
1

Inductive Learning
Decision Tree Method

(If it’s not simple,
it’s not worth learning it) it s not worth learning it)

R&N: Chap. 18, Sect. 18.1–3
Much of this taken from slides of: Jean-Claude Latombe,

Stanford University; Stuart Russell, UC Berkley; Lise Getoor,
University of Maryland.

Motivation

 An AI agent operating in a complex
world requires an awful lot of
knowledge: state representations, state
axioms constraints action descriptions axioms, constraints, action descriptions,
heuristics, probabilities, ...

 More and more, AI agents are designed
to acquire knowledge through learning

What is Learning?

 Mostly generalization from experience:
“Our experience of the world is specific,
yet we are able to formulate general
theories that account for the past and p
predict the future”
M.R. Genesereth and N.J. Nilsson,
in Logical Foundations of AI, 1987

  Concepts, heuristics, policies
 Supervised vs. un-supervised learning

Contents

 Introduction to inductive learning
 Logic-based inductive learning:

• Decision-tree induction

Logic-Based Inductive Learning
 Background knowledge KB

 Training set D (observed knowledge)
that is not logically implied by KBg y p y

 Inductive inference:
Find h such that KB and h imply D

h = D is a trivial, but
un-interesting solution
(data caching)

Rewarded Card Example
 Deck of cards, with each card designated by [r,s], its

rank and suit, and some cards “rewarded”
 Background knowledge KB:

((r=1) v … v (r=10))  NUM(r)
((r=J) v (r=Q) v (r=K))  FACE(r)
((s=S) v (s=C))  BLACK(s)
((s=D) v (s=H))  RED(s)

 Training set D:
REWARD([4,C])  REWARD([7,C])  REWARD([2,S]) 

REWARD([5,H])  REWARD([J,S])

2

Rewarded Card Example
 Deck of cards, with each card designated by [r,s], its

rank and suit, and some cards “rewarded”
 Background knowledge KB:

((r=1) v … v (r=10))  NUM(r)
((r=J) v (r=Q) v (r=K))  FACE(r)
((s=S) v (s=C))  BLACK(s)
((s=D) v (s=H))  RED(s)

 Training set D:
REWARD([4,C])  REWARD([7,C])  REWARD([2,S]) 

REWARD([5,H])  REWARD([J,S])
 Possible inductive hypothesis:

h  (NUM(r)  BLACK(s)  REWARD([r,s]))

There are several possible
inductive hypotheses

Learning a Predicate
(Concept Classifier)

 Set E of objects (e.g., cards)
 Goal predicate CONCEPT(x), where x is an object in E,

that takes the value True or False (e.g., REWARD)

Learning a Predicate
(Concept Classifier)

 Set E of objects (e.g., cards)
 Goal predicate CONCEPT(x), where x is an object in E,

that takes the value True or False (e.g., REWARD)
 Observable predicates A(x), B(X), … (e.g., NUM, RED)
 Training set: values of CONCEPT for some Training set values of CONCEPT for some

combinations of values of the observable predicates

Example of Training Set

Example of Training Set

Ternary attributes

Note that the training set does not say whether
an observable predicate is pertinent or not

Goal predicate is PLAY-TENNIS

Learning a Predicate
(Concept Classifier)

 Set E of objects (e.g., cards)
 Goal predicate CONCEPT(x), where x is an object in E,

that takes the value True or False (e.g., REWARD)
 Observable predicates A(x), B(X), … (e.g., NUM, RED)
 Training set: values of CONCEPT for some Training set values of CONCEPT for some

combinations of values of the observable predicates

 Find a representation of CONCEPT in the form:
CONCEPT(x)  S(A,B, …)

where S(A,B,…) is a sentence built with the observable
predicates, e.g.:

CONCEPT(x)  A(x)  (B(x) v C(x))

3

Learning an Arch Classifier

 These aren’t:

 These objects are arches:
(positive examples)

ARCH(x)  HAS-PART(x,b1)  HAS-PART(x,b2) 
HAS-PART(x,b3)  IS-A(b1,BRICK) 
IS-A(b2,BRICK)  MEET(b1,b2) 
(IS-A(b3,BRICK) v IS-A(b3,WEDGE)) 
SUPPORTED(b3,b1)  SUPPORTED(b3,b2)

(negative examples)

Example set

 An example consists of the values of CONCEPT
and the observable predicates for some
object x

 A example is positive if CONCEPT is True, else p p
it is negative

 The set X of all examples is the example set
 The training set is a subset of X

a small one!

