
1

Fall 2008 Programming Development
Techniques

1

Topic 8
Sequences as Conventional

Interfaces

Section 2.2.3

October 2008

Fall 2008 Programming Development
Techniques

2

Before we get started…

• Let me go back to a function we were writing at the
end of class and let’s see if I can explain more clearly
why I reacted the way I did to the function we wrote
and the comments (parameter names) associated
with the function.

Fall 2008 Programming Development
Techniques

3

Background (1st mistake)

• We never gave a definition of what a tree (of
numbers was)

• A tree of numbers is
– A number
– A list whose elements are trees of numbers

Fall 2008 Programming Development
Techniques

4

; takes a tree of numbers and returns

; a tree that looks the same but the

; numbers have been scaled by num

(define (map-scale-tree tree num)

(if (pair? tree)

(map (lambda (x)

(scale-tree x num))

tree) ; node case

(* num tree))) ; leaf case

Fall 2008 Programming Development
Techniques

5

What was I writing?

• Notice that when I was leading the writing of the
function, I hadn’t bothered to carefully pay attention
to the comments (that were on the slide)

• In the variable naming convention I had used I was
taking a tree to be an arbitrarily complex LIST whose
atomic elements were numbers.

• In that case ALL calls to the function should take a
LIST (and not a number).

• This forces a different strategy for writing the
function.

Fall 2008 Programming Development
Techniques

6

; takes a list whose atomic elements are
numbers

; and returns a list that looks the same except

; the original numbers have been scaled by num
(define (map-scale-num-list elist num)

(map (lambda (x)
(cond ((pair? x)

(map-scale-num-list x num))

(else (* x num))))
elist))

(map-scale-num-list '((2 (1) (4 3))) 5)
'((10 (5) (20 15)))

2

Fall 2008 Programming Development
Techniques

7

Sequences as conventional
interfaces

A process can often be decomposed into a sequence of
stages

Examples
• compiling
• finding words that are common to two text files

Fall 2008 Programming Development
Techniques

8

Common types of stages

• Enumerate – the individual pieces of interest
• Filter – to isolate the pieces you are interested in
• Transduce – change the pieces in some way
• Accumulate – put the changed pieces back together

Fall 2008 Programming Development
Techniques

9

Sum of squares of odd leaves
in a tree

1) Make list of all leaves [enumerate]
2) Extract the odd leaves from list [filter]
3) Make list of the squares [transduce]
4) Sum up the squares [accumulate]

Fall 2008 Programming Development
Techniques

10

A definition not based on
stages

; sums the squares of all odd elements in
a tree

(define (sum-of-odd-squares tree)
(cond ((null? tree) 0)

((not (pair? tree))
(if (odd? tree)

(square tree)
0))

(else (+ (sum-of-odd-squares
(car tree))

(sum-of-odd-squares
(cdr tree))))))

Fall 2008 Programming Development
Techniques

11

Definition based on stages
(define (sum-of-odd-squares tree)

(accumulate +

0

(map square

(filter odd?

(enumerate-tree

tree)))))

[accumulate][transduce][filter][enumerate]

Fall 2008 Programming Development
Techniques

12

A general-purpose filter
; returns a list containing those
; elements of lst that return non-#f for
; test

(define (filter test lst)
(cond ((null? lst) empty)

((test (car lst))
(cons (car lst)

(filter test (cdr lst))))
(else (filter test (cdr lst)))))

> (filter even? (list 4 5 7 2 6 9 10 1))
-->

(4 2 6 10)

3

Fall 2008 Programming Development
Techniques

13

A general-purpose accumulator
; put together the elements of lst using
; binary-op
(define (accumulate binary-op

init-val
lst)

(if (null? lst)
init-val
(binary-op (car lst)

(accumulate binary-op
init-val
(cdr

lst)))))

Fall 2008 Programming Development
Techniques

14

Accumulate examples
(accumulate + 0 (list 2 4 6 8))

--> 20

(accumulate * 1 (list 2 4 6 8))
--> 384

(accumulate cons () (list 2 4 6 8))
(2 4 6 8)

(accumulate append () ‘((a b) (c d) (e f)))

(a b c d e f)

Fall 2008 Programming Development
Techniques

15

More Accumulate Examples
(accumulate (lambda (x y) (if (< x y)

y
x))

0
(list 2 4 6 8 3 5))

