_tolerance kernel variable. The value is in ppm,
with the integer part in the high order 16 bits and fraction in the low order 16 bits.

The time_tolerance variable represents the maximum frequency error in ppm of the particular
CPU clock oscillator and is a property of the hardware; however, in principle it could change
as result of the presence of external discipline signals, for instance.

The recommended value for time_tolerance MAXFREQ (200) ppm is appropriate for room-
temperature quartz oscillators used in typical workstations. However, it can change due to the
operating condition of the PPS signal and/or external oscillator. With either the PPS signal or
external oscillator, the recommended value for MAXFREQ is 100 ppm.

24

The following members are defined only if the PPS_SYNC option is specified in the kernel
configuration file. These members are useful primarily as a monitoring and evaluation tool. These
variables can be written only by the kernel.

ppsfreq (ro) This is the current value of the pps_freq kernel variable, which is the CPU clock
oscillator frequency offset relative to the PPS discipline signal. The value is in ppm, with the
integer part in the high order 16 bits and fraction in the low order 16 bits.

jitter (ro) This is the current value of the pps_jitter kernel variable, which is the average PPS time
dispersion measured by the time-offset median filter, in microseconds.

shift (ro) TThis is the current value of the pps_shift kernel variable, which determines the duration
of the calibration interval as the value of 1 < pps_shift, in seconds.

stabil (ro) This is the current value of the pps_stabil kernel variable, which is the average PPS
frequency dispersion measured by the frequency-offset median filter. The value is in ppm, with
the integer part in the high order 16 bits and fraction in the low order 16 bits.

jitcnt (ro) This is the current value of the pps_jitcnt kernel variable, counts the number of PPS signals
where the average jitter exceeds the threshold MAXTIME (200 us).

calcnt (ro) This is the current value of the pps_calcnt kernel variable, which counts the number of
frequency calibration intervals. The duration of these intervals can range from 4 to 256 seconds,
as determined by the pps_shift kernel variable.

errcnt (ro) This is the current value of the pps_errcnt kernel variable, which counts the number of
frequency calibration cycles where (a) the apparent frequency offset is greater than MAXFREQ
(100 ppm) or (b) the interval jitter exceeds tick * 2.

stbcnt (ro) This is the current value of the pps_discnt kernel variable, which counts the number of
calibration intervals where the average stability exceeds the threshold MAXFREQ / 4 (25 ppm).

8. System Programming Interface

One of the goals of this memorandum is to argue for a generic capability for time and time interval
measurement using external signals, such as provided by a PPS input. The hardware to do this
requires only a modem control lead, such as the data carrier detect (DCD) lead, which can be driven
by an external source via a level converter/pulse generator as described previously. Appropriate
kernel modifications to support a generic measurement facility using this signal are described in
[Mills 94c], along with specimen segments of kernel code that has been implemented in Unix kernels
for Sun, HP and DEC workstations.

It remains to specify a generic programming interface with which portable programs can make use
of this facility independent of specific kernel implementation. This would ordinarily be achieved
by lobby of the POSIX apparatus, which is to be pursued. Meanwhile, the several schemes for
improving timekeeping precision suggested in this memorandum require some degree of craft, if
coexistence with current operating system conventions is to be preserved. There are a number of
ways, some more suited for product maintenance than others, as described below.

1. The required feature support is included in the kernel sources distribution and controlled by a
compiler switch set at kernel build time. If compiled, the feature is always enabled. This is how

25

the precision clock modifications (microtime()) are implemented in the DEC MIPS and Alpha
kernels.

2. The required feature support is included in the kernel sources distribution and controlled by a
compile switch set at kernel build time. If compiled, the feature must be selectively activated
using special system calls ntp_gettime() and ntp_adjtime() at run time. This is how the
phase-lock loop modifications are implemented in the present Sun, DEC and HP kernels.

3. The required feature support is provided by an optional module which is dynamically loaded
and activated at run time. The feature is enabled only if loaded and requires no change to the
stock kernel. This is how the line disciplines tty_clk and chu_clk for timestamp capture are
implemented in the Sun kernel.

The present implementation strategy for kernel modifications has been designed for experiment and
evaluation; therefore, some care has been taken for a provision to reliably disable the features, should
their use cause problems in normal system operation. In addition to this requirement, the serial port
driver modifications suggested in this memorandum need to be controlled on a line-by-line basis,
since there will very likely be some ports running standard terminal support and some running the
modified support.

This requires some means to enable and disable the various features, which is most convenient using
special ioctls. While this could be done in a number of ways, the following design may be typical.
These ioctls are in addition to the ntp_gettime() and ntp_adjtime() ioctls mentioned above. Each
ioctl is issued on an open file descriptor associated with a serial port (tty) device. Following is a
specimen description of the calling sequences for these ioctls. The names are for illustration only.

8.1. timestamp_intercept() - set intercept character

This ioctl enables and disables the feature which inserts a timestamp in the input buffer following
one of a set of specified intercept characters. The argument is a pointer to a zero-terminated list of
ASCII intercept characters. If an input character matches one of these characters, a timestamp in
Unix timeval format is captured and inserted in the input buffer immediately following the character.
An argument string consisting of a single null character disables the feature. A side effect of an
intercept character is to capture a timestamp for later retrieval using the fetch_timestamp() ioctl.

