Scalable, Autonomous Network Services Configuration

David L. Mills
University of Delaware
http://www.eecis.udel.edu/~mills
mills@udel.edu

DARPA Principle Investigators Meeting
6-7 March 1997

Sir John Tenniel; Alice’s Adventures in Wonderland, Lewis Carroll
Introduction

- Autonomous configuration paradigm is designed to distribute cryptographically authenticated information from hundreds of servers to many thousands of clients
 - Uses a hierarchical network of primary servers, secondary servers and clients
 - Designed for ubiquitous, distributed services such as Web caching, time synchronization, news distribution
 - Avoids manual configuration witchcraft
- Potential peers discovered using directory services, service location agents and span-limited multicast messages
- Distributed algorithm determines subnet topology
 - Constructs shortest-path or minimum-weight spanning trees, subject to constraints of node degree and maximum distance
 - Operates continuously using low-overhead protocol
 - Engineered heuristic with provable complexity bounds
 - Design and implementation model using Network Time Protocol (NTP)
NTP capsule summary

- Network Time Protocol (NTP) synchronizes clocks of hosts and routers in the Internet
- Provides submillisecond accuracy on LANs, low tens of milliseconds on WANs
- Primary (stratum 1) servers synchronize to UTC via radio, satellite and modem; secondary (stratum 2, ...) servers and clients synchronize via hierarchical subnet
- Reliability assured by redundant servers and diverse network paths
- Engineered algorithms used to reduce jitter, mitigate multiple sources and avoid improperly operating servers
- Unix NTP daemon ported to almost every workstation and server platform available today - from PCs to Crays - Unix, Windows and VMS
- Well over 200 public NTP primary servers and 100,000 NTP peers deployed in the Internet and its tributaries all over the world
Clients per server population by stratum

- Max
- Top 10
- Mean

Clients per server population by stratum.
Server population by stratum

10-Jan-03

- 6585
- 4413
- 1950
- 316
- 60
- 219

1 2 3 4 5 6-14
Autonomous configuration and authentication - issues

- Configuration and authentication and synchronization are inseperable
 - All three must be performed independently on a tentative basis
 - Only when all three “succeed” can a server or client claim to be authentic
 - This may require some redesign of current proposed IETF schemes

- Autonomous configuration
 - Discovery mechanisms based on DNS or service location protocols do not scale for large numbers of servers and clients
 - Finding optimal topologies in large subnet graphs under degree and distance constraints is NP-hard
 - Multicast techniques require engineered span controls to avoid congestion

- Cryptographic authentication
 - Centralized key management is incompativle with the Internet model
 - Symmetric-key cryptosystems do not scale for servers with large numbers of clients
 - Public-key cryptosystems are too slow and expensive for good timekeeping
• Measured times to construct 128-bit hash of 48-octet NTP header using MD5 algorithm in RSAREF

• NTP reference implementation computes hash time and corrections

10-Jan-03
Measured times to construct digital verify using RSAREF

Message authentication code decrypted with RSA 512-bit public key and compared with MD5 hash
Authentication scheme for client/server modes

- Scheme is based on public key (RSA) encryption and one-way hash function
 - Certificated public values for server provided by Secure DNS
 - Server computes session key as one-way hash (MD5 or DES-CBC) of server private value, server/client IP addresses and key identifier as each client request is received
 - On request, server sends session key to client using public-key cryptography

- Advantages
 - Simple to implement; requires no protocol modifications
 - Server needs no persistent state variables for clients

- Disadvantages
 - Vulnerable to certain clogging and man-in-the-middle attacks
 - Not practical for multicasting
Authentication scheme for multicast modes

- Scheme is based on public key (RSA) encryption and S-KEY scheme
 - Certificated public values for server provided by Secure DNS
 - Server generates list of session keys, where each key is a one-way hash (keyed MD5 or DES-CBC) of the previous key
 - Server uses keys in reverse order and generates a new list when the current one is exhausted;
 - Clients verify the hash of the current key equals the previous key
 - On request, the server signs the current key and sends to client

- **Advantages**
 - Requires few protocol changes; backwards compatible
 - Requires only one additional hash and infrequent signature verification

- **Disadvantages**
 - Lost packets require clients to perform repeated hashes
 - Servers are vulnerable to clogging attacks
 - Clients are vulnerable to spoofing and man-in-the-middle attacks
Autonomous configuration - approach

- Dynamic peer discovery schemes
 - Primary discovery vehicle using NTP multicast and anycast modes
 - Augmented by DNS, web and service location schemes
 - Augmented by NTP subnet search using standard monitoring facilities

- Achieving optimal configurations
 - Distance metric designed to maximize accuracy and reliability
 - Constraints due to resource limitations and maximum distance
 - Multicast scope constraints to avoid network congestion

- Candidate optimization algorithms
 - Multicast with or without initial propagation delay calibration
 - Anycast mode with administratively and/or TTL delimited scope
 - Span-limited, add-drop greedy (SLAG) heuristic

- Proof of concept based on simulation and implementation with NTP
Discovery and configuration strategy

