
ANDROID MALWARE CLASSIFICATION USING

PARALLELIZED MACHINE LEARNING METHODS

by

Lifan Xu

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Computer
Science

Spring 2016

© 2016 Lifan Xu
All Rights Reserved

ANDROID MALWARE CLASSIFICATION USING

PARALLELIZED MACHINE LEARNING METHODS

by

Lifan Xu

Approved:
Kathleen F. McCoy, Ph.D.
Chair of the Department of Computer and Information Sciences

Approved:
Babatunde A. Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved:
Ann L. Ardis, Ph.D.
Senior Vice Provost for Graduate and Professional Education

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
John Cavazos, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Chien-Chung Shen, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Haining Wang, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Dongping Zhang, Ph.D.
Member of dissertation committee

ACKNOWLEDGEMENTS

I would never have been able to finish this dissertation without the guidance of

my advisor and my committee members, support from my family and wife, and help

from my friends and lab mates.

I am immensely grateful to my advisor, Prof. John Cavazos, for his guidance

and support throughput my PhD years. I would like to thank Dr. Marco A. Alvarez for

guiding my research in the past several years and helping me to develop my background

in graph representation and graph kernels. I also would like to thank Dr. Dong

Ping Zhang for her caring, advice, and helping me to improve my knowledge in high

performance computing, processing in memory, and deep learning.

I would like to thank many friends who have helped me and enriched my life,

particularly, William Killian, Sameer Kulkarni, Eunjung Park, Robert Searles, Tristan

Vanderbruggen, Wei Wang and many others.

I would also like to thank my parents, two elder sisters, and elder brother. They

have brought me tremendous love since I was born.

Finally, I would like to thank my son Aiden Xu, my daughter Lora Xu, and

my wife Ruoxin Peng. They were always there cheering me up and accompanied me

through good and bad times. This dissertation is dedicated to them.

iv

TABLE OF CONTENTS

LIST OF TABLES . ix
LIST OF FIGURES . xi
ABSTRACT . xv

Chapter

1 INTRODUCTION . 1

2 BACKGROUND . 8

2.1 Android Malware Detection using Static Analysis 8
2.2 Android Malware Detection using Dynamic Analysis 12
2.3 Android Malware Detection using Hybrid Analysis 15
2.4 Originality of Our Android Malware Analysis Method 18
2.5 Graph Computation Parallelization 18
2.6 Deep Learning Parallelization . 20

3 ANDROID MALWARE CLASSIFICATION USING DYNAMIC
ANALYSIS . 21

3.1 Introduction . 21
3.2 Android Application Emulation . 24

3.2.1 Emulation Procedure . 24
3.2.2 System Call Invocation Extraction 26
3.2.3 System Call List . 27

3.3 Dynamic Characterization . 29

3.3.1 Feature Vector Representations 29

3.3.1.1 System Call Histogram 29
3.3.1.2 N-gram . 31

v

3.3.1.3 Markov Chain . 33

3.3.2 Graph Representations . 34

3.3.2.1 Histogram System Call Graph 34
3.3.2.2 N-gram System Call Graph 35
3.3.2.3 Markov Chain System Call Graph 36
3.3.2.4 Ordered System Call Graph 39
3.3.2.5 Unordered System Call Graph 40

3.4 Classification . 41

3.4.1 Kernel Matrix Construction for Vectors 42
3.4.2 Kernel Matrix Construction for the HSCG, the NSCG, and the

MCSCG Graphs . 43
3.4.3 Kernel Matrix Construction for the OSCG and the USCG

Graphs . 44
3.4.4 Support Vector Machine . 44

3.5 Experimental Results . 46

3.5.1 Dataset . 46
3.5.2 Evaluation Metrics . 47
3.5.3 Different Kernels . 48
3.5.4 Result from Interaction Stimulation 48
3.5.5 Result from Incomplete Strace 49
3.5.6 Result from Top K System Call List 49
3.5.7 Results from Feature Vector Representations 50
3.5.8 Result from HSCG, NSCG, and MCSCG Graphs 51
3.5.9 Result from OSCG and USCG graphs 53
3.5.10 Graph Kernel Running Time 53

