
1

Earley Algorithm
Chapter 13.4

1

October 2009

Lecture #9

Review

• Top-Down vs. Bottom-Up Parsers
– Both generate too many useless trees

– Combine the two to avoid over-generation: Top-Down
Parsing with Bottom-Up look-ahead

• Left-corner table provides more efficient look-ahead

2

Left-corner table provides more efficient look-ahead
– Pre-compute all POS that can serve as the leftmost POS in

the derivations of each non-terminal category

• More problems remain..

Left Recursion

• Depth-first search will never terminate if grammar is
left recursive (e.g. NP --> NP PP)

)(** 

3

),( 

Left-Recursion

• What happens in the following situation
– S -> NP VP

– S -> Aux NP VP

– NP -> NP PP

– NP -> Det Nominal

4

– NP -> Det Nominal

– …

– With the sentence starting with
• Did the flight…

Rule Ordering

• S -> Aux NP VP

• S -> NP VP

• NP -> Det Nominal

• NP -> NP PP

5

• The key for the NP is that you want the recursive
option after any base case. Duhh.

Rule Ordering

• S -> Aux NP VP

• S -> NP VP

• NP -> Det Nominal

• NP -> NP PP

6

• What happens with
– Book that flight

2

• Solutions:
– Rewrite the grammar (automatically?) to a weakly equivalent

one which is not left-recursive
e.g. The man {on the hill with the telescope…}

NP  NP PP

NP  Nom PP

NP  Nom

…becomes…

7

…becomes…

NP  Nom NP’

NP’  PP NP’

NP’  e

• This may make rules unnatural

– Harder to eliminate non-immediate left recursion
– NP --> Nom PP

– Nom --> NP

– Fix depth of search explicitly

– Rule ordering: non-recursive rules first
NP --> Det Nom

NP --> NP PP

8

Structural ambiguity:

• Multiple legal structures
– Attachment (e.g. I saw a man on a hill with a telescope)

– Coordination (e.g. younger cats and dogs)

– NP bracketing (e.g. Spanish language teachers)

9 10

• Solution?
– Return all possible parses and disambiguate using “other

methods”

11

Avoiding Repeated Work

• Parsing is hard, and slow. It’s wasteful to redo stuff
over and over and over.

• Consider an attempt to top-down parse the following
NP

12

as an NP

A flight from India to Houston on TWA

3

13

flight

flight

14

flight

15 16

Dynamic Programming

• We need a method that fills a table with partial results
that
– Does not do (avoidable) repeated work

– Does not fall prey to left-recursion

– Solves an exponential problem in polynomial time (sort of)

17

– Solves an exponential problem in polynomial time (sort of)

Dynamic Programming

• Create table of solutions to sub-problems (e.g.
subtrees) as parse proceeds

• Look up subtrees for each constituent rather than re-
parsing

Si ll i li itl t d ll il bl f l t

18

• Since all parses implicitly stored, all available for later
disambiguation

• Examples: Cocke-Younger-Kasami (CYK) (1960),
Graham-Harrison-Ruzzo (GHR) (1980) and Earley
(1970) algorithms

4

Earley’s Algorithm

• Uses dynamic programming to do parallel top-down
search in (worst case) O(N3) time

• First, L2R pass fills out a chart with N+1 states (N:
the number of words in the input)
– Think of chart entries as sitting between words in the input

19

string keeping track of states of the parse at these positions

– For each word position, chart contains set of states
representing all partial parse trees generated to date. E.g.
chart[0] contains all partial parse trees generated at the
beginning of the sentence

Earley Parsing

• Fills a table in a single sweep over the input words
– Table is length N+1; N is number of words

– Table entries represent
• Completed constituents and their locations

• In-progress constituents

20

p og ess co s ue s

• Predicted constituents

States

• The table-entries are called states and are represented
with dotted-rules.

S -> · VP A VP is predicted

21

NP -> Det · Nominal An NP is in progress

VP -> V NP · A VP has been found

States/Locations

• It would be nice to know where these things are in the input
so…[x,y] tells us where the state begins (x) and where the
dot lies (y) wrt the input

22

S -> · VP [0,0] A VP is predicted at the
start of the sentence

NP -> Det · Nominal [1,2] An NP is in progress; the
Det goes from 1 to 2

VP -> V NP · [0,3] A VP has been found
starting at 0 and ending at 3

S --> • VP, [0,0]
– First 0 means S constituent begins at the start of the input

– Second 0 means the dot here too

– So, this is a top-down prediction

NP --> Det • Nom, [1,2]

0 Book 1 that 2 flight 3

23

– the NP begins at position 1

– the dot is at position 2

– so, Det has been successfully parsed

– Nom predicted next

VP --> V NP •, [0,3]
– Successful VP parse of entire input

24

5

Successful Parse

• Final answer found by looking at last entry in chart

• If entry resembles S -->  • [0,N] then input parsed
successfully

• But note that chart will also contain a record of all
ibl f i t t i i th

25

possible parses of input string, given the grammar --
not just the successful one(s)

Earley

• As with most dynamic programming approaches, the
answer is found by looking in the table in the right
place.

• In this case, there should be an S state in the final
column that spans from 0 to n+1 and is complete

26

column that spans from 0 to n+1 and is complete.

