
Parallelization of the Tau-Leap Coarse-Grained Monte Carlo
Method for Efficient and Accurate Simulations on GPUs

Lifan Xu1, Stuart Collins2, Dionisios G. Vlachos2, and Michela Taufer1

1Global Computing Lab, Computer and Info. Sciences, University of Delaware
2Chemical Engineering, University of Delaware

• In our testing simulation system, we have three molecule types:
A, B, and C

• Initially we have 3000 molecules of type A in 16 cells
• In each leap, a certain number of events take place:

 A can change to B and vice versa
 B can react with B and change to C and vice versa

• We record number of molecules after each leap on CPU and GPU
and compare the results
 The results are exactly the same

Read gamma from
global memory

threads

O
n

e
τ

le
ap

Select events

Execute events

Violation checking

Update theta in
global memory

Update gamma in
global memory

Synchronization update time

Read gamma from
global memory

threads

Select and execute
events

Update theta in
shared memory

Violation checking

Write theta to
global memory

Update gamma in
global memory

Synchronization update time

Read its theta to
shared memory

GPU implementation with global memory GPU implementation with shared memory

Platforms

GPU -Tesla S1070 Intel(R) Xeon(R) CPU X5450(CPU)

Number of cores 240 per GPU Number of cores 4

Global memory 4GB Memory 4GB

Clock rate 1.44 GHz Clock rate 3 GHz

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

6

2

7

10

5

1

13

2

5

4

3-layer macro-cell

Synchronization Frequency

Leap 2Leap 1 Leap 3 Leap 4

Synchronization

Synchronization

2-layer coarse-grain parallel algorithm

Coarse vs. Fine Grain Parallel Algorithms

Macro-cell 1
(thread 0)

Macro-cell 2
(thread 1)

Cell 1 Cell 2 … Cell 1 Cell 2 Cell 3 …

Leap 1

E1 E1 E1 E1 E2

E1 E1 E1 E1

E2 E2

Leap 2

E1 E1

E2

E2

E1: A[cell 1] + B[cell 2] -> C[cell 1] + D[cell 2]
E2: A[cell 2] -> A[cell 3]
A,B, C, D are different molecule species.

macro-cell 1 macro-cell 2

Coarse Grained Kinetic Monte Carlo Model (CGMC)

Mapping

CGMC Algorithm on GPUs

1-layer vs. 2-layer Implementation

Multi vs. Single GPUs

Multi-thread Implementation of CGMC

macro-cell 1-layer macro-cell 2-layer macro-cell 3-layer

2-layer macro-cells

Accuracy

Redesign of cell structures:
• Macro-cell = set of cells
• Number of cells per macro-cell is flexible

Redesign of event execution:
• One thread or one block simulates events in one macro-cell
• Events are replicated across macro-cells

Event Replication

Abstract
Recent efforts have outlined the potential of GPUs for Monte Carlo scientific
applications. In this poster, we contribute to this effort by exploring the GPU
potential for the tau-leaping Coarse-Grained Monte Carlo (CGMC) method.
CGMC simulations are important tools for studying phenomena such as
catalysis and crystal growth. Existing parallelization of other CGMC method do
not support very large molecular system simulations. Our new algorithm on
GPUs provides scientists with a much faster way to study very large molecular
systems (faster than on traditional HPC clusters)with the same accuracy.

The efficient parallelization of the tau-leaping method for GPUs includes the
redesign of both the algorithm and its data structures to address the
significantly different GPU memory organization and the GPU multi-thread
programming paradigm. The poster describes the parallelization process and
the algorithm performance, scalability, and accuracy. To our knowledge, this is
the first implementation of this algorithm for GPUs.

Coarse-grained parallelism implementation
• Use 2-layer algorithm
• One thread is in charge of one macro-cell
• No performance increase because threads execute 5 times

more events in every first leap

Fine-grained parallelism implementation
• Use 2-layer algorithm
• One block is in charge of one macro-cell
• Each block has five threads corresponding to five cells in

one macro-cell
• Performance significantly increase for small systems

Next steps…
• Address limits in number of threads per GPU
• Use multiple GPUs for large systems

Implementation using global memory
• One thread simulates events in one cell
• All threads are executed in parallel
• Performance is much faster than CPU (16 times)

Improve the implementation to use shared memory (SM)
• Memory access cost in GPU:

 400-600 clock cycles to read/write a float from/to global memory
 4 clock cycles to read/write a float from/to shared memory

• Limitation for shared memory:
 Has only 16KB per block
 Can be only accessed by threads in a same block

• Improvement: make use of shared memory
 Move theta to shared memory before leap starts
 Write theta back to global memory after each leap

• Performance improves significantly (100 times)

Next steps…
• Move gamma to shared memory

 Gamma relates to neighbors’ theta
 Cannot keep all threads in one block

• Endow threads more power to calculate their neighbors’ theta

Multi-GPU Implementation
Pseudo-code of multi-GPU implementation:

• CPU gets number of GPU and assigns simulation cells to GPUs
• CPU packs data and sends it to each GPU
• Each GPU copies data to its own memory and calls kernel function for

two leaps
• All GPUs copy new data back to CPU
• CPU sends new data to GPUs and start next leap

Configuration:
• Multiple GPUs + OpenMP with portable pinned memory (ppm),

mapped pinned memory (mpm), and write combined memory (wcm)
• Multiple GPUs + OpenMP with portable pinned memory (ppm),

mapped pinned memory (mpm)
• Multiple GPUs + OpenMP with portable pinned memory (ppm)

Performance analysis:
• Number of events per msec is 120X faster than on a single CPU
• Max number of cells grows from 32,768 on single GPU to 102,400 on

multiple GPUs

Conclusions and Future Work
Our contribution:

• Provide scientists with a much faster tau-leaping algorithm to study
molecular systems with the same accuracy

• Prove that GPUs have tremendous computational horsepower
• Identify the most suitable level of parallelism for different molecular

system sizes

Performance:
• Our tau-leaping algorithm is more than 100 times faster than the

sequential version on CPU

Accuracy:
• GPU results are exactly the same as on CPU

Future Work:
• Improve performance of multi-GPUs with portable pinned memory
• Use other optimization techniques i.e., prefetching and memory

coalescing

Acknowledgments

Performance

Global vs. Shared Memory

Re-thinking the Tau-leaping Algorithm for GPUs

Cells in a 4x4 system

2-layer fine-grain parallel algorithm

• Group neighboring microscopic sites together into “coarse-grained” cells
• Apply a closure at the stochastic level to resident molecules to describe their

distribution in the cell

In the simplest closure above, molecules within cells are assumed to be well mixed.
The molecules of each cell are allowed to interact with and diffuse to nearby cells.