--> 8

Fall 2008 Programming Development
Techniques

16

Enumerators are problem
dependent

; makes a list out of elements between

; numbers lo and hi
(define (enumerate-interval lo hi)

(if (> lo hi)
()
(cons lo

(enumerate-interval (+ lo 1)
hi))))

(enumerate-interval 3 10) -->

(3 4 5 6 7 8 9 10)

Fall 2008 Programming Development
Techniques

17

Enumerating leaves
; enumerates the leaves of a tree
(define (enumerate-tree tree)

(cond ((null? tree) ())
((not (pair? tree)) (list tree))
(else

(append (enumerate-tree (car
tree))

(enumerate-tree
(cdr tree))))))

if x --> ((1 3) 2 (5 (4 6))), then
(enumerate-tree x) --> (1 3 2 5 4 6)

Fall 2008 Programming Development
Techniques

18

Now we can do it!
(define (sum-of-odd-squares tree)

(accumulate +
0
(map square

(filter odd?
(enumerate-tree
tree)))))

if x --> ((1 3) 2 (5 (4 6))), then
(sum-of-odd-squares x) --> 35

4

Fall 2008 Programming Development
Techniques

19

Why decompose into stages?

Because procedures that are decomposed into stages
are easier to understand and to write

Fall 2008 Programming Development
Techniques

20

Data processing example
(define (salary-of-highest-paid-programmer

records)
(accumulate max

0
(map salary

(filter programmer?
records))))

Fall 2008 Programming Development
Techniques

21

Nested mappings

• maps are like loops, converting one list into another
• loops can be nested; so can maps
• Sometimes we want the results of inner lists

appended together instead of returned as a list of lists

Fall 2008 Programming Development
Techniques

22

Example using nested maps

Given a positive integer n, find all integer triples
<i,j,i+j> such that

• 1 <= j
• j < i
• i <= n
• i+j is a perfect square (i.e., the square of another

integer)

Fall 2008 Programming Development
Techniques

23

(square-sum-pairs 8)
((3 1 4) (8 1 9) (7 2 9) (6 3 9) (5 4 9))

• Strategy: find possible perfect squares, then find the
ways that they can be written as sums of two
integers

Fall 2008 Programming Development
Techniques

24

Decomposition of problem

1) Enumerate numbers from 1 through n
(1 2 3 4 5 6 7 8)

2) Make list of squares of these numbers
(1 4 9 16 25 36 49 64)

3) Save only the squares < 2*n
[j < i <= n, so i+j <= n + n - 1 = 2n - 1]
(1 4 9)

5

Fall 2008 Programming Development
Techniques

25

Last stage

4) For each square that was saved, make a list of all the
triples <i,j,i+j> such that i+j = the square. Append
these lists together rather than returning a list of lists
of triples.

If n = 8, we want to get the list
((3 1 4) (8 1 9) (7 2 9) (6 3 9) (5 4 9))

Fall 2008 Programming Development
Techniques

26

Code for first 3 steps

1) Enumerate numbers from 1 through n
2) Make list of squares of these numbers
3) Save only the squares < 2*n

(filter

(lambda (s) (< s (* 2 n)))

(map square

(enumerate-interval 1 n)))

Fall 2008 Programming Development
Techniques

27

How do we do the last stage

4) For each square that was saved, make a list of all the
triples <i,j,i+j> such that i+j = the square. Append
these lists together rather than returning a list of lists
of triples.

Fall 2008 Programming Development
Techniques

28

One possible solution

(define (square-sum-pairs n)
(accumulate

append
empty
(map (lambda (s)

(map (lambda (j)
(list (- s j) j s))

(enumerate-interval
(max 1 (- s n))
(* 0.5 (- s 1)))))

Fall 2008 Programming Development
Techniques

29

(continued)
(filter

(lambda (s) (< s (* 2 n)))
(map square

(enumerate-interval 1 n))))))

Fall 2008 Programming Development
Techniques

30

A general-purpose procedure
(define (flatmap proc list)

(accumulate append
empty
(map proc list)))

6

Fall 2008 Programming Development
Techniques

31

Another possible solution
(define (square-sum-pairs n)

(flatmap (lambda (s)
(map (lambda (j)

(list (- s j) j s))
(enumerate-interval

(max 1 (- s n))
(* 0.5 (- s 1)))))

(filter (lambda (s) (< s (* 2 n)))
(map square

(enumerate-interval 1 n)))))