• If that’s the case you’re done.
– S – α · [0,n+1]

Earley

• So sweep through the table from 0 to n+1…
– New predicted states are created by

– New incomplete states are created by advancing existing
states as new constituents are discovered

– New complete states are created in the same way.

27

New complete states are created in the same way.

Earley

• More specifically…
1. Predict all the states you can upfront

2. Read a word
1. Extend states based on matches

2. Add new predictions

28

dd e p ed c o s

3. Go to 2

3. Look at N+1 to see if you have a winner

Parsing Procedure for the Earley
Algorithm

• Move through each set of states in order, applying
one of three operators to each state:
– predictor: add predictions to the chart

– scanner: read input and add corresponding state to chart

29

– completer: move dot to right when new constituent found

• Results (new states) added to current or next set of
states in chart

• No backtracking and no states removed: keep
complete history of parse

Predictor

• Intuition: new states represent top-down
expectations

• Applied when non part-of-speech non-terminals are
to the right of a dot
S --> • VP [0 0]

30

S --> • VP [0,0]

• Adds new states to current chart
– One new state for each expansion of the non-terminal in the

grammar
VP --> • V [0,0]

VP --> • V NP [0,0]

6

Scanner

• New states for predicted part of speech.

• Applicable when part of speech is to the right of a dot
VP --> • V NP [0,0] ‘Book…’

• Looks at current word in input

31

• If match, adds state(s) to next chart
VP --> V • NP [0,1]

Completer

• Intuition: parser has discovered a constituent, so
must find and advance all states that were waiting for
this

• Applied when dot has reached right end of rule
NP --> Det Nom • [1 3]

32

NP --> Det Nom • [1,3]

• Find all states w/dot at 1 and expecting an NP
VP --> V • NP [0,1]

• Adds new (completed) state(s) to current chart
VP --> V NP • [0,3]

The Earley Algorithm

33

Book that flight (Chart [0])
• Seed chart with top-down predictions for S from

grammar

  [0,0] Dummy start state

S   NP VP [0,0] Predictor
S

34

S   Aux NP VP [0,0] Predictor

S   VP [0,0] Predictor

NP   Det Nom [0,0] Predictor

NP   PropN [0,0] Predictor

VP   V [0,0] Predictor

VP   V NP [0,0] Predictor

CFG for Fragment of English

NP  Det Nom

S  VP

S  Aux NP VP

S  NP VP Det  that | this | a

N  book | flight | meal | money

V  book | include | prefer

Aux  does

35

PropN  Houston | TWA

Prep from | to | onNom  N Nom
Nom  N

VP  V NP

VP  V

NP PropN

Nom  Nom PP

PP  Prep NP

• When dummy start state is processed, it’s passed to
Predictor, which produces states representing every
possible expansion of S, and adds these and every
expansion of the left corners of these trees to bottom
of Chart[0]

• When VP --> • V, [0,0] is reached, Scanner called,
which consults first word of input Book and adds

36

which consults first word of input, Book, and adds
first state to Chart[1], V --> Book •, [0,1]

• Note: When VP --> • V NP, [0,0] is reached in
Chart[0], Scanner expands the rule yielding
VP --> V . NP, [0,1] but does not put
V --> Book •, [0,1] in again.

7

Example

37

Chart[1]

V book  [0,1] Scanner

VP  V  [0,1] Completer

VP  V  NP [0,1] Completer

38

S  VP  [0,1] Completer

NP   Det Nom [1,1] Predictor

NP   PropN [1,1] Predictor

V--> book  passed to Completer, which finds 2
states in Chart[0,0] whose left corner is V and adds
them to Chart[0,1], moving dots to right

• When VP  V  is itself processed by the Completer,
S  VP  is added to Chart[1] since VP is a left
corner of S

• Last 2 rules in Chart[1] are added by Predictor when
VP  V  NP is processed

• And so on….

39

Example

40

Example

41

What is it?

• What kind of parser did we just describe (trick
question).
– Earley parser… yes

– Not a parser – a recognizer
• The presence of an S state with the right attributes in the right

42

The presence of an S state with the right attributes in the right
place indicates a successful recognition.

• But no parse tree… no parser

8

How do we retrieve the parses at
the end?

• Augment the Completer to add ptr to prior states it
advances as a field in the current state
– I.e. what state did we advance here?

– Read the ptrs back from the final state

43

• Do we NEED the pointers?

44

Useful Properties

• Error handling

• Alternative control strategies

45

Error Handling

• What happens when we look at the contents of the
last table column and don't find a S -->  rule?
– Is it a total loss? No...

– Chart contains every constituent and combination of
constituents possible for the input given the grammar

46

constituents possible for the input given the grammar

• Also useful for partial parsing or shallow parsing used
in information extraction

Alternative Control Strategies

• Change Earley top-down strategy to bottom-up or ...

• Change to best-first strategy based on the
probabilities of constituents
– Compute and store probabilities of constituents in the chart

as you parse

47

as you parse

– Then instead of expanding states in fixed order, allow
probabilities to control order of expansion

Summing Up

• Ambiguity, left-recursion, and repeated re-parsing of
subtrees present major problems for parsers

• Solutions:
– Combine top-down predictions with bottom-up look-ahead

– Use dynamic programming

48

y p g g

– Example: the Earley algorithm

• Next time: Read Ch 15