3.6 Related Work . 55
3.7 Conclusion . 56

4 ANDROID MALWARE CLASSIFICATION USING HYBRID
ANALYSIS . 57

4.1 Introduction . 57
4.2 Hybrid Characterization . 58

4.2.1 Hybrid Analysis Features . 58
4.2.2 Feature Vector Representations 61

vi

4.2.3 Graph Representations . 62

4.3 Deep Learning Model . 62

4.3.1 Restricted Boltzmann Machine 63
4.3.2 Deep Auto-encoder . 63

4.4 Classification . 66

4.4.1 Multiple Kernel Learning . 66
4.4.2 Hierarchical MKL . 67

4.5 Experimental Results . 67

4.5.1 Experimental Setup . 68
4.5.2 Results from Original Vector and Graph set 68
4.5.3 Results from DNN . 69
4.5.4 Results from first level MKL 69
4.5.5 Result from second level MKL 70
4.5.6 Results from concatenating Original Feature Vectors 70
4.5.7 Comparison with State-of-the-art 73

4.6 Related Work . 74
4.7 Conclusion . 75

5 PARALLELIZATION OF SHORTEST PATH GRAPH KERNEL 77

5.1 Introduction . 77
5.2 Shortest Path Graph Kernel . 78
5.3 Fast Computation of the Shortest Path Graph Kernel 81
5.4 FCSP running on the Multi-Core CPU 84
5.5 FCSP running on the GPU . 84

5.5.1 Two Domain Decompositions in GPU Parallelization 85
5.5.2 Overlapping Communication with Computation 88
5.5.3 Hybrid Implementation – Combining CPU and GPU 89

5.6 Experimental Results . 89

5.6.1 Synthetic Datasets . 90
5.6.2 Scientific Datasets . 95

vii

5.6.3 Malware Dataset . 97

5.7 Conclusion . 98

6 PARALLELIZATION OF DEEP LEARNING 99

6.1 Introduction . 99
6.2 Deep Learning Models . 101

6.2.1 Convolutional Layer . 102
6.2.2 Pooling Layer . 103
6.2.3 Fully Connected Layer . 104

6.3 PIM Architecture . 105
6.4 PIM Performance Model . 106
6.5 Deep Learning on Multiple PIMs . 107

6.5.1 Data Parallelism and Model Parallelism 107
6.5.2 Convolutional Layer Parallelization 108
6.5.3 Pooling Layer Parallelization 109
6.5.4 Fully Connected Layer Parallelization 110

6.6 Experimental Results . 110

6.6.1 PIM configurations . 111
6.6.2 Results on Convolutional Layer 111
6.6.3 Results on Pooling Layer . 112
6.6.4 Results on Fully Connected Layer 115

6.7 Conclusion . 117

7 CONCLUSION . 120

BIBLIOGRAPHY . 124

viii

LIST OF TABLES

2.1 This table shows the summary of previous Android malware research
works. 19

3.1 Detailed statistics of vertices, edges, and shortest paths for graph
representations of Malicious (M) and Benign (B) applications. HSCG,
NSCG, and MCSCG graphs have the same statistics. OSCG and
USCG graphs have the same statistics. 47

3.2 This table shows the best classification accuracy and graph kernel
computation time for the HSCG graphs generated using different
system call lists. 50

3.3 This table shows the best classification accuracy and False Positive
Rate achieved by different feature-vector-based representations. . . 51

3.4 This table shows classification accuracy comparison between
feature-vector-based representation and its corresponding
graph-based representation. 53

3.5 This table shows kernel matrix computation time (seconds) for
HSCG, NSCG, MCSCG, and 4-gram-histograms. 55

4.1 This table shows classification results of different representations.
Acc. means accuracy, Perm. means permissions, Req. means
requested, Inst. means instructions, g. means gram, Sys. means
system call sequence, and vect. means vector. 71

4.2 This table shows MKL weights of the static features for the final
classifier. 71

4.3 This table shows MKL weights of the dynamic features for the final
classifier. 72

4.4 This table shows classification results from the final classifier. . . . 72

ix

4.5 This table shows classification results from simply concatenating the
original feature vector sets. 73

4.6 This table shows classification results from Andrubis. Acc. means
accuracy and F. means failure. 74

5.1 This table shows sequential and random memory read bandwidth on
CPU and GPU. 82

5.2 This table shows statistics about the number of nodes and Shortest
Paths (SP) for our synthetic datasets. Because the graphs are fully
connected, the number of edges equals to the number of SP. 91

5.3 This table shows speedups of FCSP over a naive SPGK
implementation on CPU. 92

5.4 This table shows running time (seconds) on the mixed dataset for
different implementation. 95

5.5 This table shows detailed statistics about the number of nodes, edges,
and Shortest Paths (SP) for the four scientific datasets. 96

5.6 This table shows speedups over OpenMP Graph on four scientific
datasets (M. stands for Matrix and o. stands for overlap) 96

5.7 This table shows speedups over OpenMP Graph on the HSCG-full
graphs created in Chapter 3. (M. stands for Matrix and o. stands for
overlap) . 97