Hypothesis Space

 An hypothesis is any sentence of the form:
CONCEPT(x)  S(A,B, …)

where S(A,B,…) is a sentence built using the
observable predicates

 The set of all hypotheses is called the
hypothesis space H

 An hypothesis h agrees with an example if it
gives the correct value of CONCEPT

++- --

Inductive Learning Scheme

Training set D
Inductive

hypothesis h

+

++

+

+

+

++

+

+ -
-

-

-
-

- - -

-

Example set X
{[A, B, …, CONCEPT]}

Hypothesis space H
{[CONCEPT(x)  S(A,B, …)]}

Size of Hypothesis Space

 n observable predicates
 2n entries in truth table defining

CONCEPT and each entry can be filled
i h T F lwith True or False

 In the absence of any restriction
(bias), there are hypotheses to
choose from
 n = 6  2x1019 hypotheses!

22n

Multiple Inductive Hypotheses
 Deck of cards, with each card designated by [r,s], its

rank and suit, and some cards “rewarded”
 Background knowledge KB:

((r=1) v … v (r=10))  NUM(r)
((r=J) v (r=Q) v (r=K))  FACE(r)
((s=S) v (s=C))  BLACK(s)
((s=D) v (s=H))  RED(s)

 Training set D:
REWARD([4 C])  REWARD([7 C])  REWARD([2 S]) 

h1  NUM(r)  BLACK(s)  REWARD([r,s])
h2  BLACK(s)  (r=J)  REWARD([r,s])
h3  ([r,s]=[4,C])  ([r,s]=[7,C])  [r,s]=[2,S])

 REWARD([r,s])
h4  ([r,s]=[5,H])  ([r,s]=[J,S])  REWARD([r,s])
agree with all the examples in the training set

REWARD([4,C])  REWARD([7,C])  REWARD([2,S]) 
REWARD([5,H])  REWARD([J,S])

4

Multiple Inductive Hypotheses
 Deck of cards, with each card designated by [r,s], its

rank and suit, and some cards “rewarded”
 Background knowledge KB:

((r=1) v … v (r=10))  NUM(r)
((r=J) v (r=Q) v (r=K))  FACE(r)
((s=S) v (s=C))  BLACK(s)
((s=D) v (s=H))  RED(s)

 Training set D:
REWARD([4 C])  REWARD([7 C])  REWARD([2 S]) 

Need for a system of preferences – called
a bias – to compare possible hypotheses

h1  NUM(r)  BLACK(s)  REWARD([r,s])
h2  BLACK(s)  (r=J)  REWARD([r,s])
h3  ([r,s]=[4,C])  ([r,s]=[7,C])  [r,s]=[2,S])

 REWARD([r,s])
h4  ([r,s]=[5,H])  ([r,s]=[J,S])  REWARD([r,s])
agree with all the examples in the training set

REWARD([4,C])  REWARD([7,C])  REWARD([2,S]) 
REWARD([5,H])  REWARD([J,S])

Inductive learning
• Simplest form: learn a function from examples
• f is the target function

An example is a pair (x, f(x))

Problem: find a hypothesis h
such that h ≈ f
given a training set of examples

(This is a highly simplified model of real learning:
– Ignores prior knowledge
– Assumes examples are given)

Inductive learning method
Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

Inductive learning method
Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

Inductive learning method
Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

Inductive learning method

5

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

Inductive learning method
Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

Inductive learning method

Ockham’s razor: prefer the simplest hypothesis
consistent with data

Notion of Capacity
 It refers to the ability of a machine to learn any

training set without error
 A machine with too much capacity is like a botanist

with photographic memory who, when presented with
a new tree, concludes that it is not a tree because it
has a different number of leaves from anything he has a different number of leaves from anything he
has seen before

