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ABSTRACT

Reducing the energy usage of software is becoming more
important in many environments, in particular, battery-
powered mobile devices, embedded systems and data centers.
Recent empirical studies indicate that software engineers
can support the goal of reducing energy usage by making
design and implementation decisions in ways that take into
consideration how such decisions impact the energy usage
of an application. However, the large number of possible
choices and the lack of feedback and information available
to software engineers necessitates some form of automated
decision-making support.

This paper describes the first known automated support for
systematically optimizing the energy usage of applications
by making code-level changes. It is effective at reducing
energy usage while freeing developers from needing to deal
with the low-level, tedious tasks of applying changes and
monitoring the resulting impacts to the energy usage of their
application. We present a general framework, SEEDS, as
well as an instantiation of the framework that automatically
optimizes Java applications by selecting the most energy-
efficient library implementations for Java’s Collections API.
Our empirical evaluation of the framework and instantiation
show that it is possible to improve the energy usage of an
application in a fully automated manner for a reasonable
cost.

Categories and Subject Descriptors

D.2.7 [Distribution, Maintenance, and Enhancement]:
Restructuring, reverse engineering, and reengineering; D.2.6
[Programming Environments]: Integrated environments

General Terms

Theory, Measurement
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1. INTRODUCTION

Inherent in today’s computing environments are concerns
about battery life, heat creation, fan noise, and overall po-
tentially high energy costs. Research has shown that power
consumption can be reduced through designing computer ar-
chitectures that are more energy efficient (e.g., [11, 12, 24, 26,
40, 47]), developing compiler optimizations targeting energy
usage (e.g., [19-22, 25, 27, 41, 43]), improving operating sys-
tems to help manage energy usage (e.g., [14, 36-38, 52]), and
designing hardware and batteries with power consumption
in mind (e.g., [1, 7, 13]).

We believe that similar to other optimization targets such
as execution time or memory usage, not all improvements
can be achieved automatically by lower-level systems and
hardware. Unfortunately, few software developers design and
implement applications with consideration for their energy
usage. Our recent interviews with 18 professional software
developers revealed that this is due to two primary reasons:
developers (1) do not understand how the software engineer-
ing decisions they make affect the energy consumption of
their applications, and (2) lack the tool support to help them
make decisions or change their code to improve its energy
usage.

Most existing research into helping software engineers re-
duce energy usage is empirically-based and has the goal of
understanding how different types of changes impact the
overall energy usage of applications. In particular, there
have been studies of how design patterns [8, 29, 42], method
inlining [10], choosing web servers [30], selecting among web
browsers [3], and using various implementations of an algo-
rithm [6] can each impact energy usage. The results of these
studies support our belief that software engineers can indeed
help reduce energy consumption by considering the energy
impacts of the decisions they make on a daily basis.

Although the knowledge gained from empirical studies
can increase our understanding of potential energy-related
“bugs”, we believe that simply providing such knowledge is
unlikely to be effective at reducing energy usage in practice
for several reasons. First, the many layers of abstraction
in typical applications, combined with subtle interactions
between both hardware and software components, suggests
that it is difficult, if not impossible, for developers to predict
how the changes they make will impact the energy consump-
tion of their applications. Second, the energy consumption of
an application or software component can vary depending on
where it is executed (i.e., hardware architecture or operating
system). A recent survey on Android fragmentation showed
that there are over 10,000 possible combinations of hardware



and software that can run Android applications [34]. In
practice, there are far fewer combinations that are commonly
used, but there are still too many to expect developers to
maintain separate versions of their applications for each pos-
sibility. Finally, it is unlikely that a single action will always
result in the best outcome. In many cases, additional factors
(e.g., the context of where a change will be made) can affect
the impact of a change. This means that developers need to
have essentially perfect knowledge about their systems to be
able to make a “good” decision.

This paper describes the Software Engineer’s Energy-opt-
imization Decision Support framework (SEEDS), a novel
framework to help software engineers develop energy-efficient
applications without having to address the low-level, te-
dious work of applying changes and monitoring the resulting
impacts to the energy usage of their application. SEEDS
provides automated analysis, decision-making, and imple-
mentation of decisions towards optimizing a given targeted
software engineering decision with regard to energy usage of
the entire application. SEEDS also takes into account the
execution context (i.e., platform and expected inputs) where
the application will be deployed.

In this paper, we present how SEEDS can be instantiated
by describing how we used it to create the SEEDS API Imple-
mentation Selector (SEEDS.pi), a tool that optimizes Java
applications that use the Java Collections Framework (JCF).
SEEDS.pi automatically selects the most energy efficient im-
plementations of the Collections application programming in-
terface (API) to use at each location where a collection object
is allocated. In short, SEEDS,;; automatically (1) generates
application versions implementing many different alternative
combinations of API implementation choices for all the ob-
ject instantiation locations in the application, (2) performs
power-monitored executions for a given test suite on all the
generated versions, (3) analyzes the collected energy usage
data to identify the best combination of API implementation
choices per object allocation location, and (4) generates an
optimized version of the application based on API implemen-
tation decision-making.

An evaluation comparing the energy usage of 7 unmodi-
fied applications and the corresponding optimized versions
created by SEEDS,p; reveals that the framework is able to
effectively improve the energy usage of applications without
requiring the software engineer to provide more than the
application, API implementations, and test suite.

