
1

Features and Unification
Chapter 15

1

October 2012

Lecture #10

Context Free Grammars

• We have been introduced to the notion of a context
free grammar for capturing English constructions.
– Context Free rules, have a single non-terminal on the left

hand side and a list of terminals and/or non terminals on the

2

hand side, and a list of terminals and/or non-terminals on the
right hand side.

• We have seen a very simple example of a context
free grammar for English

• We have seen that we can parse using context free
grammars fairly easily.

English Constituent Problems for
Context Free Grammars

• Agreement

• Subcategorization

• Movement (for want of a better term)

3

Agreement

Determiner/Noun Agreement

• This dog

• Those dogs

Our grammar also generates

• *This dogs

• *Those dog

4

Subject/Verb Agreement

• This dog eats

• Those dogs eat

Our grammar also generates

• *This dog eat

• *Those dogs eats

Handing Number Agreement in
CFGs

To handle, would need to expand the grammar with
multiple sets of rules. We must have a different word
class for each kind of determiner and noun.

• NP sg Det sg N sg

5

NP_sg  Det_sg N_sg
• NP_pl  Det_pl N_pl
• …..
• VP_sg  V_sg NP_sg
• VP_sg  V_sg NP_pl
• VP_pl  V_pl NP_sg
• VP_pl  V_pl NP_pl

Subcategorization

• Sneeze: John sneezed
*John sneezed [the book]NP

• Find: Please find [a flight to NY]NP

*Please find
Gi Gi [] [h f]

6

• Give: Give [me]NP[a cheaper fare]NP

*Give [with a flight]PP

• Help: Can you help [me]NP[with a flight]PP

• Prefer: I prefer [to leave earlier]TO-VP

*I prefer [United has a flight]S
• Told: I was told [United has a flight]S
• …

2

Subcategorization

• Subcat expresses the constraints that a predicate
(verb for now) places on the number and type of the
argument it wants to take

7

So?

• So the various rules for VPs overgenerate.
– They permit the presence of strings containing verbs and

arguments that don’t go together

– For example

8

– VP -> V NP therefore

Sneezed the book is a VP since “sneeze” is a verb and “the book”
is a valid NP

Possible CFG Solution

• VP -> V

• VP -> V NP

• VP -> V NP PP

• …

• VP -> IntransV

• VP -> TransV NP

• VP -> TransPP NP PP

• …

9

…

Movement

• Core example
– My travel agent booked the flight

10

Movement

• Core example
– [[My travel agent]NP [booked [the flight]NP]VP]S

11

• I.e. “book” is a straightforward transitive verb. It expects a
single NP arg within the VP as one of its arguments, and
a single NP arg as the subject.

Movement

• What about?
– Which flight do you want me to have the travel agent book_?

12

• The direct object argument to “book” isn’t appearing
in the right place. It is in fact a long way from where
its supposed to appear.

3

Movement

• What about?
– Which flight do you want me to have the travel agent book_?

13

• The direct object argument to “book” isn’t appearing
in the right place. It is in fact a long way from where
its supposed to appear.

• And note that its separated from its verb by 2 other
verbs.

The Point

• CFGs appear to be just about what we need to
account for a lot of basic syntactic structure in
English.

• But there are problems
– That can be dealt with adequately, although not elegantly, by

14

q y g g y y
staying within the CFG framework.

• There are simpler, more elegant, solutions that take
us out of the CFG framework (beyond its formal
power)

• We will use feature structures and the constraint-
based unification formalism

Features

• Go back to subject verb agreement case

• An alternative is to rethink the terminal and non-
terminals as complex objects with associated
properties (called features) that can be manipulated.

F t t k diff t l

15

• Features take on different values

• The application of grammar rules is constrained by
testing on these features

Subject-Verb Agreement

• We could use features that allow us to code rules
such as the following:

• S  NP VP

16

• Only if the number of the NP is equal to the number
of the VP (that is, the NP and VP agree in number).

• This allows us to have the best of both worlds.

Features and Feature Structures
• We can encode these properties by associating what

are called Feature Structures with grammatical
constituents.

• Feature structures are sets of feature-value pairs
where:

17

– The features are atomic symbols and

– The values are either atomic symbols or feature structures

Feature1 Value1

Feature2 Value2

. .

. .

. .

Featuren Valuen

Example Feature Structures

Number SG

Number SG

18

Number SG
Person 3

Cat NP
Number SG
Person 3

4

Bundles of Features

• Feature Values can be feature structures themselves.

• This is useful when certain features commonly co-
occur, as number and person.

19

Cat NP

Number SG
Agreement

Person 3

Feature Structures as DAGs

20

Reentrant Structure

• We’ll allow multiple features in a feature structure to
share the same values. By this we mean that they
share the same structure, not just that they have the
same value.

21

• Numerical indices indicate the shared value.