 A machine with too little capacity is like the
botanist’s lazy brother, who declares that if it’s
green, it’s a tree

 Good generalization can only be achieved when the
right balance is struck between the accuracy attained
on the training set and the capacity of the machine

 Keep-It-Simple (KIS) Bias

 Examples
• Use many fewer observable predicates than the

training set
• Constrain the learnt predicate, e.g., to use only “high-

l l” bs bl p di t s s h s NUM FACE level” observable predicates such as NUM, FACE,
BLACK, and RED and/or to have simple syntax

 Motivation
• If a hypothesis is too complex it is not worth learning

it (data caching does the job as well)
• There are many fewer simple hypotheses than

complex ones, hence the hypothesis space is smaller

Einstein: “A theory must be as simple as possible,
but not simpler than this”

 Keep-It-Simple (KIS) Bias

 Examples
• Use many fewer observable predicates than the

training set
• Constrain the learnt predicate, e.g., to use only “high-

l l” bs bl p di t s s h s NUM FACE

If the bias allows only sentences S that are
conjunctions of k << n predicates picked from
the n observable predicates then the size of level” observable predicates such as NUM, FACE,

BLACK, and RED and/or to have simple syntax

 Motivation
• If a hypothesis is too complex it is not worth learning

it (data caching does the job as well)
• There are many fewer simple hypotheses than

complex ones, hence the hypothesis space is smaller

the n observable predicates, then the size of
H is O(nk)

Putting Things Together

Object set

Goal predicate
Example
set X

Test
setEvaluation

yes
no

p

Observable
predicates

Training
set D

Induced
hypothesis h

Learning
procedure L

Bias

Hypothesis
space H

6

Decision Tree Method

Predicate as a Decision Tree

The predicate CONCEPT(x)  A(x)  (B(x) v C(x)) can
be represented by the following decision tree:

A?
True False

Example:
A mushroom is poisonous iff
it i ll d ll ll

B?

C?
True

True

True

True

FalseTrue

False

False
False

Falseit is yellow and small, or yellow,
big and spotted
• x is a mushroom
• CONCEPT = POISONOUS
• A = YELLOW
• B = BIG
• C = SPOTTED

Predicate as a Decision Tree

The predicate CONCEPT(x)  A(x)  (B(x) v C(x)) can
be represented by the following decision tree:

A?
True False

Example:
A mushroom is poisonous iff
it i ll d ll ll

B?

C?
True

True

True

True

FalseTrue

False

False
False

Falseit is yellow and small, or yellow,
big and spotted
• x is a mushroom
• CONCEPT = POISONOUS
• A = YELLOW
• B = BIG
• C = SPOTTED
• D = FUNNEL-CAP
• E = BULKY

Training Set
Ex. # A B C D E CONCEPT

1 False False True False True False
2 False True False False False False
3 False True True True True False
4 False False True False False False
5 F l F l F l T T F l5 False False False True True False
6 True False True False False True
7 True False False True False True
8 True False True False True True
9 True True True False True True
10 True True True True True True
11 True True False False False False
12 True True False False True False
13 True False True True True True

Possible Decision Tree
D

CE
T F

FT

TrueTrueTrueTrueFalseTrue13

FalseTrueFalseFalseTrueTrue12

FalseFalseFalseFalseTrueTrue11

TrueTrueTrueTrueTrueTrue10

TrueTrueFalseTrueTrueTrue9

TrueTrueFalseTrueFalseTrue8

TrueFalseTrueFalseFalseTrue7

TrueFalseFalseTrueFalseTrue6

FalseTrueTrueFalseFalseFalse5

FalseFalseFalseTrueFalseFalse4

FalseTrueTrueTrueTrueFalse3

FalseFalseFalseFalseTrueFalse2

FalseTrueFalseTrueFalseFalse1

CONCEPTEDCBAEx. #
B

E

AA

A

F

FF

F

T

T

T

TT

Possible Decision Tree
D

CE
T F

FT

CONCEPT 
(D(EvA))v(D(C(Bv(B((EA)v(EA))))))

CONCEPT  A  (B v C)
B

E

AA

A

F

FF

F

T

T

T

TT

A?