The main contributions described in this paper are:

e A fully automated framework, SEEDS, to support
developers in the task of improving the energy usage
of their applications for a given platform by making
decisions about which source-level changes to apply.

e SEEDS.,i, an instantiation of SEEDS to improve the
energy usage of an application by selecting the most
efficient implementations of the Collection API.

e An evaluation of the effectiveness and cost of SEEDS
through the use of SEEDS.p; on a set of open source
projects.

e A case of study of how SEEDS can be used to expand
the current body of knowledge on designing and im-
plementing energy efficient applications by enabling
researchers to answer questions that they would other-
wise not be able to answer.

The remainder of this paper is organized as follows: Sec-
tion 2 describes SEEDS, our framework for optimizing en-
ergy usage. Section 3 presents SEEDS,.;, our instantiation
of SEEDS. Section 4 presents our empirical evaluation of
SEEDS and SEEDS,p; including our methodology, data,
and analysis. Finally, Sections 5 and 6 discuss related work
and present our conclusions and future work.

2. THE SEEDS FRAMEWORK
We designed SEEDS to support three primary goals:

(1) Automate the entire process of optimizing the appli-
cation with respect to potential code changes to save
developers from performing tedious, error-prone tasks.

(2) Abstract away the systems and hardware platform
interactions from developer concern.

(3) Be general enough to support different types of deci-
sions commonly made by software engineers, includ-
ing optimization goals, filtering mechanisms, search
strategies, energy profiling approaches, and hardware
platforms.

Figure 1 provides a high-level overview of SEEDS. In the
remainder of this section, we provide a detailed discussion of
each of the framework’s main components.

2.1 Inputs

As the figure shows, SEEDS requires four inputs: the
application code, a set of potential changes, the developer’s
chosen optimization parameters, and additional context in-
formation.

The application code is the code of the application that
the software engineer wants to optimize. The set of poten-
tial changes includes all of the changes that the developer
is deciding whether or not to make. For example, the set of
potential changes could include decisions such as which li-
brary implementation to use, whether to perform refactoring,
whether to replace an algorithm with a different algorithm,
whether to cache the result of a computation, etc. Note that
the transformations specified in the set of potential changes
are abstract rather than concrete (e.g., inline a method vs.
inline method foo in method bar at line 5). This allows sets
of changes to be reused and frees developers from the task of
recomputing them for each new application that they want
to improve. The method for transforming abstract potential
changes into concrete changes for the given application is
described in Section 2.2.

The optimization parameters are constraints on where
SEEDS should consider making potential changes. For exam-
ple, a developer could restrict the application of a refactoring
to only a certain subset of the application or only allow
switching algorithms if the algorithm’s inputs are larger than
a given threshold. In addition, the optimization parame-
ters can also include guidance about how changes should
be applied. This allows software engineers to encode their
domain-specific knowledge and intuition into the framework.
For example, the software engineer could provide a ranking
of alternative library implementations for a given API based
on their intuition about the performance of one implemen-
tation over another. Or, they may be considering applying
various refactorings based on recommendations from a tool or
documentation that indicates that applying that refactoring
improves code readability and maintainability.
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Figure 1: Overview of SEEDS.

Finally, the context information indicates the platform
where the application will be executed, the expected inputs
or workload that will be used to drive the application, and
other relevant data about the application needed by the
optimization strategy. The strategy used for energy profiling
(see Section 2.3) dictates the specific information that needs
to be provided. For example, if energy profiling is to be done
using a hardware-based platform, then the platform itself
and a set of suitable, concrete inputs are needed. However, if
energy profiling is to be done using a dynamic analysis-based
estimation approach, then execution traces and a model of
the platform are required. Finally, if a static estimation
approach is used, a developer may not have to provide any
context information at all. The ability to provide context
information can be especially useful if a developer does not
have easy access to a target system. Essentially, they can
“cross-optimize” (in the same spirit as cross-compilation)
their application to a wide range of target platforms.

Given these inputs, the key tasks of SEEDS are then to:

(1) Define the application-specific search space, that is, the
space of concrete changes that SEEDS will consider,
and

(2) Search through the application-specific search space
to find an optimized version of the application that
reduces energy usage as much as possible.

Each of these tasks is described in more detail in the following
subsections.

2.2 Creating Application-Specific Search Space

As we mentioned previously, the changes in the set of
potential changes are abstract rather than concrete. SEEDS’
first task then is to determine the application-specific search
space by concretizing these abstract changes with respect
to the given application and optimization parameters. In
essence, the application-specific search space is the set of
all possible versions of the given application that could be
created by SEEDS.

To calculate the application-specific search space, SEEDS
considers each potential change and scans the application’s
code to identify the locations where the change could be
applied. For example, if a potential change is to inline a
method, SEEDS will identify all of the locations in the
application where a method is invoked. This initial list of
concrete changes is then filtered based on both explicit and
implicit constraints. Explicit constraints are generally based
on the type system of the programming language used to
implement the application. For example, implementations of
an API can only be swapped if both implementations expose

the same interface. Implicit constraints are most commonly
provided by the optimization parameters.

2.3 Search: Select, Transform, Profile

Depending on the given set of potential changes and num-
ber of locations in the application where those changes can
be correctly applied, the application-specific search space
could be very large. Manually exploring such a space would
be a tedious, error-prone task for a software engineer, and
furthermore such a space may actually be too large to search
exhaustively and would require some kind of sampling as in
search-based software engineering.

SEEDS’ search task is responsible for navigating the app-
lication-specific search space to find versions of the applica-
tion that consume less energy than the original version, and
ultimately choose the optimized version of the application
that results in the greatest amount of energy savings.

At a high level, the task of searching the application-
specific search space is divided into three steps: (1) select
a solution from the application-specific search space (i.e.,
a concretized change or set of changes), (2) transform the
original application by applying the chosen solution, and
(3) profile the energy usage of the transformed version.

