
1

Fall 2008 Programming Development
Techniques

1

Topic 11
Sets and their Representation

2.3.3

October 2008

Fall 2008 Programming Development
Techniques

2

Representing sets

Another data abstraction – here the representation
choice is no so obvious. Trade-offs of different
choices can be seen.

Set – collection of distinct objects. How define?
Set operations:
• union-set---union of two sets
• intersection-set---intersection of two sets
• element-of-set?---test membership in a set
• adjoin-set---add an element to a set

Fall 2008 Programming Development
Techniques

3

Sets as unordered lists
(without repetition)

; takes an element and a set and is #t
; if element is in set
(define (element-of-set? element set)

(cond ((null? set) #f)
((equal? element (car set)) #t)
(else

(element-of-set? element

(cdr set)))))

Fall 2008 Programming Development
Techniques

4

Adding an element to a set

; adds element to set
(define (adjoin-set element set)

(if (element-of-set? element
set)

set

(cons element set)))

Fall 2008 Programming Development
Techniques

5

Intersection
; intersects set1 and set2
(define (intersection-set set1 set2)

(cond ((or (null? set1)

(null? set2)) ())
((element-of-set? (car set1)

set2)
(cons (car set1)

(intersection-set
(cdr set1)
set2)))

(else (intersection-set
(cdr set1)

set2)))) Fall 2008 Programming Development
Techniques

6

Union

; returns a set that is the union of set1 and set2
(define (union-set set1 set2)
(cond ((null? set1) set2)

((element-of-set? (car set1) set2)
(union-set (cdr set1) set2))
(else
(cons (car set1)

(union-set (cdr set1) set2)))))

2

Fall 2008 Programming Development
Techniques

7

Orders of growth for this
representation

• element-of-set? --- θ(n)
• adjoin-set --- θ(n)
• intersection-set --- θ(n2)
• union-set --- θ(n2)

Could speed some of these operations if
we change the representation of set.

Try a representation where set elements
listed in increasing order.

Fall 2008 Programming Development
Techniques

8

Sets as ordered lists (of
numbers, ascending order)

; Advantage is that now this operation

; can be written more efficiently
; returns #t if element is in the
; ordered set of numbers
(define element-of-set? element set)

(cond ((null? set) #f)
((= element (car set)) #t)
((< element (car set)) #f)
(else (element-of-set?

element

(cdr set)))))

Fall 2008 Programming Development
Techniques

9

intersection-set (bigger speed-up)

; returns an order set that is the

; intersection of ordered set1 and set2
(define (intersection-set set1 set2)

(cond ((or (null? set1) (null? set2))
())

((= (car set1) (car set2))
(cons (car set1)

(intersection-set
(cdr set1)
(cdr set2))))

Fall 2008 Programming Development
Techniques

10

(continued)
((< (car set1) (car set2))

(intersection-set (cdr set1)
set2))

(else
(intersection-set set1

(cdr
set2)))))

Fall 2008 Programming Development
Techniques

11

Orders of growth

• All four operations have order of growth equal to θ(n)

• Operations element-of-set? and adjoin-set
have been speeded up by a factor of 2

Fall 2008 Programming Development
Techniques

12

We can do even better!

• Arrange set elements in the form of an ordered binary
tree.

Binary tree
• Entry – element at that spot
• Left subtree – all elements are smaller than entry
• Right subtree – all elements are greater than entry

3

Fall 2008 Programming Development
Techniques

13

Notice: more than one representation
for any list

• {1, 2, 4, 5, 6, 8, 10}

• (5 (2 (1 () ()) (4 () ())) (8 (6 () ()) (10 () ()))

• (2 (1 () ()) (4 () (8 (6 (5 () ())) () (10 () ()))))

• (4 (2 () ()) (6 (5 () ()) (8 () 10)

• (4 (2 (1 () ())) (5 () (6 () (8 () (10 () ())))))

Fall 2008 Programming Development
Techniques

14

Sets as (labeled) binary trees
; we can represent binary trees as lists
; make a tree from an entry and a left
; and right child

(define (make-tree entry
left-child
right-child)

(list entry left-child right-child))

; selectors for a tree
(define (entry tree) (car tree))
(define (left-branch tree) (cadr tree))
(define (right-branch tree) (caddr tree))

Fall 2008 Programming Development
Techniques

15

element of set
; takes an element and a set represented
; as a binary tree – returns #t if element
; is in set
(define (element-of-set? element set)

(cond ((null? set) #f)
((= element (entry set)) #t)
((< element (entry set))
(element-of-set? element

(left-branch set)))
(else

(element-of-set?
element
(right-branch set)))))

Fall 2008 Programming Development
Techniques

16

adjoin set
; takes an element and a set represented as
; a binary tree. Adds element into the set
(define (adjoin-set element set)

(cond ((null? set)
(make-tree element () ()))

((= element (entry set)) set)
((< element (entry set))
(make-tree (entry set)

(adjoin-set
element
(left-branch set))

(right-branch set)))

Fall 2008 Programming Development
Techniques

17

(continued)
(else

(make-tree
(entry set)
(left-branch set)
(adjoin-set

element
(right-branch set))))))

Fall 2008 Programming Development
Techniques

18

Properties of tree represention
• If the trees are kept balanced, order of growth of
element-of-set? and adjoin-set is θ(log n)

• Operations intersection-set and union-set
can be implemented to have order of growth
θ(n), but the implementations are complicated

4

Fall 2008 Programming Development
Techniques

19

Comparison: orders of growth
(θ)

Operation unordered ordered tree
element-of-set? n n log n
adjoin-set n n log n
intersection-set n2 n n
union-set n2 n n