B?

C?
True

True

True

True

FalseTrue

False

False
False

False

N E ()

7

Possible Decision Tree
D

CE
T F

FTCONCEPT  A  (B v C)

CONCEPT 
(D(EvA))v(D(C(Bv(B((EA)v(EA))))))

B

E

AA

A

F

FF

F

T

T

T

TT

A?

B?

C?
True

True

True

True

FalseTrue

False

False
False

False

N E ()

KIS bias  Build smallest decision tree

Computationally intractable problem
 greedy algorithm

Picking Best Attribute

• Several different methods
– Reducing classification error

• Not covered in the tex

– Using Information Gain– Using Information Gain

Getting Started:
Top-Down Induction of Decision Tree

Ex. # A B C D E CONCEPT

True: 6, 7, 8, 9, 10,13
False: 1, 2, 3, 4, 5, 11, 12

The distribution of training set is:

1 False False True False True False

2 False True False False False False

3 False True True True True False

4 False False True False False False

5 False False False True True False

6 True False True False False True

7 True False False True False True

8 True False True False True True

9 True True True False True True

10 True True True True True True

11 True True False False False False

12 True True False False True False

13 True False True True True True

Getting Started:
Top-Down Induction of Decision Tree

True: 6, 7, 8, 9, 10,13
False: 1, 2, 3, 4, 5, 11, 12

The distribution of training set is:

Without testing any observable predicate, we
could report that CONCEPT is False (majority rule)
with an estimated probability of error P(E) = 6/13

Assuming that we will only include one observable
predicate in the decision tree, which predicate
should we test to minimize the probability of
error (i.e., the # of misclassified examples in
the training set)?  Greedy algorithm

Assume It’s A

A

True: 6 7 8 9 10 13

T F

True:
False:

6, 7, 8, 9, 10, 13
11, 12 1, 2, 3, 4, 5

If we test only A, we will report that CONCEPT is True
if A is True (majority rule) and False otherwise

 The number of misclassified examples from the
training set is 2

Assume It’s B

B

True: 9 10

T F

6 7 8 13True:
False:

9, 10
2, 3, 11, 12 1, 4, 5

If we test only B, we will report that CONCEPT is False
if B is True and True otherwise

 The number of misclassified examples from the
training set is 5

6, 7, 8, 13

8

Assume It’s C

C

True: 6 8 9 10 13

T F

7True:
False:

6, 8, 9, 10, 13
1, 3, 4 1, 5, 11, 12

If we test only C, we will report that CONCEPT is True
if C is True and False otherwise

 The number of misclassified examples from the
training set is 4

7

Assume It’s D

D
T F

True: 7 10 13 6 8 9

If we test only D, we will report that CONCEPT is True
if D is True and False otherwise

 The number of misclassified examples from the
training set is 5

True:
False:

7, 10, 13
3, 5 1, 2, 4, 11, 12

6, 8, 9

Assume It’s E

E

True: 8 9 10 13

T F

6 7True:
False:

8, 9, 10, 13
1, 3, 5, 12 2, 4, 11

If we test only E we will report that CONCEPT is False,
independent of the outcome

 The number of misclassified examples from the
training set is 6

6, 7

Assume It’s E

E

True: 8 9 10 13

T F

6 7True:
False:

8, 9, 10, 13
1, 3, 5, 12 2, 4, 11

If we test only E we will report that CONCEPT is False,
independent of the outcome

 The number of misclassified examples from the
training set is 6

6, 7

So, the best predicate to test is A

Choice of Second Predicate

A
T F

C False

True:
False:

6, 8, 9, 10, 13
11, 12
7

T F

 The number of misclassified examples from the
training set is 1

Choice of Third Predicate

C

A
T F

False
T F

B

True:
False: 11,12

7

T F
True

9

Final Tree

A

C

True

F ls
False

False
A?

B?