The search process begins by selecting a solution from the
search space. In practice, essentially any selection strategy
could be employed. For example, the selection strategy could
be to select a solution in a random manner, based on a heuris-
tic, using a genetic algorithm, etc. In Section 3.2, we describe
the selection strategy implemented for an instantiation of
the SEEDS framework. One of the main benefits of defining
SEEDS in this way is that software engineers can tailor the
selection component to their specific applications and sets of
potential changes. Essentially, the selection component is a
fifth input to the framework.

The second step of the search task is to transform the appli-
cation by applying the chosen solution. Often such transfor-
mations will be done using support provided by an integrated
development environment (IDE) or other stand-alone tools.
Although SEEDS attempts to filter out invalid concrete
changes when creating the application-specific search space,
it is possible that unknown, implicit constraints are broken
by applying the changes. For example, the application may
assume, but not document, that the iteration order of a
collection must be fixed or that elements are returned in
sorted order. If concrete inputs or an explicit test suite is
provided as part of the context information, SEEDS can
perform regression testing to address this possibility. Re-
gression testing ensures that, with respect to the provided
inputs, a modified version of an application is semantically



identical to its original version. Transformed application
versions that fail regression testing are simply discarded and
a new solution is chosen.

The third step of the search task is to profile the trans-
formed version of the application to calculate its energy usage.
This could be achieved through existing techniques, includ-
ing hardware-based approaches using physical instrumen-
tation and monitoring (e.g., [42, 46, 50]), simulation-based
approaches that replicate the actions of a processor and es-
timate energy consumption of each executed cycle by using
a cycle-accurate simulator (e.g., [5, 16, 31]), or estimation-
based approaches that model energy-influencing features to
estimate energy usage (e.g., [2, 17, 33]).

After calculating the energy usage of the transformed
version, the search process begins again. The selection step
incorporates the new information about how the selected
solution impacts energy usage and chooses a new solution.
The transform step applies the new solution and, if possible,
checks whether it produces a valid application. And the
profile step calculates the energy consumption of the new,
transformed application version. The search process iterates
in this fashion until a stopping point is reached. Similar to
how any selection strategy can be used, any stopping criterion
can be used. The search could stop when the energy usage of
the application has been reduced by a certain percentage or
is less than a given threshold. It could stop after a specified
number of iterations or when energy usage does not improve
for a given number of iterations. The stopping criterion
could also halt the search after a set amount of time or when
the application-specific search space has been completely
explored.

2.4 Output

The output of SEEDS includes the optimized application
code and the optimization results. The optimized appli-
cation code generally is an optimized version of the given
application where the energy usage is reduced as much as
possible with respect to the given set of potential changes,
optimization parameters, and context information. Note that
the optimized version is not guaranteed to be optimal with
respect to all possible versions (i.e., there may be another
version of the application that uses less energy when different
given parameters). When given a specific combination of
inputs, the application may not be improved in terms of
energy usage, if then SEEDS returns the original application
version as output . In our evaluation, this situation occurred
once. Although this is not our desired outcome, knowing
that an application can not be improved by SEEDS is useful
information. It indicates that the developer is free to make
any of the considered changes without needing to consider
how they would impact energy usage, and also informs the
developer that other different strategies may be tested in
order to possibly reduce the energy usage of the application.
The optimization results presented to the developer include
by how much the energy consumption of the application is
decreased when comparing the optimized version versus the
original application.

3. INSTANTIATING SEEDS

To evaluate SEEDS, it is necessary to create an instan-
tiation. As we mentioned in Section 2, there are many
common decisions that software engineers make that could
be the target of an instantiation of SEEDS. We created

an implementation of SEEDS called SEEDS,;; that sup-
ports software engineers as they make decisions about which
library implementations they should use to optimize the
overall energy usage of their applications. More specifically,
SEEDS.pi optimizes Java applications by identifying imple-
mentations of the Java Collections API that are more energy
efficient, if any, than the implementations currently used by
the application.

We chose to target the choice of the Collections API im-
plementation for several reasons. First, choosing a collection
implementation is a common decision that is faced by de-
velopers. Second, in many cases, developers are choosing
API implementations based on familiarity or execution time
concerns. This means that applications are unlikely to have
optimized their choice of collection implementation to energy
usage. Finally, the impact of Collections API choice has
not been investigated by researchers. As such, investigating
their impacts supports our goal of using the framework to
explore the energy optimization space and enable researchers
to answer questions that they could not previously ask.

Because we are the first to look at the choice of API
implementations, we conducted an initial feasibility study to
determine whether the choice of API implementations does
in fact impact the energy usage of an application, before
actually implementing SEEDS..;.

The remainder of this section discusses our preliminary
study and how we instantiated SEEDS to create SEEDSp;.

3.1 Preliminary Study

The goal of our preliminary study was to determine if
changing implementations of the Collections API can impact
the energy usage of an application.

To answer this question, we created 13 versions of a publicly
available micro-benchmark.! At a high-level, this benchmark
creates an instance of a class that implements the Collection
interface and then performs a large number of operations on
the instance (e.g., adding single elements, adding another
collection of elements, removing some elements, removing
all elements, etc.). We chose to use this benchmark for two
reasons. First, it has previously been used to evaluate the
runtime performance of implementations of the Collections
API. Second, it is a micro-benchmark; The majority of its
execution is spent in the code of the collections implementa-
tions. This allows us to focus directly on our area of interest
(i-e., the collections implementations).