6.1 This table shows different host and PIM configurations. 112

x

LIST OF FIGURES

1.1 This figure shows feature-vector-based model and graph-based model
for dynamic Android malware analysis. 3

1.2 This figure shows feature-vector-based model for static Android
malware analysis. 4

1.3 Combining static model and dynamic model using multiple kernel
learning to construct hybrid Android malware classification model. 4

3.1 Dynamic analysis using graph-based representations. The system call
traces are converted to graphs and graph kernels are applied to
construct similarity kernel matrix. An SVM is used at the end for
classification. 23

3.2 Dynamic analysis using vector-based representations. The system call
traces are converted to vectors and fed into an SVM for classification. 24

3.3 This figure shows an example System Call Trace. First column is
PID, second column is the instruction name, and the last column is
the return value. 28

3.4 These figures show top 20 system calls per application on average for
benign and malicious applications. 30

3.5 This figure shows a System Call Histogram converted from the
system call trace shown in Figure 3.3. 31

3.6 This figure shows a 2-gram Histogram converted from the system call
trace shown in Figure 3.3. 32

3.7 This figure shows a Markov Chain converted from the system call
trace shown in Figure 3.3. 34

3.8 This figure shows a Histogram System Call Graph converted from the
system call trace shown in Figure 3.3. 36

xi

3.9 Visualization of an HSCG graph generated from the DroidKungFu
malware. (a): the complete HSCG; (b): details of the root node
(marked in red) of (a). 37

3.10 This figure shows an N-gram (2-gram) System Call Graph converted
from the system call trace shown in Figure 3.3. 38

3.11 This figure shows a Markov Chain System Call Graph converted from
the system call trace shown in Figure 3.3. 38

3.12 This figure shows an Ordered System Call Graph Converted from the
system call trace shown in Figure 3.3. 39

3.13 This figure shows an Unordered System Call Graph converted from
the system call trace shown in Figure 3.3. 42

3.14 This figure shows an illustration of the SVM method. w is the normal
vector and b is the perpendicular distance to the origin. 45

3.15 This figure shows classification accuracy that achieved using different
C values for HSCG, NSCG, and MCSCG graphs 52

3.16 This figure shows FSK classification accuracy with different C values
for OSCG and USCG graphs. 54

4.1 This figure shows framework of HADM. Static features are converted
to feature vector representations and dynamic features are converted
to feature vector and graph representations. Each feature vector set is
fed into a DNN for learning. The DNN features are concatenated
with the original feature vectors to construct DNN feature vector
sets. Multiple kernels and graph kernels are applied to each DNN or
graph feature set. The learning results are then combined using a
two-level MKL. 59

4.2 An example of RBM and Deep Auto-encoder. (a): a RBM with 2
units in the visible layer and 3 units in the hidden layer. (b): Deep
auto-encoder constructed by flipping the stacked RBMs. 64

5.1 Illustration of the transformation of a labeled graph into a shortest
path graph. Note that the set of vertices is the same in both graphs.
Every edge connecting a pair of vertices in the shortest path graph
(5.1(b)) is labeled with the length of the shortest path between these
pair of vertices in the original graph (5.1(a)). 79

xii

5.2 Example for applying Shortest Path Graph Kernel using FCSP .
Figure 5.2(a) shows the input graphs and the corresponding shortest
path adjacent matrices. Figure 5.2(b) depicts the V ertex Kernel and
each GPU thread’s assignment. Figure 5.2(c) shows the
Walk Kernel with 1D domain decomposition and each GPU thread’s
calculations. Figure 5.2(d) shows the Walk Kernel with 2D domain
decomposition and each GPU thread’s calculations. 87

5.3 Time breakdown for the GPU 1D and GPU 2D implementation on
the nine datasets. (a) shows the running times in percentages for the
V ertexKernel, WalkKernel, Reduction, and memory copy for
GPU 1D on nine synthetic datasets, and (b) shows the running times
in percentages for the GPU 2D. 93

5.4 This figure shows speedups of CPU and GPU parallelization schemes
over sequential FCSP on 9 synthetic homogeneous datasets. For
graphs with small number of nodes, OpenMP Matrix performs best.
For graphs with large number of nodes, GPU 1D overlap performs
best. 94

5.5 This figure shows time breakdown for GPU 1D on four scientific
datasets. 97

6.1 A simple DBN used for speech recognition. The input audio is
processed by several RBMs and then translated to text. 101

6.2 A simple CNN used for digit recognition. Input is an image of a
hand-written digit. After processing by the convolutional layer, the
pooling layer, and the fully connected layer, the CNN outputs a
neuron with the highest probability as the prediction result. 102

