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Before we get started…

• Let me go back to a function we were writing at the 
end of class and let’s see if I can explain more clearly 
why I reacted the way I did to the function we wrote 
and the comments (parameter names) associated 
with the function.
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Background (1st mistake)

• We never gave a definition of what a tree (of 
numbers was)

• A tree of numbers is
– A number
– A list whose elements are trees of numbers
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; takes a tree of numbers and returns

; a tree that looks the same but the 

; numbers have been scaled by num

(define (map-scale-tree tree num)

(if (pair? tree)

(map (lambda (x)

(scale-tree x num))

tree)      ; node case

(* num tree)))   ; leaf case
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What was I writing?

• Notice that when I was leading the writing of the 
function, I hadn’t bothered to carefully pay attention 
to the comments (that were on the slide)

• In the variable naming convention I had used I was 
taking a tree to be an arbitrarily complex LIST whose 
atomic elements were numbers.

• In that case ALL calls to the function should take a 
LIST (and not a number).

• This forces a different strategy for writing the 
function.
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; takes a list whose atomic elements are 
numbers

; and returns a list that looks the same except

; the original numbers have been scaled by num
(define (map-scale-num-list elist num)

(map (lambda (x)
(cond ((pair? x)

(map-scale-num-list x num))

(else (* x num))))
elist))

(map-scale-num-list '((2 (1) (4 3))) 5)
'((10 (5) (20 15)))
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Sequences as conventional 
interfaces

A process can often be decomposed into a sequence of 
stages

Examples
• compiling
• finding words that are common to two text files
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Common types of stages

• Enumerate – the individual pieces of interest
• Filter – to isolate the pieces you are interested in
• Transduce – change the pieces in some way
• Accumulate – put the changed pieces back together
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Sum of squares of odd leaves 
in a tree

1) Make list of all leaves          [enumerate]
2) Extract the odd leaves from list     [filter]
3) Make list of the squares        [transduce]
4) Sum up the squares           [accumulate]
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A definition not based on 
stages

; sums the squares of all odd elements in 
a tree

(define (sum-of-odd-squares tree)
(cond ((null? tree) 0)

((not (pair? tree))
(if (odd? tree)

(square tree)
0))

(else (+ (sum-of-odd-squares
(car tree))

(sum-of-odd-squares
(cdr tree))))))
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Definition based on stages
(define (sum-of-odd-squares tree)

(accumulate +

0

(map square

(filter odd?

(enumerate-tree

tree)))))

[accumulate][transduce][filter][enumerate]
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A general-purpose filter
; returns a list containing those
; elements of lst that return non-#f for
; test

(define (filter test lst)
(cond ((null? lst) empty)

((test (car lst))
(cons (car lst)

(filter test (cdr lst))))
(else (filter test (cdr lst)))))

> (filter even? (list 4 5 7 2 6 9 10 1)) 
-->

(4 2 6 10)



3

Fall 2008 Programming Development 
Techniques

13

A general-purpose accumulator
; put together the elements of lst using
; binary-op
(define (accumulate binary-op 

init-val
lst)

(if (null? lst)
init-val
(binary-op (car lst)

(accumulate binary-op
init-val
(cdr             

lst)))))
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Accumulate examples
(accumulate + 0 (list 2 4 6 8)) 

--> 20

(accumulate * 1 (list 2 4 6 8)) 
--> 384

(accumulate cons () (list 2 4 6 8)) 
(2 4 6 8)

(accumulate append () ‘((a b) (c d) (e f)))

(a b c d e f)
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More Accumulate Examples
(accumulate (lambda (x y) (if (< x y) 

y 
x))

0
(list 2 4 6 8 3 5)) 

--> 8
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Enumerators are problem 
dependent

; makes a list out of elements between

; numbers lo and hi
(define (enumerate-interval lo hi)

(if (> lo hi)
()
(cons lo 

(enumerate-interval (+ lo 1)
hi))))

(enumerate-interval 3 10) -->

(3 4 5 6 7 8 9 10)
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Enumerating leaves
; enumerates the leaves of a tree
(define (enumerate-tree tree)

(cond ((null? tree) ())
((not (pair? tree)) (list tree))
(else

(append (enumerate-tree (car        
tree))

(enumerate-tree
(cdr tree))))))

if x --> ((1 3) 2 (5 (4 6))), then
(enumerate-tree x) --> (1 3 2 5 4 6)
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Now we can do it!
(define (sum-of-odd-squares tree)

(accumulate +
0
(map square

(filter odd?
(enumerate-tree
tree)))))

if x --> ((1 3) 2 (5 (4 6))), then
(sum-of-odd-squares x) --> 35
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Why decompose into stages?

Because procedures that are decomposed into stages 
are easier to understand and to write
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Data processing example
(define (salary-of-highest-paid-programmer

records)
(accumulate max

0
(map salary

(filter programmer?
records))))
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Nested mappings

• maps are like loops, converting one list into another
• loops can be nested; so can maps
• Sometimes we want the results of inner lists 

appended together instead of returned as a list of lists
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Example using nested maps

Given a positive integer n, find all integer triples 
<i,j,i+j> such that 

• 1 <= j
• j < i
• i <= n
• i+j is a perfect square (i.e., the square of another 

integer)
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(square-sum-pairs 8)
((3 1 4) (8 1 9) (7 2 9) (6 3 9) (5 4 9))

• Strategy: find possible perfect squares, then find the 
ways that they can be written as sums of two 
integers
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Decomposition of problem

1) Enumerate numbers from 1 through n
(1 2 3 4 5 6 7 8)

2) Make list of squares of these numbers
(1 4 9 16 25 36 49 64)

3) Save only the squares < 2*n
[j < i <= n, so i+j <= n + n - 1 = 2n - 1]
(1 4 9)
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Last stage

4) For each square that was saved, make a list of all the 
triples <i,j,i+j> such that i+j = the square.  Append 
these lists together rather than returning a list of lists 
of triples.

If n = 8, we want to get the list
((3 1 4) (8 1 9) (7 2 9) (6 3 9) (5 4 9))

Fall 2008 Programming Development 
Techniques

26

Code for first 3 steps

1) Enumerate numbers from 1 through n
2) Make list of squares of these numbers
3) Save only the squares < 2*n

(filter

(lambda (s) (< s (* 2 n)))

(map square

(enumerate-interval 1 n)))
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How do we do the last stage

4) For each square that was saved, make a list of all the 
triples <i,j,i+j> such that i+j = the square.  Append 
these lists together rather than returning a list of lists 
of triples.
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One possible solution

(define (square-sum-pairs n)
(accumulate

append
empty
(map (lambda (s)

(map (lambda (j)
(list (- s j) j s))

(enumerate-interval
(max 1 (- s n))
(* 0.5 ( - s 1)))))
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(continued)
(filter

(lambda (s) (< s (* 2 n)))
(map square

(enumerate-interval 1 n)))))) 
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A general-purpose procedure
(define (flatmap proc list)

(accumulate append
empty
(map proc list)))
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Another possible solution
(define (square-sum-pairs n)

(flatmap (lambda (s)
(map (lambda (j)

(list (- s j) j s))
(enumerate-interval

(max 1 (- s n))
(* 0.5 (- s 1)))))

(filter (lambda (s) (< s (* 2 n)))
(map square

(enumerate-interval 1 n)))))