Each of the 13 versions of the benchmark we created uses
a different concrete implementation of the Collection inter-
face. The first column of Table 1, Current Choice, shows
the 13 concrete implementations of the Collection inter-
face that we considered. We then executed each version
of the benchmark 10 times and profiled its energy usage.
(See Section 3.2 for a detailed explanation of how we profile
energy usage.) We then conducted pair-wise statistical anal-
ysis of the versions’ energy usage using the Kruskal-Wallis
test. Essentially, we determined, given a current implemen-
tation choice, whether switching to another implementation
decreases, increases, or has no effect on energy usage.

In Table 1, the second and fourth columns, # Better and
# Worse show, given the current implementation in the first
column, the number of times switching to an another imple-
mentation improves energy usage (o = 0.05) and the number
of times switching to another concrete implementation wors-

1ht1:p ://java.dzone.com/articles/java-collection-performance



Table 1: Potential Improvement or Degradation in Energy Usage from Switching Collection Implementations.

Potential Gain from Switching

Potential Loss from Switching

Current Choice # Better Max Improvement (%) # Worse Max Degradation (%)
ArrayList 2 95 0 —
ConcurrentLinkedQueue 4 96 0 —
LinkedHashSet 0 — 7 2,598
HashSet 0 — 7 2,617
LinkedList 5 96 0 —
TreeSet 0 — 5 1,974
PriorityQueue 2 96 0 —
ConcurrentLinked Deque 6 96 0 —
CopyOnWriteArrayList 0 — 2 79
ConcurrentSkipListSet 0 — 4 1,495
LinkedBlockingDeque 6 96 0 —
Linked TransferQueue 5 96 0 —
CopyOnWriteArraySet 0 — 5 1,602
ens energy usage (o = 0.05), respectively. For example, if Section 2.

the currently selected implementation is ArrayList, there
are two implementations that will decrease the benchmark’s
energy usage and no implementations that will increase the
benchmark’s energy usage. As the table shows, for 7 of
the 13 cases, energy usage can be statistically improved by
switching implementations, and for 6 of the 13 cases, energy
usage can be statistically worsened. These results show that
indeed switching implementations of the Collections API can
in fact impact the energy usage of an application.

To gain some additional insight into the effects of switch-
ing implementations, we investigated the magnitude of the
increases and decreases. For the cases where there is a
statistically better or worse alternative implementation, we
calculated the percentage difference in the mean energy usage
of the 10 runs for the current version and the mean energy
usage of the 10 runs of the best alternative and the worst al-
ternative. Note that for this benchmark, HashSet is the most
energy efficient implementation and LinkedBlockingDeque
is the most inefficient implementation.

In Table 1, the third column, Maz Improvement, and the
fifth column, Max Degradation show the percentage change
from switching from the current version to the best version
and from the current version to the worst version, respectively.
A dash (—) indicates a case where there was not a statisti-
cally better or worse choice than the current implementation.
For example, switching from ArrayList to HashSet results
in nearly a 100 % improvement in energy usage while switch-
ing from LinkedHashSet to LinkedBlockingDeque increases
energy usage by over 2,500 %. Not only does switching imple-
mentations of the Collections API statistically significantly
impact energy usage, but the magnitude of the impact can
be quite large. These empirical results quantify the potential
impact of a framework such as SEEDS.

3.2 SEEDS.,

Based on the results from our preliminary study on the im-
pact of switching implementations of the Collections API, we
went forward with creating SEEDS,p;. A high-level overview
of SEEDS,; is shown in Figure 2, and the remainder of this
subsection describes how each of the components of SEEDS
was instantiated in SEEDS,pi. Components that are not
specifically mentioned were implemented as described in

Application code. SEEDS,;; is designed to optimize
Java applications. Therefore, it accepts as input Java appli-
cations that use the Collections API.

Potential Changes. The set of potential changes indi-
cates which implementations of the Collections API can be
substituted for one another. For example, a potential change
would be to substitute HashSet for a TreeSet or vice versa
or LinkedList for ArrayList. Note that SEEDS., can
consider changes between any implementations that imple-
ment the same Collections API. Currently, the tool includes
all implementations from the JCF as well as all implemen-
tations of Collection from Javolution,? fastutil,®> Apache
Commons Collections,* Goldman-Sachs Collections,” and
Google’s Guava libraries.%

We have also built an automated tool that automatically
extracts potential changes from the set of libraries. If devel-
opers would want to consider additional potential changes
(e.g., implementations from another library), they can simply
provide the library’s jar file to our tool.

Context information. To use SEEDS.,, developers
must provide a test suite as part of the context information.
The test suite is used to perform regression testing to ensure
that all considered transformations are valid and to execute
the transformed applications during profiling.

Define application-specific search space. We ob-
served that, in many cases, developers do not “program
to the interface”, rather they specify a concrete type for their
variables (e.g., ArrayList 1 vs. List 1). Unfortunately,
for SEEDS,i, this practice can unnecessarily constrain the
size of the application-specific search space and hinder the
optimization process. To address the problem, SEEDS,;
generalizes the application’s code by changing the type of
each variable, for which original type is a subclass of Col-
lection, to the most general supertype. For example, the
type of a variable that was declared as a LinkedList could
be generalized to: (1) Collection if only methods declared
in the Collections interface are used, (2) List if methods

http://javolution.org
http://fastutil.di.unimi.it
http://commons.apache.org/proper/commons-collections

https://github.com/goldmansachs/gs-collections
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Figure 2: Overview of SEEDS,p;.

declared in List, but not in Collection, are used (e.g., get),
or (3) LinkedList if methods declared by LinkedList, but
not List, are used (e.g., addLast). In practice, SEEDS,;
uses the Eclipse IDE’s refactoring tools to automatically ap-
ply the Generalize Type refactoring to every variable where
the type is a subclass of Collection.