6.3 An example of 2D Convolution. Dot product for elements in the two
red windows is performed. 103

6.4 An example for max pooling. Different colors mean different pooling
windows and the corresponding results. 104

6.5 This figure shows a simple RBM with 4 units in the visible layer and
3 units in the hidden layer. 105

6.6 A node with four PIM stacks. Host can access all PIM stacks
simultaneously. Each PIM stack can remotely access the other PIM
stacks. 106

xiii

6.7 This figure shows model partitioning of the RBM example shown in
Figure 6.5 across two PIMs. 109

6.8 Convolutional layer results from different filter sizes. All results are
normalized to Host 4 160 with filter size 3 shown in Figure 6.8(a). . 113

6.9 Pooling layer results from different filter sizes. All results are
normalized to Host 4 160 with filter size 2 shown in Figure 6.9(a). . 114

6.10 This figure shows memory consumption per PIM for data parallelism
and model parallelism on fully connected layer. 116

6.11 Fully Connected layer results from different batch sizes. All results
are normalized to Host 4 160 with batch size 128 shown in
Figure 6.11(a). 118

xiv

ABSTRACT

Android is the most popular mobile operating system with a market share of

over 80% [59]. Due to its popularity and also its open source nature, Android is now

the platform most targeted by malware, creating an urgent need for effective defense

mechanisms to protect Android-enabled devices.

In this dissertation, we present a novel characterization and machine learning

method for Android malware classification. We first present a method of dynamically

analyzing and classifying Android applications as either malicious or benign based on

their execution behaviors. We invent novel graph-based methods of characterizing an

application’s execution behavior that are inspired by traditional vector-based charac-

terization methods. We show evidence that our graph-based techniques are superior

to vector-based techniques for the problem of classifying malicious and benign appli-

cations.

We also augment our dynamic analysis characterization method with a static

analysis method which we call HADM, Hybrid Analysis for Detection of Malware. We

first extract static and dynamic information, and convert this information into vector-

based representations. It has been shown that combining advanced features derived

by deep learning with the original features provides significant gains [73]. Therefore,

we feed each of the original dynamic and static feature vector sets to a Deep Neural

Network (DNN) which outputs a new set of features. These features are then con-

catenated with the original features to construct DNN vector sets. Different kernels

are then applied onto the DNN vector sets. We also convert the dynamic information

into graph-based representations and apply graph kernels onto the graph sets. Learn-

ing results from various vector and graph feature sets are combined using hierarchical

Multiple Kernel Learning (MKL) [37] to build a final hybrid classifier.

xv

Graph-based characterization methods and their associated machine learning al-

gorithm tend to yield better accuracy for the problem of malware detection. However,

the graph-based machine learning techniques we use, i.e., graph kernels, are compu-

tationally expensive. Therefore, we also study the parallelization of graph kernels in

this dissertation. We first present a fast sequential implementation of the graph kernel.

Then, we explore two different parallelization schemes on the CPU and four different

implementations on the GPU. After analyzing the advantages of each, we present a

hybrid parallel scheme, which dynamically chooses the best parallel implementation to

use based on characteristics of the problem.

In the last chapter of this dissertation, we explore parallelizing deep learning on a

novel architecture design, which may be prevalent in the future. Parallelization of deep

learning methods has been studied on traditional CPU and GPU clusters. However,

the emergence of Processing In Memory (PIM) with die-stacking technology presents

an opportunity to speed up deep learning computation and reduce energy consumption

by providing low-cost high-bandwidth memory accesses. PIM uses 3D die stacking to

move computations closer to memory and therefore reduce data movement overheads.

In this dissertation, we study the parallelization of deep learning methods on a system

with multiple PIM devices. We select three representative deep learning neural network

layers: the convolutional, pooling, and fully connected layers, and parallelize them

using different schemes targeted to PIM devices.

xvi

Chapter 1

INTRODUCTION

With over 260 million shipments, Android has dominated the smart phone mar-

ket with a 78.0% share in the first quarter of 2015 [46]. Unfortunately, the growing

popularity of Android smart phones and tablets has made this popular OS a prime

target for security attacks. In 2014, nearly one million unique malicious applications

were produced, a 391% increase from 2013. Some estimates say that Android has been

targeted by 97% of the developed mobile malware [64], creating an urgent need for

effective defense mechanisms to protect Android-enabled devices.