8.2. control_dcd() - control DCD signal

This ioctl enables and disables selected features associated with the data carrier detect (DCD) signal
on a serial port. The argument is a pointer to a 32-bit control word. Bits can be set in this word to
enable or disable various options, including:

ENABLE_DCD When reset (default), operation of the serial port is unchanged and the DCD signal
of the serial port processed as specified in the terminal interface structure. When set, a DCD
signal transition of minimum specified amplitude and duration and selected polarity causes the
driver to capture a timestamp for later retrieval using the fetch_timestamp() ioctl (see below).
Note that, when this bit is set, serial port modem control is disabled as if the LOCAL bit is set
in the terminal interface structure.

SINGLE_DCD When reset (default), DCD timestamp capture is enabled whenever the enable_dcd
bit is set. In this case, later timestamps can overwrite earlier ones. When set, capture is
automatically disabled following the first event and must be enabled again, either by another

26

control_dcd() ioctl or by a fetch_timestamp() ioctl. In this case, DCD transitions that occur while
in the not-enabled state are lost and may or may not be indicated by a subsequent error return.

NEGATIVE_DCD When reset (default), the active DCD transition is set to the positive-going edge.
When set, the active transition is set to the negative-going edge. In this connection, "positive"
and "negative" refer to the RS-232 electrical signal description.

8.3. fetch_timestamp() - fetch DCD timestamp

This ioctl returns a timestamp previously captured at a timestamp event, either as the result of an
intercept character specified by the timestamp_intercept() ioctl, or a DCD transition enabled by the
control_dcd() ioctl. The argument is a pointer to a structure of two members, the first a Unix timeval
structure and the second a 32-bit integer. Upon return, the timeval structure contains the system
time at the most recent signal event and the integer contains the sequence number of that event.

8.4. Signals

In some applications, it would be useful to provide a signal interrupt in a way similar to other devices.
This would be possible only if there were a pre-existing mechanism to present modem control status
transitions as signals, in which case the DCD signal would be raised at the same time the timestamp
is captured. Whether this feature should be provided as a special option or a standard feature is for
further study.

8.5. Error processing

The three ioctls defined above return a status code in the fashion typical of other ioctls of this type.
In addition to the usual argument and file descriptor checks, it may be useful to do some error
checking on the external signal itself. Following are some typical checks and suggested recovery
actions.

Noise check In order to avoid possible kernel lockup due to an excessively noisy DCD signal or
high interrupt frequency, the serial port chip modem control interrupt-enable line can be disabled
immediately following an interrupt. The line can be re-enabled by any of the above three ioctls
or automatically after a nominal delay in the order of 10 ms. If there is a missed-transition error
bit in the modem control status word, an indication should be provided in the ioctl return status
code.

Sequence check The fetch_timestamp() ioctl returns the sequence number of the most recent
timestamp event, but otherwise does no checking for lost events. In many applications, lost
events do not affect the application processing. Where it is necessary to know if an event is lost,
the application can use the sequence numbers to check for gaps.

9. References and Bibliography

Note: The following publications are available from the web page http://www.eecis.udel.edu/~mills.

[LEV89] Levine, J., M. Weiss, D. Davis, D. Allan, and D. Sullivan. The NIST automated computer
time service. J. Research National Institute of Standards and Technology 94, 5 (September-October
1989), 311-321.

[MIL91] Mills, D.L. Internet time synchronization: the Network Time Protocol, IEEE Trans.
Communications COM-39, 10 (October 1991), 1482-1493. Also in: Yang, Z., and T.A. Marsland
(Eds.). Global States and Time in Distributed Systems, IEEE Press, Los Alamitos, CA, 91-102.

27

[MIL92a] Mills, D.L. Network Time Protocol (Version 3) specification, implementation and
analysis, RFC 1305, University of Delaware, March 1992, 113 pp.

[MIL92b] Mills, D.L. Modelling and analysis of computer network clocks, Electrical Engineering
Department Report 92-5-2, University of Delaware, May 1992, 29 pp.

[MIL92c] Mills, D.L. Simple Network Time Protocol (SNTP), RFC 1361, University of Delaware,
August 1992, 10 pp.

[MIL93] Mills, D.L. Precision synchronization of computer network clocks, Electrical Engineering
Department Report 93-11-1, University of Delaware, November 1993, 66 pp.

[MIL94a] Mills, D.L. A kernel model for precision timekeeping. ARPA Network Working Group
Report RFC-1589, University of Delaware, March 1994. 31 pp.

[MIL94b] Mills, D.L. A kernel model for precision timekeeping. Electrical Engineering Department
Report 94-10-1, University of Delaware, October, 1994, 34 pp.

[MIL95] Mills, D.L. Improved algorithms for synchronizing computer network clocks. IEEE/ACM
Trans. Networks (June 1995), 245-254.

[MIL96a] Mills, D.L. Time and Time Interval Measurement with Application to Computer and
Network Performance Evaluation. Electrical Engineering Technical Memorandum, January 1996,
17 pp.

[MIL96b] Mills, D.L. A Kernel Programming Interface for Precision Time Signals. Electrical
Engineering Technical Memorandum, January 1996, 3 pp.

28