- NTP multicast and/or anycast modes used to discover servers within the same hierarchical group
 - Multicast scope determined by group address and/or TTL
 - Anycast beacon intervals and number of servers determined as a function of prespecified timekeeping quality and reliability parameters
 - Expanding-ring search with self-equalizing peer renewal
 - All servers authenticated using Secure DNS and certificates

- Ancestors of hierarchical group discovered from NTP peer data, augmented by NTP monitoring data
 - Database is synthesized from all available data and distributed to "interested" servers and clients
 - SLAG used to optimize the inter-group peer paths and respond to failures
 - Service location schemes used where available
Span-limited, add/drop, greedy (SLAG) heuristic

- Algorithm finds shortest path trees constrained by degree and distance
 - Distance is computed from roundtrip delay to the root (primary server) and estimated error
 - Degree constraint controls load on the servers and network
 - Distance constraint discards subtrees unsuitable for synchronization
- Span limit controls size of server/client multicast group at each hierarchical level
- Greedy characteristic minimizes the computing load on the server and client
- Add/drop feature grows and shrinks subtrees according to metric and reachability
- Health of subtrees continually assessed by NTP protocol and monitoring tools, which alert configuration algorithms if a server or path fails
New clock discipline algorithm

- Goal is to reduce residual errors a factor of ten better than now - below 100 us on fast LANs (CAIRN) 1 ms on T1 WANs and 10 ms on others
- Secondary goal is to greatly increase peer poll interval to reduce cost (telephone modems) and detectability (radio), but minimize loss in accuracy
- Scheme uses redesigned clock discipline loop based on a hybrid phase/frequency-lock loop
 - Phase-lock loop (PLL) and frequency-lock loop (FLL) independently estimate frequency
 - Prediction errors measured and used to control the weight assigned the FLL and PLL predictions
 - Design exhaustively simulated under widely varying conditions of network jitter and clock oscillator wander
- Results confirm accuracy improves a factor of ten throughout the poll range from 16 s to 1.5 days
Current progress and status

- **NTP Version 4 architecture and algorithms**
 - Backwards compatible with earlier versions
 - Documentation completely redone in HTML for browsing
 - New clock discipline algorithm designed and simulated; technical report in progress
 - Precision time kernel modifications for symmetric multiprocessors implemented, tested and deployed in current Digital Unix 4.0 kernel

- **Multicast-based autoconfiguration schemes**
 - Multicast mode with propagation calibration implemented and tested
 - Anycast mode with current multicast scoping implemented and in test
 - SLAG heuristic designed and simulated
 - Documented in Ajit Thyagarajan’s PhD dissertation

- **Hybrid symmetric-key/public-key authentication schemes**
 - Algorithms for client/server and multicast modes defined and documented
 - Implementation in progress
 - Documented in Electrical Engineering Report TR 96-10-3
Future plans

- Complete design and implementation of NTP Version 4 protocol model, state machine and supporting algorithms
 - Implement SLAG and integrate with other NTP Version 4 components
 - Implement new authentication scheme and integrate with other components
 - Implement new clock discipline algorithm
- Deploy, test and evaluate NTP Version 4 reference implementation
 - Test in SPARC, Alpha, RISC, HP and Intel architectures
 - Deploy and test in CAIRN/DARTnet testbed
 - Deploy and test at friendly sites in the US, Europe and Asia
- Prosecute standards agendas in IETF, ANSI, ITU, POSIX
 - Update the NTP formal specification and launch on standards track
 - Participate in deployment strategies with NIST, USNO, others
- Develop scenarios for other applications such as web caching, DNS servers and other multicast services
NTP online resources

- Internet (Draft) Standard RFC-1305 Version 3
 - Simple NTP (SNTP) Version 3 specification RFC-2030
 - Designated SAFEnet standard (Navy)
 - Under consideration in ANSI, ITU, POSIX
- NTP web page http://www.eecis.udel.edu/~ntp
 - NTP Version 3 release notes and HTML documentation
 - List of public NTP time servers (primary and secondary)
 - NTP newsgroup and FAQ compendium
 - Tutorials, hints and bibliographies
- NTP Version 3 implementation and documentation for Unix, VMS and Windows
 - Incorporated in stock kernels for Digital Unix, FreeBSD, Linux; planned for Solaris
 - Ported to over two dozen architectures and operating systems
 - Utility programs for remote monitoring, control and performance evaluation
Impact

Minimize dependence on prior configuration data

Avoid intricate case-by-case analysis of failure/fallback/recovery scenarios

Provide automatic reconfiguration in case of network reconfiguration or failure

New ideas

- Dynamic peer discovery using engineered multicast schemes
- Automatic, authenticated peer selection for ubiquitous distributed protocols
- Multiple overlapping hierarchical subtree organization for redundancy and diversity
- Maximize service performance relative to crafted metric and constraints

Schedule (second year)

- Design NTP cryptographic authentication extensions for multicast (Aug 96)
- Design NTP protocol enhancements for distributed mode (Aug 96)
- Integrate with existing NTP (Feb 97)