
1

Fall 2008 Programming Development
Techniques

1

Topic 13
Multiple Representations of

Abstract Data – Tagged Data

Section 2.4.2

Fall 2008 Programming Development
Techniques

2

Complex Numbers: two
representations

• Previously we have implemented two different
representations for complex numbers – rectangular
form and polar form.

• Principle of least commitment – abstraction barriers
allow us to decide which concrete representation we
want to use up until last minute.

• Take it a step further – want to have both
representations at once in a program.

Fall 2008 Programming Development
Techniques

3

Tagged data
• Allow both representations to be used in the same

program

• Issue: how do we interpret a piece of data?
• Given (3 . 4), how do we know which selectors to use

in order to interpret this? If it is rectangular
representation it means one thing, if it is polar it
means another.

• Use a tag to distinguish –
Tags will be "rectangular" and "polar"

Fall 2008 Programming Development
Techniques

4

Tagged Data

• Need two procedures to select out pieces from
tagged data:

• Type-tag – extracts the tag associated with the data
• Contents – extracts the actual data object

• New Procedure: attach-tag takes a tag and contents
and produces a tagged data object.

Fall 2008 Programming Development
Techniques

5

Tagging as a data abstraction
; takes a tag and some contents and creates a tagged
; data element (consisting of the tag and the data contents)
(define (attach-tag type-tag contents)
(cons type-tag contents))

; takes a data item and returns the tag associated with
; the data item. Assume the data item is tagged as long
; as it is a pair.
(define (type-tag datum)
(if (pair? datum)

(car datum)
(error "TYPE-TAG finds bad datum"

datum)))
Fall 2008 Programming Development

Techniques
6

(continued)
; takes a data item and returns the content part
; of that data item. Assume the data item is
; tagged as long as it is a pair.
(define (contents datum)
(if (pair? datum)

(cdr datum)
(error "CONTENTS finds bad datum"

datum)))

2

Fall 2008 Programming Development
Techniques

7

Predicates for deciding which
representation is used:

; takes a tagged data item and returns
; #t if the datum is tagged rectangular
(define (rectangular? z)
(eq? (type-tag z) 'rectangular))

; takes a tagged data item and returns
; #t if the datum is tagged polar
(define (polar? z)
(eq? (type-tag z) 'polar))

Fall 2008 Programming Development
Techniques

8

Using Tags with Multiple
Representations

• Now the two different representations can co-exist in
same system

• Need to tag each piece of data as it is made – with
rectangular or polar as is specified.

• BE CAREFUL: need to use different constructor and
selector names with the two different representations

• Then, implement generic selector which calls the
right one on the basis of the tag given

• Note: with these, our original procedures for adding,
subtracting etc… still work!

Fall 2008 Programming Development
Techniques

9

Rectangular Representation Tagged
;; lower level implementation of complex numbers
; RECTANGULAR FORM REPRESENTATION

; takes a real and imaginary part and
; creates a complex number represented
; in rectangular form
(define (make-from-real-imag-rectangular x y)

(attach-tag 'rectangular (cons x y)))

; given an imaginary number in
; rectangular form
; returns the real part
(define (real-part-rectangular z) (car z))

; given an imaginary number in
; rectangular form
; returns the imaginary part
(define (imag-part-rectangular z) (cdr z))

Fall 2008 Programming Development
Techniques

10

Rectangular (cont)
; given an imaginary number in
; rectangular form
; return the magnitude
; (using trigonomic rels)
(define (magnitude-rectangular z)
(sqrt (+ (square (real-part-rectangular z))

(square (imag-part-rectangular z)))))

; given an imaginary number in
; rectangular form
; return the angle
; (using trigonomic rels)
(define (angle-rectangular z)
(atan (imag-part-rectangular z) (real-part-rectangular z)))

; takes a magnigude and an angle and
; creates a complex number represented
; in rectangular form
(define (make-from-mag-ang-rectangular r a)
(attach-tag 'rectangular

(cons
(* r (cos a))
(* r (sin a)))))

Fall 2008 Programming Development
Techniques

11

Polar Representation
;; lower level implementation
; POLAR FORM REPRESENTATION

; takes a magnigude and an angle and
; creates a complex number represented
; in polar form
(define (make-from-mag-ang-polar r a)

(attach-tag 'polar (cons r a)))

; given an imaginary number in
; polar form
; return the magnitude
(define (magnitude-polar z) (car z))

; given an imaginary number in
; rectangular form
; return the angle
(define (angle-polar z) (cdr z))

Fall 2008 Programming Development
Techniques

12

Polar Representation (cont)
; given an imaginary number in
; polar form
; returns the real part
; (using trignomic rels)
(define (real-part-polar z)
(* (magnitude-polar z) (cos (angle-polar z))))

; given an imaginary number in
; polar form
; returns the imaginary part
; (using trigonomic rels)
(define (imag-part-polar z)
(* (magnitude-polar z) (sin (angle-polar z))))

; takes a real and imaginary part and
; creates a complex number represented
; in polar form (harder)
(define (make-from-real-imag-polar x y)
(attach-tag 'polar

(cons
(sqrt (+ (square x) (square y)))
(atan y x))))

3

Fall 2008 Programming Development
Techniques

13

Generic Selectors: real-part
; takes a tagged complex number and returns
; the real part
(define (real-part z)
(cond ((rectangular? z)

(real-part-rectangular (contents z)))
((polar? z)
(real-part-polar (contents z)))
(else
(error
"data type unknown to REAL-PART“
z))))

Fall 2008 Programming Development
Techniques

14

Generic Selector: imag-part
; takes a tagged complex number and returns
; the imaginary part
(define (imag-part z)
(cond ((rectangular? z)

(imag-part-rectangular (contents z)))
((polar? z)
(imag-part-polar (contents z)))
(else
(error
"data-type unknown to IMAG-PART“
z))))

Fall 2008 Programming Development
Techniques

15

Generic Selector: magnitude
; takes a tagged complex number and returns
; the magnitude
(define (magnitude z)
(cond ((rectangular? z)

(magnitude-rectangular (contents z)))
((polar? z)
(magnitude-polar (contents z)))
(else
(error

"data-type unknown to MAGNITUDE"
z))))

Fall 2008 Programming Development
Techniques

16

Generic-Selector: angle
; takes a tagged complex number and returns
; the angle
(define (angle z)
(cond ((rectangular? z)

(angle-rectangular (contents z)))
((polar? z)
(angle-polar (contents z)))
(else
(error
"data-type unknown to ANGLE"
z))))

Fall 2008 Programming Development
Techniques

17

Generic Constructors that Tag

; takes a real part and an imaginary part and
; creates a complex number -- tags it rectangular
(define (make-from-real-imag x y)
(make-from-real-imag-rectangular x y))

; takes a magnitude and an angle and creates
; a complex number -- tags it polar
(define (make-from-mag-ang r a)
(make-from-mag-ang-polar r a))

Fall 2008 Programming Development
Techniques

18

The drama continues . . .

• What will happen if we allowed more representations
of the same data type?

• How can we add more representations without
rewriting all the implementation procedures all over
again?

• How can we make the alternate representations more
modular?

• (to be continued)