Researchers have proposed various characterization methods to counter the in-

creasing amount and sophistication of Android malware. These methods can be cate-

gorized into: static analysis, dynamic analysis, and hybrid techniques. Static analysis

is based on extracting features by inspecting an application’s manifest and disassem-

bled code [91, 38, 10, 98, 94]. By contrast, dynamic analysis methods monitor the

application’s behavior during its execution [32, 17, 93, 80, 68, 84, 30]. Hybrid meth-

ods typically analyze an application before installation and also record its execution

behavior [14, 100, 83, 56, 89, 55, 99]. These sets of static and dynamic information are

then used together to detect malicious behavior. Static analysis is usually lightweight

and can be performed on a user’s device while dynamic analysis is usually performed

in an offline emulator due to simulation overhead. Static and dynamic analysis both

have their disadvantages. Static analysis techniques can be defeated by malware pack-

ing and other malware obfuscation techniques. On the other hand, dynamic analysis

techniques can be defeated if the malware notices it is running in an emulator or sand-

boxed environment [66]. The hybrid analysis method is gaining more popularity for

1

its combined advantages from both static and dynamic analysis and its capability to

yield better accuracy in detecting malware.

This dissertation first proposes a dynamic-analysis-based method for Android

malware classification. We use the Linux tool strace [4] to dynamically collect system

calls for each application during its execution. We then develop a set of scripts to

incorporate the low level information collected by the strace utility into a data repre-

sentation that can be used with machine learning. One elegant way to represent this

low level information is by using graphs. Instead of employing a traditional flat fea-

ture vector representation, graphs allow us to represent the data in a more structured

manner. In this dissertation, we evaluate three traditional feature vector representa-

tions including histograms, n-grams, and the Markov Chains. Histograms count the

invocations of each system call while n-grams count the invocations of n contiguous

system calls. The Markov Chains are directed graphs where the vertices are the system

calls and the edges are the transition probabilities between system calls. We then pro-

pose novel graph representations based on each of these vector representations, namely

the Histogram System Call Graph (HSCG), the N-gram System Call Graph (NSCG),

and the Markov Chain System Call Graph (MCSCG). In these graphs, each vertex is

a process belonging to the corresponding application. The root node of each graph

is the main process which is the first process created for the application during its

startup. The graph is then formed by collecting processes with direct ancestral lineage

to the main process and then connecting parent/children processes. Different graphs

have different labels for their vertices. For HSCG, the label is a histogram vector; for

NSCG, the label is an n-gram vector; and for MCSCG, the label is a Markov Chain

vector. We also explore two other graphs, the Ordered System Call Graph (OSCG)

and the Unordered System Call Graph (USCG), in which each system call invocation

is treated as a vertex and labeled with they system call name. In the OSCG, each

vertex is connected to the previous vertex of the same process. The first vertex of one

process is connected to the system call spawned this process. In the USCG, all vertices

of one process are connected to the same system call that spawned the corresponding

2

process. To perform classification, we apply graph kernels on the graph representations

and feed the graph similarities into a machine learning model, e.g., Support Vector Ma-

chine (SVM), for classification. Similarly, we also feed the feature vectors into an SVM

to construct the classification model and compare it with the graph model. Figure 1.1

shows our two different dynamic analysis models.

Figure 1.1: This figure shows feature-vector-based model and graph-based model for
dynamic Android malware analysis.

Next, we augment our dynamic analysis method with a static analysis method

and propose HADM, Hybrid Analysis for Detection of Malware. In addition to

dynamic execution behavior, we extract a set of static features from each Android

application and convert this information into feature vector representations. For each

feature vector representation, we train one Deep Neural Network (DNN) and then

apply the SVM algorithm to construct a static classification model. Figure 1.2 shows

how we build our feature-vector-based static analysis model. To construct our hybrid

analysis model, we apply a hierarchical Multiple Kernel Learning (MKL) to combine

different static and dynamic models as shown in Figure 1.3.

To evaluate the performance of HADM, we collected thousands of Android ap-

plications across all categories of Google Play. We also collected a large number of

3

Figure 1.2: This figure shows feature-vector-based model for static Android malware
analysis.

Figure 1.3: Combining static model and dynamic model using multiple kernel learn-
ing to construct hybrid Android malware classification model.

4

Android malware from VirusShare 1. In our dataset, 4002 samples are categorized as

benign applications and 1886 samples are categorized as malware. Experiments on

this dataset show, for dynamic features, the best classification accuracy that can be

achieved is 83.3% by feature-vector-based representations and 87.3% by graph-based

representations. On average, graph-based representations are able to achieve 5.2%

absolute classification accuracy improvement over the feature-vector-based representa-

tions. For original static feature vector sets, the best classification accuracy that can

be achieved is 93.5%. Finally, by applying hierarchical MKL, classification accuracy of

the final hybrid classifier is further improved to 94.7%.