True

F l
False

False

True

True B
True

TrueFalse

False

False

CONCEPT  A  (C v B) CONCEPT  A  (B v C)

C?
True

True

True

FalseTrue

False

False

Top-Down
Induction of a DT

DTL(, Predicates)
1. If all examples in  are positive then return True
2. If all examples in  are negative then return False
3 If P di t i t th t f il

A

C
True

True

True
B

True

TrueFalse

False

False
False

False

3. If Predicates is empty then return failure
4. A  error-minimizing predicate in Predicates
5. Return the tree whose:

- root is A,
- left branch is DTL(+A,Predicates-A),
- right branch is DTL(-A,Predicates-A)

Subset of examples
that satisfy A

Top-Down
Induction of a DT

DTL(, Predicates)
1. If all examples in  are positive then return True
2. If all examples in  are negative then return False
3 If P di t i t th t f il

A

C
True

True

True
B

True

TrueFalse

False

False
False

False

3. If Predicates is empty then return failure
4. A  error-minimizing predicate in Predicates
5. Return the tree whose:

- root is A,
- left branch is DTL(+A,Predicates-A),
- right branch is DTL(-A,Predicates-A)Noise in training set!

May return majority rule,
instead of failure

Comments

 Widely used algorithm
 Greedy
 Robust to noise (incorrect examples)
 Not incremental

Using Information Theory

 Rather than minimizing the probability of
error, many existing learning procedures
minimize the expected number of questions
needed to decide if an object x satisfies n to c f an o j ct sat sf s
CONCEPT

 This minimization is based on a measure of
the “quantity of information” contained in
the truth value of an observable predicate

 See R&N p. 659-660

Learning decision trees
Problem: decide whether to wait for a table at a

restaurant, based on the following attributes:
1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4 H h ?4. Hungry: are we hungry?
5. Patrons: number of people in the restaurant (None, Some,

Full)
6. Price: price range ($, $$, $$$)
7. Raining: is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)
10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60,

>60)

10

Attribute-based representations

• Examples described by attribute values (Boolean, discrete, continuous)

• E.g., situations where I will/won't wait for a table:

• Classification of examples is positive (T) or negative (F)

•

Decision tree learning

• Aim: find a small tree consistent with the training examples

• Idea: (recursively) choose "most significant" attribute as root of
(sub)tree

Choosing an attribute

• Idea: a good attribute splits the examples into subsets
that are (ideally) "all positive" or "all negative"

• Patrons? is a better choice

Using information theory

• To implement Choose-Attribute in the DTL
algorithm

• Information Content (Entropy):

I(P(v1), … , P(vn)) = Σi=1 -P(vi) log2 P(vi)I(P(v1), … , P(vn)) Σi=1 P(vi) log2 P(vi)

• For a training set containing p positive examples
and n negative examples:

np

n

np

n

np

p

np

p

np

n

np

p
I







 22 loglog),(

Information gain

• A chosen attribute A divides the training set E into
subsets E1, … , Ev according to their values for A, where
A has v distinct values.

 



v

iiii

np

n

np

p
I

np

np
Aremainder),()(

• Information Gain (IG) or reduction in entropy from the
attribute test:

• Choose the attribute with the largest IG

 i iiii npnpnp1

)(),()(Aremainder
np

n

np

p
IAIG 




Information gain

For the training set, p = n = 6, I(6/12, 6/12) = 1 bit

Consider the attributes Patrons and Type (and others too):

bits 0541.)]
6

4
,

6

2
(

12

6
)0,1(

12

4
)1,0(

12

2
[1)( IIIPatronsIG

Patrons has the highest IG of all attributes and so is chosen by the DTL
algorithm as the root

bits 0)]
4

2
,

4

2
(

12

4
)

4

2
,

4

2
(

12

4
)

2

1
,

2

1
(

12

2
)

2

1
,

2

1
(

12

2
[1)(

66121212

 IIIITypeIG

11

Example contd.

• Decision tree learned from the 12 examples:

• Substantially simpler than “true” tree---a more complex
hypothesis isn’t justified by small amount of data

Evaluation methodology

• Standard methodology:

– 1. Collect a large set of examples (all with correct
classifications)

– 2. Randomly divide collection into two disjoint sets:
training and testg

– 3. Apply learning algorithm to training set giving hypothesis
H

– 4. Measure performance of H w.r.t. test set

• Important: keep the training and test sets disjoint!