After generalization, SEEDS,; analyzes the application
to identify the locations where instances of the Collections
API are created. Although this may seem like a trivial
task, in Java, object allocation is actually a two-step pro-
cess. First, a new instance of the desired type is created
using the new bytecode. Then, at some point later, one of
the type’s constructors is invoked on the new object using
the invokespecial bytecode. Identifying both bytecodes is
necessary to be able to transform the application because
the type of the object created by the new must be the same
as the declaring type of the constructor that is invoked by
the invokespecial. Unfortunately, there is no guarantee
that the new and invokespecial are easy to match. In fact,
depending on the structure of the code, there can be an
arbitrary number of intervening instructions. In order to
identify pairs of new and invokespecial bytecodes that con-
stitute an object allocation, SEEDS,p; uses the T.J. Watson
Libraries for Analysis (WALA) [48] to implement a def-use
analysis that tracks backwards from the target object of the
invokespecial to the new where it was created.

After identifying the locations in an application where
collection objects are allocated, SEEDS,;i, determines how
many potential changes could be applied at each location.
For example, if an instance of the Set interface is being
created, SEEDS,; identifies all potential changes that switch
implementation to an implementation of the Set API. The
combination of all allocation locations and possible changes,
away from the generic type of the object being created,
constitues SEEDS,,,i’s application-specific search space.

Select solution. Because there has been no prior inves-
tigation into the impacts of switching implementations of
the Collections API on energy usage, we have no intuition or
information on the shape of the application-specific search
space or how to search through it effectively. For example,
we have no idea if there are likely to be many local minima,
if the effects of multiple changes are likely to be additive or
independent, or even if the search space is differentiable. As a

result, we implement one of the simplest search strategies pos-
sible: an exhaustive exploration of all possible applications
on a single concrete change.

Our search strategy starts by identifying the most energy
efficient implementation choice at each location in the pro-
gram where an object that implements the Collections API
is created. SEEDS.p identifies the most efficient imple-
mentation choice at each location by applying each concrete
change to the program, running the resulting version multiple
times, comparing the means of the energy usages to find the
change that results in the least amount of energy consump-
tion. Note that we are considering each location separately.
After identifying the most efficient implementation at each
object allocation location, SEEDS,,; creates one additional
version where the most efficient change at each location is
applied. Finally, the selection strategy used by SEEDS.y;
compares the energy impacts of all of the versions executed
during the search process and then it selects as the output
of the tool the version that results in the largest decrease in
energy usage. If none of the changed versions is a statistical
improvement over the original, unmodified application, the
original version is returned instead. In this way, SEEDS.;
is guaranteed to never produce an optimized version that
performs worse than the original application.

Although this strategy is simple, it results in optimized
applications that are more energy efficient than the original
applications. In our experiments, SEEDS.p; improved the
energy usage of 6 of our 7 subject applications by between
~ 2% and = 17 %. Moreover, as we explained before, this
search strategy is meant to be a starting point for future
research rather than the best way of creating optimized
applications.

Transform application. To apply the selected changes,
SEEDS.pi uses ObjectWeb’s ASM bytecode rewriting li-
brary” to change the types of new and invokespecial byte-
codes that correspond to the locations of the selected changes.
We chose to directly modify the application’s bytecode, rather
than its source code, so that SEEDS,,; does not have to
recompile the application each time a change is applied.

After each time the application is transformed, the test
suite provided as input is used to ensure that the transfor-

7ht1:p://asm.ow2.org



Table 2: Subject applications.

Application Version LoC # Tests Coverage (%) # Change Sites
Barbecue — 13,610 247 55.9 10
Jdepend 2.9.1 5,865 53 53.2 14
Apache-xml-security 1.0 50,412 175 41.9 15
Joda-Time 2.1 69,225 197 36.6 16
Commons Lang 3.1 100,566 2,046 94.9 47
Commons Beanutils 1.8.3 69,355 1,277 71.3 7
Commons CLI 1.2 8,638 187 96.7 14

mation has not broken the functionality of the application.

Profile energy usage. To profile the amount of energy
consumed when executing an application, we used a Low
Power Energy Aware Processing (LEAP) node [46]. Our
LEAP node is an x86 platform based on an Intel Atom
motherboard (D945GCLF2). It is currently configured with
1GB of DDR2 RAM, a 320 GB 7200 RPM SATA disk drive
(WD3200 BEKT), and runs XUbuntu 12.04. Each component
in the LEAP system (e.g., CPU, disk drives, memory, etc.)
is connected to an analog-to-digital data acquisition (DAQ)
card (National Instruments USB-6215) that samples the
amount of power consumed by the component at a rate
of 10kHz (= 10,000 samples per second). The LEAP also
provides running applications with the ability to trigger a
synchronization signal. This allows for synchronizing the
recorded power samples with the portions of the execution
that are of interest.

Note that while the original LEAP specification calls for us-
ing the same computer to both run an application of interest
and collect power samples, we have modified the design to use
dedicated hardware for each of these roles. Using separate
machines prevents the introduction of any unwanted mea-
surement overheads. The only remaining source of unwanted
overhead is the collection of synchronization information. It
is possible to account for this cost by profiling the energy cost
of recording synchronization information and subtracting it
from the reported energy numbers. However, because we
are concerned with energy consumption relative to a base
line (i.e., the original application) and the energy cost of
recording synchronization information is essentially constant,
we have not taken this step.

