Authentication Scheme for Distributed, Ubiquitous, Real-Time Protocols

David L. Mills, University of Delaware
21 January 1997
http://www.eecis.udel.edu/~mills
Introduction

• Authentication for ubiquitous, real-time protocols such as Network Time Protocol

• Current scheme uses one-way hash functions and private keys

• New scheme combines with public-key cryptosystem and certificates
 • Avoids public-key computations for every packet
 • Requires no per-client state at busy servers
 • Requires only occasional verification of server credentials
Network Time Protocol (NTP)
- Synchronizes clocks of hosts and routers in the Internet
- Provides submillisecond accuracy on LANs, low tens of milliseconds on WANs
- Reliability assured by redundant servers and diverse network paths
- Engineered algorithms used to reduce jitter, mitigate multiple sources and avoid improperly operating servers
NTP authentication - issues

- Configuration and authentication and synchronization are inseparable
 - Clients and servers must require no manual configuration
 - Ultimate security must be based on private values known only to servers and public values obtained from directory services
 - Must be fast
Authentication and synchronization work independently for each peer server

- Public keys and certificates are obtained and verified relatively infrequently
- Session keys are derived from public keys using fast algorithms
- Only when time and authentication are independently verified is the local clock set
MD5 message digest

Time (us)

<table>
<thead>
<tr>
<th>System</th>
<th>Time (us)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 9000/735</td>
<td>0</td>
</tr>
<tr>
<td>SPARC20</td>
<td>50</td>
</tr>
<tr>
<td>Alpha 3000/600</td>
<td>100</td>
</tr>
<tr>
<td>Alpha 3000/400</td>
<td>150</td>
</tr>
<tr>
<td>SPARC IPC</td>
<td>200</td>
</tr>
<tr>
<td>DEC 5000/240</td>
<td>250</td>
</tr>
<tr>
<td>SPARC1+</td>
<td>300</td>
</tr>
</tbody>
</table>
Authentication scheme A (Kent)

- Scheme is based on public key encryption and one-way hash function
 - Certificated public values for each server provided by Secure DNS or X.509
 - Server computes session key as one-way hash of server private value, server/client IP addresses and key identifier as each client request is received
 - On request, server sends session key to client using public-key cryptography
Authentication scheme B
(S-Key)

- Scheme is based on public key encryption and S/KEY scheme
 - Server generates list of session keys, where each key is a one-way hash of the previous key
 - Server uses keys in reverse order and generates a new list when the current one is exhausted;
 - Clients verify the hash of the current key equals the previous key
 - On request, the server signs the current key and sends to client
Current status

- Complete analysis of security model and authentication scheme in TR 96-10-3
- Preliminary design for integration in Unix/Windows NTP daemon completed
- Implementation plan in progress
- Complete set of status reports and briefing slides at: http://www.eecis.udel.edu/~mills