
1

Spring 2008 Programming Development
Techniques

1

Topic 6
Hierarchical Data and the Closure

Property

Section 2.2.1

September 2008

Spring 2008 Programming Development
Techniques

2

Box and pointer notation

• Draw cdr pointers to the right
• Draw car pointers downward
(cons 1 2)

2

1

Spring 2008 Programming Development
Techniques

3

Another list structure
(cons (cons 1 2) (cons 3 4))

4

2 3

1

Spring 2008 Programming Development
Techniques

4

The closure property

• A constructor has the closure property if it can
take data of a certain type as input and return
data of the same type

• cons is an example

• Such constructors can be used to build
hiearchical structures

Spring 2008 Programming Development
Techniques

5

Lists, a recursive data type

• The empty list is a list

• If x is any datum and y is a list, then
(cons x y) is a list

• The empty list is denoted by empty in
DrScheme and by nil in the course textbook

• Whenever you see nil in the book, read empty

Spring 2008 Programming Development
Techniques

6

What do lists look like?
(cons 1 (cons 2 (cons 3 (cons 4 empty))))

(1 2 3 4)

1 2 3 4

2

Spring 2008 Programming Development
Techniques

7

Lists can contain lists
(cons 1

(cons (cons 2 (cons 3 empty))
(cons 4

(cons (cons 5 (cons 6 empty))
empty))))

(1 (2 3) 4 (5 6))

Spring 2008 Programming Development
Techniques

8

Box and pointer representation

1 4

2 33

5 6

Spring 2008 Programming Development
Techniques

9

Printing out list structures
Printed like lists, but if the last cdr in a cdr chain

points to a primitive datum other than empty,
the primitive datum is printed with a dot in
front of it.

Spring 2008 Programming Development
Techniques

10

A comparison

1 2 3 4
(1 2 3 4)

4

1 2 3
(1 2 3 . 4)

Spring 2008 Programming Development
Techniques

11

Some service procedures for
lists

(list 1 2 3 4) --> (1 2 3 4)

;; takes a list with at least n elements
;; and returns the nth element of the list
;; note counting starts from 0
(define (our-list-ref lst n)

(if (= n 0)
(car lst)
(our-list-ref (cdr lst)

(- n 1))))

(our-list-ref (list 1 2 3 4) 0) --> 1
(our-list-ref (list 1 2 3 4) 2) --> 3

Spring 2008 Programming Development
Techniques

12

More service procedures
(define (null? x) (equal? x empty))

; takes a list and returns the number
; of elements in the list
(define (our-length list)

(if (null? list)
0
(+ 1 (our-length (cdr list)))))

3

Spring 2008 Programming Development
Techniques

13

our-member

; takes an element and a list and returns non-#f if
; ele is in the list
(define (our-member ele lst)
(cond ((null? lst) #f)

((equal? ele (car lst)) lst)
(else (our-member ele (cdr lst)))))

Spring 2008 Programming Development
Techniques

14

• (first-n lst n)

Spring 2008 Programming Development
Techniques

15

Append
; takes two lists and returns a list
; containing the elements of the

; original 2
(define (our-append list1 list2)

(if (null? list1)
list2
(cons (car list1)

(our-append (cdr list1)
list2))))

(our-append (list 1 2) (list 3 4))

--> (1 2 3 4)

Spring 2008 Programming Development
Techniques

16

Notes
• Procedures list-ref, null?, eq?, length,

and append are predefined procedures in
Scheme

• Procedure append can append any number of
lists together

• Procedure pair? returns #t if its argument is a
pair, else #f