4. EMPIRICAL EVALUATION

Our evaluation of SEEDS focuses on evaluating the effec-
tiveness of using an instantiation, namely SEEDS,;i, on real
applications and examining the associated costs. Specifically,
we designed our evaluation to answer the following questions:

RQ1—Effectiveness. Is SEEDS effective at automatically
optimizing an application with respect to potential
code changes?

RQ2—Exzxploration Capability. Can SEEDS be used to effec-
tively explore the search space of the energy impacts
of a software engineer’s decisions?

RQ3—Cost. Can SEEDS provide decision-making support
to the software engineer with regard to energy con-
sumption implications at a reasonable cost?

4.1 Experimental Subjects

The primary goal of SEEDS,; is to help software develop-
ers choose implementations of the Collections API to reduce

the amount of energy consumed by their Java applications.
To suitably evaluate the tool with respect to this goal, we
selected 7 Java applications that use the Collections API. We
also selected these programs because they have been used by
many researchers and they are representative of applications
that use the JCF. In addition, because SEEDS,p; requires
a test suite, we needed to select applications that have an
associated test suite.

Table 2 describes the seven applications. In the table, the
first and second columns, Application and Version, together
identify the application version. The third column, LoC,
provides the number of lines of code. The fourth and fifth
columns, # Tests and Coverage (%), reports the number of
tests in the associated test suite provided with each subject
and the percentage of the statements in application that
are covered by the test suite, respectively. The last column
reports the number of possible sites in the application code
for the program changes of interest (based on the input
parameters).

We obtained the subjects from the three different pub-
lic repositories: (1) Software-artifact Infrastructure Reposi-
tory (SIR),® which provides a variety of open-source projects
for empirical software engineering, (2) SourceForge,? a pop-
ular repository for open-source projects, and (3) Apache
Commons,'® a collection of reusable components.

4.2 RQ1: Effectiveness

In our preliminary study (see Section 3.1), we observed
that switching implementations of the Collections API can
improve the energy usage of an application. The goal of
our first research question is to determine whether we can
achieve the same type of improvements in real applications
in a fully automatic manner.

To answer this question, we created 2 optimized versions of
each of our subjects using SEEDS,pi, one where SEEDS, i
was allowed to use only Collections implementations from the
JCF and one where SEEDS,,; was allowed to use Collections
implementations from all of its included libraries. For the
cases where SEEDS,,; was able to optimize the applications
(i-e., it returned a version different than the original), we ran
the original and optimized versions on the LEAP node 10
times. Then we used the Kruskal-Wallis test to determine
whether there is a statistically significant difference in the
amount of energy usage consumed by the versions. We chose
to use the Kruskal-Wallis test because we have one nominal
variable (whether or not the change is applied), one measure-
ment value (the amount of energy consumed), and we do not

8http://sir.unl.edu

9https://sourceforge.net

10http://commons.apache.org



Table 3: SEEDS,;; effectiveness in improving energy
usage.

% Improvement

Application JCF Only ALL
Barbecue 17" 17"
Jdepend 3 6"
Apache-xml-security 5t 5t
Joda-Time 8 of
Commons Lang 10f 13f
Commons Beanutils — —
Commons CLI 2% 2%

* indicates situations where a single concrete change was

most effective.
T indicates situations where a concrete change at more than
one location was most effective.

know whether our data are normally distributed. For all of
our tests, we chose an alpha (a) of 0.05. For the cases where
there was a significant difference in energy consumption, we
computed the percentage change in the means of the energy
usages of the original and optimized versions to determine
how effective SEEDS,pi was at improving the energy usage
of the applications.

Table 3 shows the data we generated to investigate the
effectiveness of SEEDS,pi. In the table, the first column,
Application, shows the name of each subject. The remaining
columns show the percentage improvement in energy usage
of the optimized version produced by SEEDS,p; when using
only implementations provided by the JCF, JCF only, and
when using the implementation provided by JCF as well
as the implementations provided by the other libraries in-
cluded in the tool (see Section 3.2), ALL. Note that a dash
(—) indicates that SEEDS.p; was unable to optimize the
application. A x indicates that the optimized version was
constructed using only one concrete change, and a t indicates
that the optimized version was constructed by applying the
best individual change at each location.

There are several interesting observations that we can
make from this data. First, SEEDS.p; was effective at auto-
matically improving the energy usage of our subjects. For
all but one application, it was able to decrease energy usage
by a statistically significant amount. Moreover, the mag-
nitudes of the changes in energy usage are encouraging as
they range from 2% to 17 % and were accomplished using a
simple search strategy that only considered changes applied
in isolation.

Second, the optimized versions produced by SEEDS,p;
include versions that contain only one change (7 cases), and
versions where the most efficient change was made at each
location (5 cases). Before running this experiment, we ex-
pected the most efficient version to be the version composed
of the most efficient change at each location. The fact that
approximately 60 % of the time, the most efficient version
contains only a single change, suggests that there are compli-
cated interactions among the changes that are canceling out
the expected benefits and that more advanced search strate-
gies should attempt to understand and potentially exploit
such interactions.

4.3 RQ2: Exploration Capability

We posed several questions to examine how well the frame-
work could be used to explore the search space of the energy
impacts of a software engineer’s decisions to help the soft-
ware engineer learn more about energy implications of their
choices. Specifically, we used the SEEDS,p; to explore the
questions:

RQ2a. How does the effectiveness of the energy optimization
change with more choices?