For HSCG, NSCG, and MCSCG graph sets, we select the Shortest Path Graph

Kernel (SPGK) to compute pairwise similarities. SPGK has been proven more accurate

than other graph kernels in other domains [15]. However, given that the running time

for SPGK is O(n4), it may not be appropriate when applied to a large graph dataset.

We therefore propose the parallelization of the SPGK graph kernel on multicore CPUs

and GPUs. We first split the original shortest path kernel into two parts and present

a fast sequential implementation of SPGK which we refer to as Fast Computation of

Shortest Path Kernel (FCSP). Then, we explore two different parallelization schemes on

the CPU using OpenMP and four different parallel implementations on the GPU using

OpenCL. After analyzing the advantages of each we propose a hybrid version, which

dynamically predicts and chooses the best implementation between the multicore CPU

and the GPU parallel implementation based on the characteristics of the graphs being

processed. The results show that the sequential FCSP algorithm running on CPU is

able to achieve a maximum speedup of 76x over a naive sequential implementation of

the shortest path graph kernel algorithm running on the same CPU. The results also

show that our GPU implementation of FCSP offers a maximum 18x speedup over the

sequential FCSP. Our GPU implementation also achieves a maximum of 2x speedup

over a parallel CPU implementation of FCSP. At the end, we show the hybrid algorithm

1 http://virusshare.com

5

http://virusshare.com

works best for all of our datasets.

For vector sets, we train them using deep learning methods. Prior work has suc-

cessfully accelerated deep learning by mapping the application to existing architectures

including CPUs and GPUs [52, 24, 21]. However, relatively little research has been

done to evaluate the potential of emerging architecture designs, such as in-memory

computing, to improve the performance and energy efficiency of deep learning. Mov-

ing data close to computation reduces data movement overhead and therefore speeds

up the computation. In this dissertation, we also explore the potential of Processing

In Memory (PIM)2 implemented via 3D die stacking to improve the performance of

deep learning. From popular deep learning models, we select three frequently used and

representative neural network layers : the convolutional layer, the pooling layer, and

the fully connected layer. we parallelize these layers individually across multiple PIM

devices. We also evaluate two different parallelization schemes, data parallelism and

model parallelism. Experiments show that by scaling deep learning models to multiple

PIMs available in a system, we are able to achieve better or competitive performance

compared with a high-performance host GPU in many cases across the different lay-

ers studied. We show that model parallelism consumes much less memory than data

parallelism on fully connected layers, and it also reaches better performance when the

number of input images per training batch is small. However, as batch size increases,

data parallelism scales better due to the absence of synchronization and it outperforms

model parallelism.

The rest of the dissertation is structured as follows. Chapter 2 provides an

overview and related work on different Android malware classification methods and

parallelizations of graph kernel and deep learning. Chapter 3 describes our dynamic

Android malware classification method. Chapter 4 augments the dynamic method with

a static analysis method and propose a hybrid method named HADM. Our paralleliza-

tions of SPGK is detailed in Chapter 5. Parallelization of deep learning using multiple

2 This dissertation uses PIM as an abbreviation interchangeably for processing in
memory and processor in memory depending on the context.

6

PIM devices are presented in Chapter 6. Conclusions reached from the research in this

dissertation are presented in Chapter 7.

7

Chapter 2

BACKGROUND

Malware analysis and detection is a continuously evolving field of research. Sev-

eral concepts and techniques have been proposed in the last few years to defend against

the increasing amount and sophistication of malware. In general, Android malware

can be analyzed using three different methods: static and dynamic analysis and hybrid

analysis, which is a combination of both. Static methods mainly focus on extract-

ing features from the manifest and code of the application. Static analysis is usually

lightweight but can be circumvented by malware with packing and other obfuscation

techniques [66]. Dynamic methods concentrate on scrutinizing behavior of malware

during its execution in an emulation environment. Therefore, dynamic analysis is usu-

ally done before it is installed on the Android device. However, dynamic analysis

techniques can also be circumvented if the malware notices it is running in a simulated

environment. The hybrid analysis method is increasing in popularity because it takes

advantages of the strengths of both static and dynamic analysis and therefore is able

to yield better performance. In this dissertation, we first propose a dynamic analysis

method with novel graph-based representation. We then extend our method to hybrid

analysis method by augmenting the dynamic analysis with a static analysis method.

