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Experiments on NTP time transfer in space

o There were many cases in the early NSFnet where NTP clocks were B
synchronized over satellite (VSAT) terminals. With two-way satellite
links resutls were very satisfactory. However, results with mixed
terrestrial/satellite links were generally unacceptable.

o Inthe early 1980s and again in 2000 there was an NTP time transfer
experiment aboard an AMSAT Oscar spacecraft in low Earth orbit. The
results showed little effects of satellite motion and Doppler.

o There was an NTP time transfer experiment aboard Shuttle mission
ST-107 (Columbia). The results showed fair accuracy in the low
millisecond range, but some disruptions due to laptop problems and
operator fatigue.

o National Public Radio (NPR) now distributes program content and time
synchronization via TCP/IP and NTP.

o The Constellation Moon exploration program is to use NTP.
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Time transfer between stations on Earth via satellite
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o [Each station sends a pulse and starts its counter. It stops the
counter when a pulse is received.

o Each station sends the counter value to the other station.

o The station clock offset is th difference between the counters.
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70-MHz analoq IF
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Linear feedback shift register generator
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o The taps represent a primative polynomial over GF(2).

o It generates a binary sequence (chip) of 65535 bits with excellent
autocorellation properties.

o The chips are modulated on a carrier in BPSK, one bit per chip
and N bits per word. A one is an upright chip; a zero is an inverted
chip.

o The chipping rate is chosen so that for some number M, MN is
exactly one second.

o The first word in the second contains a unique code.
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Time transfer to Shuttle via TDRSS
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Time transfer to the Moon (simulation)
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Time transfer from DSN to Mars orbiter
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Solar system time transfer

Mars Network
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Mars orbiters and landers
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Mars exploration rovers (MER)
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NASA/JPL deep space network (DSN)
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o DSN stations at Goldstone (CA), Madrid (Spain) and Canberra
(Austrailia) controlled from JPL (Pasadena, CA).

o Appproximate 120-deg apart for continuous tracking and
communicating via TDRSS.

o Antennas: 70-m parabolic (1), 34-m parabolic, (3-5), 12-m X-Y (2-3)
o Plans 12-m parabolic array (400).
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DSN 70-meter antenna at Ka band

o P,=400kW =56 dBW Antenna: f=32GHz,D=70m; G =82dB
o ERP=138dBWor 7 TW!
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Other DSN antennas
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o 34-m enhanced beam
waveguide antenna (EBWA).

o 0.1-10 Mbps Ka band at Mars

o Array of 360 12-m antennas.

o 10-500 Mbps Ka band at Mars

o Planned for all three stations.
o Each station has three of these.
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Downlink data rate
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Spectrum congestion at X band
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The devil iIs in the detalils

o Propertime: time measured on the suface or in orbit about a
primary body.

o Barycentri time: time measured at the point of zero gravity of the
orbiter and primary body.

o Time is transferred from GPS orbit to Earth surface, then via Earth
barycenter, solar system barycenter, Mars barycenter and proper
time at Mars orbiter.

o The calculations may need systematic corrections for
* Gravitional potential (red shift)
* Velocity (time dilation)

e Sagnac effect (rotating frame of reference)

* lonospheric corrections (frequency dependent)
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Coordinate conversions
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Inner planet orbits
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Facts of life

o The Mars day is about one Earth day plus 40 m. Its axis is inclined
a bit more than Earth, so Mars has seasons.

o The Mars year is about two Earth years; the closest approach to
Earth is every odd Earth year.

o It takes about a year to get to Mars, decelerate and circulaize the
orbit, then a few weeks to entry, descent and land (EDL).

o NASA orbiters are in two-hour, Sun-synchronous, polar orbits, so
the pass a lander twice a day, but only for about ten minutes each
pass.

o During one pass commands are uploaded to the spacecraft;
during the other telemetry and science data are downloaded to the
orbiter and then from there to Earth.

o About 80 megabits can be downloaded on each pass at rates up to
256 kbps.
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Planetary orbits and Lagrange points
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o Something is always in orbit about something else.

o The orbiter is almost always very tiny with respect to the orbited
(primary) body.

o Add energy at periapsis to increase the apoapsis and vice versa.
o Add energy at apoapsis to increase the periapsis and vice versa.

o Lose energy to at apohelion for Mars orbit capture and aerobrake.
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Time transfer to the Moon
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Keplerian elemente for Hubble Space Telescope

o Satellite: HUBBLE
Catalog number: 20580
Epoch time: 08254.95275816
Element set: 0219
Inclination: 028.4675 deg
RA of node: 123.8301 deg
Eccentricity: 0.0003885
Arg of perigee: 212.6701 deg
Mean anomaly: 147.3653 deg
Mean motion: 15.00406242 rev/day
Decay rate: 3.50e-06 rev/day”2
Epoch rev: 80787 Checksum: 282

o In practice the elements can be determined by the state vectors
(range and range rate) at three different times along the orbit.
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Range and range rate measurements

o Keplerian elements are determined from three range and range
rate measurments.

o Range must be determined to 3 ns and range rate (doppler) to less
than 1 Hz. This requires extraordinary oscillator stability at DSN
stations.

o Good satellite oscillator stability is difficult and expensive .
o Tracking times can be long — up to 40 m.
o Solution is strict coherence between uplink and downlink signals.

o DSN station handover must be coherent as well.
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Numeric-controlled oscillator (NCO)

12 Lookup
% Table | DAC |—> 300/ (2%/N)MHz
48 (12)
AN
N
Phase Acumulator (48) <«—— 300 MHz
[ = /N %\
Pprevious Phase
ACC Increment
Load N (48)

This device can synthesize frequencoes in tha range 0-75 MHz

with preicion of about 1 mHz. It works by dividing a 300-MHz clock
by an integral value in the range 1-246,

The Analog Devices AD 9854 chip includes this NCO together with

a BPSK/QPSK modulator, sweepe generator, 20x clock multiplier
and amplitude control.