RQ2b. How often do developers choose the most energy-
efficient implementation without knowing the energy
efficiency capability of the selection?

R@Q2c. How often is each implementation the most energy
efficient?

RQ2a: We can use our results to also answer the ques-
tion “How does the effectiveness of the energy optimization
change with more choices?” As Table 3 shows, the effective-
ness of SEEDS.p;i only slightly increases when considering
all possible implementations of the Collections API rather
than just the implementations from the JCF. For 4 subjects,
adding the additional implementations had no impact on the
performance of the SEEDS,;;. For the remaining 3 subjects,
energy usage was improved, but the magnitude of the im-
provement was 3% or less. This was especially surprising
as many of the additional implementations are specifically
designed to be fast (execute quickly) and compact (use less
memory), traits that are commonly thought to be strongly
correlated with energy usage [2]. The fact that switching to
such implementations does not drastically improve energy
usage suggests that the correlation may not be as strong as
was previously suspected.

RQ2b: To answer the question of how often developers
choose the most energy-efficient option without knowing
the energy efficiency capability of the selection, we used
SEEDS.pi to determine how often the most efficient imple-
mentation choice is different than the implementation used
in the original application. In our subjects, there are 123
total locations where an instance of the Collections API is
allocated. When only implementations from the JCF are
considered, 56 % of the time (69 cases), switching away from
the original implementation resulted in a decrease in energy
usage. Similarly, when all possible implementations were
considered, 72 % of the time (89 cases) switching away from
the original implementation improved energy usage. These
results motivate the need for SEEDS as they show that
developers are only infrequently choosing the most energy
efficient Collections API implementations.

RQ2c: The final supplemental question we answered is
how often each implementation of the Collections API is the
most energy efficient. Essentially, we wanted to know if there
is a single implementation that is always the most energy
efficient. When including all libraries, SEEDS,;; chooses
among 157 distinct implementations of the Collections API.
Figure 3 shows how often each implementation is the most
efficient choice. In the figure, the x-axis includes a tick
mark for each implementation and is sorted by how often
each implementation is the most efficient. The y-axis shows
the percentage of times each implementation was most effi-
cient. In our experiments, ArrayList, Vector, and HashSet
(all from the JCF are the implementations that were most
frequently the most efficient.
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Figure 3: Percentage of time each Collection API implementation was selected as the most energy efficient.

As Figure 3 shows, there is not a single implementation
that is always the most energy efficient. Moreover, it shows
that there are 35 implementations that were the most en-
ergy efficient at least one time. This information further
motivates the need for SEEDS. It is unlikely that software
engineers would be willing or able to manually investigate
tens of possibilities to find the most efficient implementation.
This information is also potentially useful for future work
in designing better search strategies. While there were 35
implementations that were the best at least once, there were
far more implementations that were never the most energy
efficient. This information could be used to help direct a
search strategy.

4.4 RQ3: Cost

The question “Can SEEDS provide decision-making sup-
port to the software engineer with regard to energy consump-
tion implications at a reasonable cost?” was addressed by
recording the times to perform each step of the framework
for each of the 7 subject applications.

Table 4 presents the estimated costs, in terms of wall clock
time, for optimizing applications. In the table, the first
column, Application, shows the name of each application.
The second column, Eze., shows the amount of time necessary
to execute each application using its test suite once. The
third column, # Reps., shows the number of times each
changed version was run to gather enough data to compute
the percentage difference in the means of the energy usage of
the original and changed versions. The fourth column shows
the cardinality of the search space (i.e., the number of changes
explored by SEEDS.pi), |Search|. The fifth column, Analysis,
shows the time to analyze the energy usage of the search
space. The sixth column shows the cost in hours, Cost, when
optimizing the applications considering only implementations
from the JCF (JCF Only). Finally, the seventh, eighth and
ninth columns show the Search Space, and Analysis and Cost,
respectively when considering all implementations included
in SEEDS.pi (ALL). As shown in the table, the total cost
ranges from 3h to 64h for JCF Only and from 4h to 175h
hours for ALL.

By far the largest portion of the cost of using SEEDS.; is
collecting and processing the power samples collected when
running each changed version. The other parts of the pro-
cess (i.e., generalizing the application, identifying collections
allocation locations in the application, filtering based on
optimization parameters, and applying the selected changes),
required only a few minutes in total.

Although the overall costs are high, we believe that they
are reasonable for two primary reasons. First, optimizing
the energy usage of an application is a task that will only

be carried out infrequently; most likely as part of the final
release process. In this context, even a wait of a few days is
likely acceptable as the tool is completely automated, and
could be run in parallel with other pre-release tasks such
as integration testing and other forms of quality assurance.
Second, the costs of using SEEDS,,; can easily be tailored
to fit a software engineer’s specific circumstances. As Ta-
ble 4 shows, the overall cost of the technique is determined
by 4 factors, the amount of time it takes to execute the
application’s test suite, the number of repetitions that are
run, the time to analyze energy usage data and the size of
the application-specific search space and how thoroughly the
search strategy expores the search space, all of which are
easily controllable by software engineers. Reducing any of
these factors will also decrease the cost of using the tool. For
example, in our evaluation, we used an exhaustive search
strategy and ran the entire test suite. Instead, we could have
used a non-exhaustive strategy and only executed part of
test suite in order to reduce the cost of using SEEDS,p;.