Cat S
Number SG

Agreement Person 3
Head

Subject Agreement

1

1

Reentrant DAGs

HEAD

CAT S

22

NUMBER

PERSON

SG

3
AGREEMENT

SUBJECT

AGREEMENT

Reentrant Structure

• It will also be useful to talk about paths through
feature structures. As in the paths

• <HEAD AGREEMENT NUMBER>

• <HEAD SUBJECT AGREEMENT NUMBER>

23

Cat S
Number SG

Agreement Person 3
Head

Subject Agreement

1

1

The Unification Operation

So what do we want to do with these things...
• check the compatibility of two structures
• merge the information in two structures

W d b th ith ti ll d U ifi ti

24

We can do both with an operation called Unification.

Merging two feature structures produces a new feature
structure that is more specific (has more information)
than, or is identical to, each of the input feature
structures.

5

The Unification Operation

• We say two feature structures can be unified if the
component features that make them up are
compatible.

[b] U [b] [b]

25

• [number sg] U [number sg] = [number sg]

• [number sg] U [number pl] = fails!

• Structures are compatible if they contain no features
that are incompatible.

• If so, unification returns the union of all feature/value
pairs.

The Unification Operation

• [number sg] U [number []] =

26

The Unification Operation

• [number sg] U [number []] = [number sg]

27

• [number sg] U [person 3] =

The Unification Operation

• [number sg] U [number []] = [number sg]

b

28

• [number sg] U [person 3] = number sg
person 3

Unification Operation
Agreement [Number sg]
Subject [Agreement [Number sg]]

U

[S bj t [A t [P 3]]]

29

[Subject [Agreement [Person 3]]]

Agreement [Number sg]

Number sg
Subject Agreement

Person 3

=

The Unification Operation

C t S

[Head [Subject [Agreement [Number PL]]]]

U

30

Cat S
Number SG

Agreement Person 3
Head

Subject Agreement

1

1

= Fail!

6

Properties of Unification

• Monotonic: if some description is true of a feature
structure, it will still be true after unifying it with
another feature structure.

O d i d d t i t f f t t t

31

• Order independent: given a set of feature structures
to unify, we can unify them in any order and we’ll get
the same result.

Features, Unification, and Grammars

We’ll incorporate all this into our grammars in two ways:

• We’ll assume that constituents are objects which
have feature-structures associated with them

32

• We’ll associate sets of unification constraints with
grammar rules that must be satisfied for the rule to be
satisfied.

Unification Constraints

β0 β1 … βn

{ set of constraints }

β f t th t i l

33

< βi feature path > = atomic value

< βi feature path > = < βk feature path >

Agreement
NP  Det Nominal
< Det AGREEMENT > = < Nominal AGREEMENT >
< NP AGREEMENT > = < Nominal AGREEMENT >

Noun  flight
< Noun AGREEMENT NUMBER > = SG

34

Noun  flights
< Noun AGREEMENT NUMBER > = PL

Nominal  Noun
< Nominal AGREEMENT > = < Noun AGREEMENT >

Det  this
< Det AGREEMENT NUMBER > = SG

Unification and Parsing

• OK, let’s assume we’ve augmented our grammar with
sets of path-like unification constraints.

• What changes do we need to make to a parser to
k f th ?

35

make use of them?

– Building feature structures and associating them with a
subtree

– Unifying feature structures as subtrees are created

– Blocking ill-formed constituents

Unification and Earley Parsing

With respect to an Earley-style parser…

• Building feature structures (represented as DAGs)
and associate them with states in the chart

36

• Unifying feature structures as states are advanced in
the chart

• Block ill-formed states from entering the chart

7

Building Feature Structures

• Features of most grammatical categories are copied
from head child to parent (e.g., from V to VP, Nom to
NP, N to Nom)

VP  V NP
< VP HEAD > < V HEAD >

37

– < VP HEAD > = < V HEAD >

S  NP VP
– < NP HEAD AGREEMENT > = < VP HEAD AGREEMENT>

– < S HEAD > = < VP HEAD >

S [head]
NP [head [agreement]]
VP [head [agreement]]

1

2
2

1

Augmenting States with DAGs

• We just add a new field to the representation of the
states

38

S  . NP VP, [0,0], [], Dag

Unifying States and Blocking

• Keep much of the Earley Algorithm the same.

• We want to unify the DAGs of existing states as they
are combined as specified by the grammatical
constraints.

39

• Alter COMPLETER – when a new state is created,
first make sure the individual DAGs unify. If so, then
add the new DAG (resulting from the unification) to
the new state.

40

Modifying Earley
Completer
• Recall: Completer adds new states to chart by finding

states whose dot can be advanced (i.e., category of
next constituent matches that of completed
constituent)

• Now: Completer will only advance those states if their

41

• Now: Completer will only advance those states if their
feature structures unify.

Also, new test for whether to enter a state in the chart
• Now DAGs may differ, so check must be more

complex
• Don’t add states that have DAGs that are more

specific than states in chart; is new state subsumed
by existing states?

Example

• NP  Det . Nominal [0,1], [SDet], DAG1

np [head]
det [head [agreement [number sg]]]
nominal[head [agreement]]

1

2
2

1

42

• Nominal  Noun ., [1,2], [SNoun], Dag2

nominal[head]

noun [head [agreement [number sg]]]

1

1