• To study the efficiency and robustness of an algorithm, repeat
steps 2-4 for different training sets and sizes of training sets

• If you improve your algorithm, start again with step 1 to avoid
evolving the algorithm to work well on just this collection

Restaurant example
learning curve

Miscellaneous Issues

 Assessing performance:
• Training set and test set
• Learning curve

 s
et 100

size of training set
%

 c
or

re
ct

 o
n

te
st

Typical learning curve

Miscellaneous Issues

 Assessing performance:
• Training set and test set
• Learning curve

 Overfitting Risk of using irrelevantOverfitting Risk of using irrelevant
observable predicates to

generate a hypothesis
that agrees with all examples

in the training set

size of training set

%
 c

or
re

ct
 o

n
te

st
 s

et

100

Typical learning curve

Miscellaneous Issues

 Assessing performance:
• Training set and test set
• Learning curve

 Overfitting Risk of using irrelevantOverfitting
• Tree pruning

Terminate recursion when
errors / information gain

is small

Risk of using irrelevant
observable predicates to
generate an hypothesis

that agrees with all examples
in the training set

12

Miscellaneous Issues

 Assessing performance:
• Training set and test set
• Learning curve

 Overfitting Risk of using irrelevantOverfitting
• Tree pruning

Terminate recursion when
errors / information gain

is small

Risk of using irrelevant
observable predicates to
generate an hypothesis

that agrees with all examples
in the training set

The resulting decision tree
+ majority rule may not
classify correctly all
examples in the training set

Miscellaneous Issues

 Assessing performance:
• Training set and test set
• Learning curve

 Overfitting Overfitting
• Tree pruning

 Incorrect examples
 Missing data
 Multi-valued and continuous attributes

Extensions of the decision tree
learning algorithm

• Using gain ratios (not covered in the text)

• Real-valued data

• Noisy data and overfitting

• Generation of rules• Generation of rules

• Setting parameters

• Cross-validation for experimental validation of
performance

• C4.5 is an extension of ID3 that accounts for
unavailable values, continuous attribute value
ranges, pruning of decision trees, rule
derivation, and so on

Using gain ratios
• The information gain criterion favors attributes that have a

large number of values

– If we have an attribute D that has a distinct value for
each record, then Info(D,T) is 0, thus Gain(D,T) is
maximal

• To compensate for this Quinlan suggests using the
following ratio instead of Gain:

GainRatio(D,T) = Gain(D,T) / SplitInfo(D,T)

• SplitInfo(D,T) is the information due to the split of T on the
basis of value of categorical attribute D

SplitInfo(D,T) = I(|T1|/|T|, |T2|/|T|, .., |Tm|/|T|)

where {T1, T2, .. Tm} is the partition of T induced by value
of D

Computing gain ratio
French

Italian

Thai

Y

Y

Y YN

N

N

N

•I(T) = 1

•I (Pat, T) = .47

•I (Type, T) = 1

Burger

Empty Some Full

Y YNN
Gain (Pat, T) =.53
Gain (Type, T) = 0

SplitInfo (Pat, T) = - (1/6 log 1/6 + 1/3 log 1/3 + 1/2 log 1/2) = 1/6*2.6 + 1/3*1.6 + 1/2*1
= 1.47

SplitInfo (Type, T) = 1/6 log 1/6 + 1/6 log 1/6 + 1/3 log 1/3 + 1/3 log 1/3
= 1/6*2.6 + 1/6*2.6 + 1/3*1.6 + 1/3*1.6 = 1.93

GainRatio (Pat, T) = Gain (Pat, T) / SplitInfo(Pat, T) = .53 / 1.47 = .36

GainRatio (Type, T) = Gain (Type, T) / SplitInfo (Type, T) = 0 / 1.93 = 0

Real-valued data
• Select a set of thresholds defining intervals

• Each interval becomes a discrete value of the attribute

• Use some simple heuristics…

– always divide into quartiles

• Use domain knowledgeUse domain knowledge…

– divide age into infant (0-2), toddler (3 - 5), school-aged
(5-8)