The lookup table includes ¥4 cycle of sine-wave samples. The

high-order two bits map this table to all four analog quadrants.
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Range rate turnaround
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o The digital carrier tracking loop locks NCO1 on the received
carrier at 70-MHz IF.

o The phaseincrement of NCOZ2 is calculated from the given ratio R
at the 70-MHz IF.

o The DSN calculates the range rate f, =% (f, — 1/R )
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Non-regenerative range turnaround
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o This is often called a bent pipe.

o The digital carrier tracking loop locks NCO1 on the received
carrier .

o The IFis filtered and upconverted by NCO2 to the downlink
frequency.

0 22[%65'8)8SN calculates the range from the PN signal.
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Reoenerative range turnaround
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o Similar to bent pipe, except the PN signal is recovered, filtered
and remodulated on the downlink.

o This improves the SNR at the DSN by about 17 dB.
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Electra transceiver

o There are three Electra radios
e Original Electra for MRO (7 W)

» Electra LITE for Phoenix (7 W; light
weight)

* Electra MICRO for balloons (100 mw)
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Figwre 2: Electra Proximity Link Pavioad Block diagram
Parameter Electra UHF Transceiver
TX Frequency FD: 435 to 450 MHz; HDO: 390 - 450 MHz
. RXFrequency | FD: 390 to 405 MHz; HDO; 390 - 450 MHz |
Duplex Half & Full
Opermi_unal Modes Sleep, Stdby. Rx, Tx, RuTx
TX/RX Rate 1.2,4.8...2048 Ksps
Modulation Manchester, NRZ-L, BPSK, QPSK
Mod Index 60 & 90
Coding Reed Solomon, K=7, R=1/2 Conv
Encode/Decode
Spectrum Record Open Loop Signal Sampling
< 100 KSPS5, 1-8 bits/sample
RX Noise Figure FD: 4.9 dB; HDO:2.9 dB
RF TX Power FD: 5.0 W: HDO: 7.0W
Protocols Proimity-1
Reconfigurability Yes
Doppler Obs | 1-way/2-way
Mass 5005 gms (w/Diplexer)
Dimensions (Lw.h) 21.7cmx 20.1 em x 11.6 cm
DC Power -Sleep Mode 7.20W (WC, EOL)
DC Power - RX Mode 23.8W (WC, EOL)
DC Power - TX/RX Mode | 75.3 W (WC. EOL)
Parts Grade B+
TID 20 Krad
Table 2: Key EUT Specifications 30




Design features

o This is a software defined digital radio that can be reconfigured o
via the data link. It operates at UHF frequencies (~400 MHz) at
variable symbol rates to 4.096 MHz.

o Ituses Reed Solomon, convolutional encoding and 3-bit soft
Viterbi decoding.

o It can operate with either NRZ or Manchester encoding using
either a Costas loop (NRZ) or PLL (Manchester) carrier tracking
loop.

o Ituses aconcatenated integrate-comb (CIC) decimator, digital
transition tracking loop (DTTL) for symbol synchronization.

o All this with no DSP chip and an absolutely humungus FPGA.

o An onboard computer implements areliable link protocol with
CRC and state machine.

o Including a $300 K ultra-stable oscillator, it ain’t cheap.



Block diagram
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Concatenated integrate-comb decimator
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Fig. 2-3. Digial complex basebanding and decimation.
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Costas carrier tracking loop
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Block diagram of Costas/PLL carrier tracking loop
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Diaqital transition tracking lop (DTTL)

Ly
TIT T 7 T
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(a) Three samples from the first symbol and two samples from
second symbaol

o The DTTL uses three integrators, where the symbol timeis T
« AO0-T/2 for the signal.
« B T/2-T for the signal and and first half of the transition.
« CT-3T/2 for the second half of the transition

o Thesymbolis A + B.

o The phaseis B + C processed by a loop filter and NCO.
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DTTL symbol synchronization
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Electra decimation vs. time resolution

Rate Decimate
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Digital modulator
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Further information

o NTP home page http://www.ntp.org
e Current NTP Version 3 and 4 software and documentation

« FAQ and links to other sources and interesting places

o David L. Mills home page http://www.eecis.udel.edu/~mills
* Papers, reports and memoranda in PostScript and PDF formats
« Briefings in HTML, PostScript, PowerPoint and PDF formats

 Collaboration resources hardware, software and documentation
 Songs, photo galleries and after-dinner speech scripts

o Udel FTP server: ftp://ftp.udel.edu/pub/ntp
 Current NTP Version software, documentation and support
« Collaboration resources and junkbox

o Related projects http://www.eecis.udel.edu/~mills/status.htm

 Current research project descriptions and briefings
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