
1

Fall 2008 Programming Development
Techniques

1

Elements of Programming/
Introduction to Scheme

September 2008

Fall 2008 Programming Development
Techniques

2

Course Information

• Instructor: Prof. Kathy McCoy (mccoy@cis.udel.edu)
• Place: 209 Smith

http://www.cis.udel.edu/~mccoy/courses/cisc280-08f

Course Syllabus

Home page:

Fall 2008 Programming Development
Techniques

3

Computational Processes

• Abstract entity on a computer that manipulates data
• Program – a pattern of precise rules that direct

programs
• Programming – creating the rules to create

computational processes that presumably perform
some task
– Correct
– Fast
– Modular (and able to be debugged)

Fall 2008 Programming Development
Techniques

4

Why Scheme?
Language features make it excellent for the

study of programming constructs/data
structures

• Procedure syntax = data syntax
• Simple syntax
• Untyped
• No explicit pointer notation
• Automatic memory management
• Focus on higher-level concepts/symbol manipulation
• Interpreted language
• Ability to easily capture/explain recursive processes

Fall 2008 Programming Development
Techniques

5

Extending the language

Concept
• Primitive expression
• Combination expression
• Abstraction (treat

combination like a
primitive)

In Scheme
• Numbers, symbols
• Lists, e.g.,

(fun arg1 arg2 ...)
• Define operator

Fall 2008 Programming Development
Techniques

6

Scheme's top level

• Read one expression
• Evaluate that expression
• Print the value of that expression
• Repeat

(the read-eval-print loop)

2

Fall 2008 Programming Development
Techniques

7

Evaluation of primitive
expressions

• Numbers, strings, etc., evaluate to themselves
• Symbols evaluate to values that have been assigned

to them (usually by define)

(define x 12)
(define y "this is a string")

Fall 2008 Programming Development
Techniques

8

Evaluation of compound
expressions

(lists/combinations)
• Evaluate first element of list to obtain a procedure
• If normal procedure: evaluate remaining elements of

list, then apply procedure to their values
• If special procedure: apply procedure to rest of list

unevaluated

NOTE: the recursive definition of evaluation!

Fall 2008 Programming Development
Techniques

9

Observations

• Arithmetic operators are normal procedures
• The define operator is a special procedure
• Special procedures are called special forms (also

called syntactic forms)
• Note: no “reserved” words. Any symbol (collection of

characters not containing a blank) can be defined as a
function.

• Names of built-in procedures not special. Can
redefine them if you want.

Fall 2008 Programming Development
Techniques

10

Practice Evaluating Expressions
(Combinations) in Scheme

• Note – uses prefix notation,
standard arithmetic
operations are predefined:
+,-,*,/….

• (* 5 99)
• (*5 99)
• (+5 99)
• (*(5 99))
• (* (+ 2 2) 5)
• (* (+ 2 2) (5))
• (*(+(2 2) 5))

• (*(+ 2
2)5)

• (5 * 4)
• (5 * (2 + 2))
• ((+ 2 3))

Fall 2008 Programming Development
Techniques

11

Procedure Definitions

(define (<name> <param1> <param2> ...)
<body>)

(define (square x) (* x x))
(define (fourth-power x)
(square (square x)))

(define (quadratic a b c x)
(+ a (* b x) (* c (square x))))