4.5 Threats to Validity

We evaluated SEEDS by creating one instantiation. It is
possible that other instantiations will not lead to improved
energy usage of the user’s application. For instance, there
are many possible search strategies that may provide better
energy usage; and although our strategy is simple, it does in-
deed show that SEEDS can result in optimized applications
that are more energy efficient than the original applications.
In addition, our study shows that the framework can provide
useful information to help understand their energy usage.
We also demonstrate that useful instantiations can be cre-
ated, as choosing a collection implementation is a common
decision that is faced by developers, and our results show
that indeed SEEDS can automatically make decisions and
build optimized versions based on those decisions with regard
to energy usage.

For our evaluation, we selected 7 Java applications, used
their associated test suites, and chose 6 libraries as the
source of our considered potential choices. It is possible that
conclusions drawn from this set may not generalize to all
applications or other libraries or test suites. To minimize
the threat, the applications we considered were selected
because they have been used by many researchers and they
are representative of applications using the JCF. The test
suites are provided by the applications and should thus
test typical expected inputs and operations. The libraries
all comply with the JCF, are publicly available, and are
commonly used. We included libraries that were designed to
be fast and compact as well as others designed with a focus
on other nonfunctional attributes.



Table 4: Cost to automatically optimize an application.

JCF Only ALL
Application Exe. (s) # Reps. |Search| Analysis (hrs) Cost (hrs) |Search| Analysis (hrs) Cost (hrs)
Barbecue 5 10 63 2 3 242 8 11
Jdepend 4 10 209 5 7 2,004 55 7
Apache-xml-security 124 10 52 46 64 144 125 175
Joda Time 3 10 102 2 3 262 5 7
Commons Lang 90 3 167 32 45 196 37 52
Commons Beanutils 104 3 23 6 8 63 14 19
Commons CLI 2 10 95 2 3 186 3 4

Finally, the energy profiling system used in this experi-
ment could be considered a threat to validity. In order to
minimize the threat, we used the LEAP monitoring system
used by others, which is able to measure the energy of several
components (e.g., CPU and memory) and the direct energy
of discrete events in kernel and user space systems.

S. RELATED WORK

The most closely related work is the one presented in [15],
where the design of an autotuning energy model and runtime
environment for distributed systems is described. However,
the presented model is not evaluated and their implementa-
tion requires that developers have knowledge of the hardware
components, their interactions, and the energy usage for each
different target platform, which is not required by SEEDS.

Autotuning optimization is another related area of work.
In autotuning optimization, the goal is to automatically
improve the performance of applications. In contrast to
common compiler optimizations, autotuning approaches often
take into account details about the specific application being
optimized and the environment where it will execute. Such
approaches have been applied to specific types of software
(e.g., computer algebra libraries [51] and high performance
computing [39, 49] as well as for general purpose languages
and platforms (e.g., [45]).

Of the existing body of autotuning work, Chameleon is
most similar to our work. Chameleon is a tool for auto-
matically tuning the collection implementations used by an
application [45]. The most significant difference from our
work is that Chameleon is focused on runtime performance
and memory usage rather than energy efficiency. In addition,
Chameleon is a dynamic technique that relies on collecting
deep, context-based information about how specific collec-
tion instances are used during an execution. In contrast, our
approach does not rely on such runtime monitoring as such
monitoring is likely to impact the precision of our energy
measurements. Unlike for performance tools, the precision
of power monitoring tools is insufficient for fine, instruction-
level accounting.

Second, there is a group of work that has attempted to iden-
tify the underlying causes of energy consumption by empiri-
cally investigating the impact of various software development
decisions. More specifically, researchers have investigated
the impacts of refactorings [10], design patterns [8, 29, 42],
sorting algorithms [6], web servers [30], programming mod-
els [9, 44], and lock-free data structures [23] within a single
application, in addition to investigating trends in an applica-
tion’s energy consumption among versions [18] and among
separate implementations of the same specification [4, 35].

Insights gained from these and similar studies could be in-
tegrated into the search component of SEEDS to help it
identify more energy-efficient changes more quickly.

Third, there is a significant amount of work focused on
accurately measuring energy consumption. Work in this
area has been conducted at various levels. Hardware inst-
rumentation-based approaches (e.g., [46, 50]) use physical
instrumentation (e.g., soldering wires to power leads) to
measure the actual power usage of a system. Simulation-based
approaches (e.g., [16, 31, 32]) use a cycle-accurate simulator
to replicate the actions of a processor at the architecture
level and estimate energy consumption of each executed cycle.
Finally, estimation-based approaches (e.g., [2, 5, 17, 44]) build
models of energy-influencing features and use such models
to estimate energy usage.

Finally, researchers have begun to build on the accurate
measurement work mentioned above to provide source code-
level feedback on energy consumption to developers [28].
Although this work is promising, it requires developers to
be able to understand the information and manually make
any necessary changes. In contrast, SEEDS automatically
explores many options without developer involvement.

6. CONCLUSIONS AND FUTURE WORK

SEEDS is the first known framework for helping software
engineering make decisions with regard to energy usage of
their application. Our empirical results show that using such
automation can indeed improve energy usage of real applica-
tions without requiring the software engineer to deal with
low-level energy profiling tools and analyses. Instantiating
SEEDS to make decisions about which library to choose
showed up to 17% energy usage improvement. While the
tedious work is hidden from the developer, the collecting and
processing of power samples can take many hours depending
on the test suite execution time, number of repetitions, and
the search space. However, optimizing the energy usage will
likely be done infrequently and these costs can be tailored
to the software engineer’s specific circumstances.

We plan to investigate more advanced search strategies
and other instantiations of SEEDS. Specifically, we will
investigate using SEEDS to make other kinds of software
engineering decisions.
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