• Or treat this as another learning problem

– Try a range of ways to discretize the continuous
variable and see which yield “better results” w.r.t.
some metric

– E.g., try midpoint between every pair of values

13

Noisy data and overfitting
• Many kinds of “noise” can occur in the examples:

– Two examples have same attribute/value pairs, but
different classifications

– Some values of attributes are incorrect because of
errors in the data acquisition process or the
preprocessing phasepreprocessing phase

– The classification is wrong (e.g., + instead of -) because
of some error

– Some attributes are irrelevant to the decision-making
process, e.g., color of a die is irrelevant to its outcome

Noisy data and overfitting (cont)

• The last problem, irrelevant attributes, can result in
overfitting the training example data.

– If the hypothesis space has many dimensions
because of a large number of attributes, we may find
meaningless regularity in the data that is irrelevantmeaningless regularity in the data that is irrelevant
to the true, important, distinguishing features

– Fix by pruning lower nodes in the decision tree

– For example, if Gain of the best attribute at a node is
below a threshold, stop and make this node a leaf
rather than generating children nodes

Pruning decision trees
• Pruning of the decision tree is done by replacing a whole

subtree by a leaf node

• The replacement takes place if a decision rule establishes
that the expected error rate in the subtree is greater than
in the single leaf. E.g.,

– Training: one training red success and two training
blue failures

– Test: three red failures and one blue success

– Consider replacing this subtree by a single Failure
node.

• After replacement we will have only two errors instead of
five:

Color

1 success
0 failure

0 success
2 failures

red blue

Color

1 success
3 failure

1 success
1 failure

red blue 2 success
4 failure

FAILURETraining Test Pruned

Cross-Validation to Reduce
Overfitting

• Estimate how well each hypothesis will predict
unseen data.

• Set aside some fraction of the known data, and
use it to test the prediction performance of a
hypothesis induced from the remaining datahypothesis induced from the remaining data.

• K-fold cross-validation means that you run k
experiments, each time setting aside a different
1/k of the data to test on, and average the
results.

• Use to decide if pruning method is appropriate.
• Need to test again on really unseen data.

Converting decision trees to
rules

• It is easy to derive a rule set from a decision tree: write a
rule for each path in the decision tree from the root to a leaf

• In that rule the left-hand side is easily built from the label of
the nodes and the labels of the arcs

• The resulting rules set can be simplified:• The resulting rules set can be simplified:

– Let LHS be the left hand side of a rule

– Let LHS' be obtained from LHS by eliminating some
conditions

– We can certainly replace LHS by LHS' in this rule if the
subsets of the training set that satisfy respectively LHS
and LHS' are equal

– A rule may be eliminated by using metaconditions such
as “if no other rule applies”

Applications of Decision Tree

 Medical diagnostic / Drug design
 Evaluation of geological systems for

assessing gas and oil basins
E l d t ti f bl ( Early detection of problems (e.g.,
jamming) during oil drilling operations
 Automatic generation of rules in expert

systems

14

How well does it work?

• Many case studies have shown that decision trees are at
least as accurate as human experts.

– A study for diagnosing breast cancer had humans
correctly classifying the examples 65% of the time;
the decision tree classified 72% correctthe decision tree classified 72% correct

– British Petroleum designed a decision tree for gas-oil
separation for offshore oil platforms that replaced an
earlier rule-based expert system

– Cessna designed an airplane flight controller using
90,000 examples and 20 attributes per example

Summary: Decision tree
learning

• Inducing decision trees is one of the most widely used learning
methods in practice

• Can out-perform human experts in many problems
• Strengths include

– Fast
– Simple to implement

Can convert result to a set of easily interpretable rules– Can convert result to a set of easily interpretable rules
– Empirically valid in many commercial products
– Handles noisy data

• Weaknesses include:
– Univariate splits/partitioning using only one attribute at a time so limits

types of possible trees
– Large decision trees may be hard to understand
– Requires fixed-length feature vectors
– Non-incremental (i.e., batch method)