2.1 Android Malware Detection using Static Analysis

Static analysis involves extracting information from the application’s manifest

the Android application’s bytecode. The features often used in static analysis include

API usage, requested permissions, used permissions, control flow, data flow, hardware

components, application components, intents, sensitive API calls, network address, etc.

8

Schmidt et al. [76] performed static analysis on a common binary file format

called Executable and Linking Format (ELF). They performed static analysis on the

ELF files to extract function calls using the command readelf. Function call lists were

extracted from the malware executables to classify them with Decision Trees (DT),

Rule Induction (RI), and Nearest Neighbor (NN) algorithms. The authors collected

240 malware, which targeted Linux systems. All of their algorithms achieved an 80%

or higher detection rate.

Wu et al., proposed DroidMat [91], which detects malware by characterizing

applications using the manifest file and API call tracing. DroidMat extracts static

information including permissions, deployment of components, intent message passing,

and API calls to characterize the Android application in a feature vector. Then, it

applies the K-means and K-Nearest Neighbor (KNN) algorithms to classify the ap-

plication as benign or malicious. The authors collected 238 Android malware from

Contagio [1], and they were able to reach 97.87% classification accuracy. However, the

results were only reported on the training data, and these excellent results are likely

due to overfitting.

Peng et al., explored an approach to rank the risk of Android applications using

probabilistic generative models [63]. They extracted permissions, specifically the top 20

most frequently requested, in their dataset from manifest files as a key feature. Then,

the risk scores were computed using different probabilistic models ranging in complexity

from simple naive Bayes through hierarchical mixture of naive Bayes models. They

tested their method on 378 malware mixed with different subsets of benign applications.

The best configuration had a detection accuracy of 78%.

Sahs et al., trained a one class Support Vector Machine (SVM) on benign appli-

cations to detect malicious applications [70]. Permissions required by the application

as well as Control Flow Graph (CFG) information are combined and fed into a cus-

tom kernel for classification. Experiments on 2081 benign and 91 malicious Android

applications showed their method can only detect approximately 50% of the malware.

9

Grace et al., implemented RiskRanker for zero-day Android malware detec-

tion [38]. A two-order risk analysis is performed in RiskRanker. The first-order handles

non-obfuscated applications by evaluating the risks in a straightforward manner. The

second-order analysis collects and correlates various signs or patterns of behavior com-

mon among malware, yet not among benign applications. RiskRanker was applied to

examine 118318 Android applications collected from various markets over September

and October 2011. It took four days to process all the applications and reported the

presence of 3281 risky applications. Among the reported applications, 718 malware

samples were uncovered and 322 of them were zero-day malware.

Sanz et al., presented PUMA [71], a system that uses the permissions that the

application requests upon installation to detect whether the application is malicious or

not. Machine learning models including simple logistic regression, naive Bayes, Bayes

net, SMO, IBK, J48, Random Tree (RT) and Random Forests (RF) were evaluated

on a dataset consisting of 357 benign and 249 malicious applications. The best overall

accuracy was reached by random forests at 86%.

Sanz et al., then improved PUMA and proposed MAMA [72] which employs not

only permissions, but also the features under the user-feature tag in the manifest file.

Machine learning algorithms including K nearest neighbors, decision trees, Bayes net,

and SVMs were evaluated. The best configuration of MAMA was able to reach 94.83%

classification accuracy on 333 malicious and 333 benign applications

Glodek et al., extended previous static analysis based work by using combi-

nations of features extracted from the manifest file and bytecodes of the program as

training features for a random forest algorithm [36]. In total, 147 features were used

that included characteristics such as permission and receiver requests and whether

the app included native code. Experiments on 500 malicious and 500 benign samples

showed the proposed method can provide true positive rates in excess of 90%.

Gascon et al., proposed a method for malware detection based on efficient em-

bedding of Function Call Graphs (FCG), which are high level characteristics of the

applications [35]. The authors extracted function call graphs using the Androguard

10

framework [29]. The nodes in the graph were labeled according to the type of instruc-

tions contained in their respective functions. A neighborhood hash graph kernel was

applied to evaluate the count of identical substructures in two graphs. Finally, an SVM

algorithm was used for classification. In an evaluation of 12158 malware samples, the

proposed method detected 89% of the malware.

Lee et al., presented a detection mechanism using runtime semantic signatures,

which are supposed to have high family classification accuracy [54]. The authors used

three elements to construct the signature. The first set was binary patterns of malicious

API call instructions and their runtime semantics for control and data flow. The second

set was the malware family characteristics including family common string, constants,

methods, and classes for malware belonging the same family. The third set was weights

of each behavior within family. Experiments on 1759 Android malware including 79

variants of 4 malware families showed the proposed method was able to accomplish

99.89% accuracy on detecting the family of a particular variant of malware.

Wolfe et al. [90], proposed a method of screening malicious Android applica-

tions that used two types of features: the requested permissions in the manifest and

Percentage of Valid Call Sites (PVCS) calculated from a data dependency graph. They

used a collection of 1433 malware and 2436 benign applications. For classification, K

nearest neighbors, naive Bayes, SVM algorithms, Boosted Decision Trees (BDT), and

random forests were evaluated. The best classifier detected 83.75% of the malware

from unfamiliar families and 96% of those from familiar families.

Arp et al., proposed DREBIN [10], which is a similar approach to the method

proposed by Peng et al. [63]. Eight different static feature sets were extracted by

DREBIN including hardware components, requested permissions, application compo-

nents, filtered intents, restricted API calls, used permissions, suspicious API calls, and

network address. However, unlike Peng et al., which used a naive Bayes approach [63],

a linear SVM algorithm was used for classification. In an evaluation including 123453

benign applications and 5560 malware samples, DREBIN detected 94% of the malware.

11

Zhang et al., implemented DroidSIFT [98]. They extracted a weighted contex-

tual API dependency graph as program semantics to construct feature sets. Graph

similarity metrics were introduced to uncover homogeneous application behaviors. Ex-

periments on 2200 malware samples and 13500 benign samples were performed using

naive Bayes. The results show that DroidSIFT can detect 93% of malware instances.

Yang et al., developed DroidMiner [94] which uses static analysis to automati-

cally mine malicious program logic from known Android malware. A two-tiered behav-

ior graph is constructed in DroidMiner. The upper tier is a Component Dependency

Graph (CDG) in which each node represents an activity, service or broadcast receiver.

The lower tier uses Component Behavior Graphs (CBG) to represent each component’s

lifetime behavior functionalities. From the behavior graph, different malicious patterns,

named modalities by the authors, can be mined. In particular, function modality, which

represents an ordered sequence of API functions, and resource modality, which repre-

sents a set of sensitive resources, are extracted and converted to a modality vector

by DroidMiner. The vectors are then fed into several machine learning classifiers in-

cluding naive Bayes, SVM algorithms, decision trees, and random forests for malware

detection. The best algorithm of DroidMiner can achieve a 95.3% detection rate on a

dataset of 2466 malware. It can also reach 92% for classifying malware into its proper

family.

2.2 Android Malware Detection using Dynamic Analysis

Dynamic analysis records the execution behavior of an application and tries

to identify malicious behavior. It is well known for being resilient to obfuscation

techniques. However, dynamic analysis introduces overhead because it requires running

the application first and then deciding if it is malware based on run-time behavior. As

a consequence, it is mostly applied to offline detection of malware on a server. One

other deficiency of dynamic analysis is code coverage. Since some malicious behaviors

are guarded by trigger conditions, dynamic analysis will not record an application’s

malicious behavior if the conditions are not triggered.

12

Enck et al., implemented TaintDroid [32], which was the first work to propose

taint tracking for monitoring data flow dependencies and data leakage in Android ap-

plications. They used TaintDroid to study the behavior of 30 third-party applications.

Their study revealed that two thirds of the applications exhibit suspicious handling of

sensitive data.

Burguera et al., proposed CrowDroid [17] for identifying repackaged malware

using dynamically collected behavior features. Repackaged malware is created by

repackaging a benign application with additional malicious code. CrowDroid collects

the frequencies of several system calls from several users running the application on

different devices using Linux strace [4] tool. The system call histograms are then fed

into K-means clustering with K = 2 to separate benign applications from repackaged

malicious instances. The authors performed experiments on four artificial malware

created by the authors and two real world examples. CrowDroid detected all four

author-created malware but generated false positives in real world malware.

Shabtai et al., designed Andromaly [80] which uses 88 dynamic features includ-

ing memory page activity, SMS message events, CPU usage, network usage, touch

screen pressure, binder information, battery information, etc. The authors evaluated

different combinations of features using information gain and Fisher scores. Features

with the best scores were selected. Then applied several classifiers including decision

trees, naive Bayes, Bayes nets, histograms, K-means, and logistic regression were ap-

plied. For experiments, four artificial malware were used and the best configuration

was able to achieve approximately 88% accuracy.

Yan et al., proposed DroidScope [93] which is similar to TaintDroid [32]. While

TaintDroid focuses on taint analysis, DroidScope enables introspection at different lay-

ers of the platform. By building two levels of semantic information: the operating

system and Java, DroidScope enables dynamic instrumentation of both the Dalvik

bytecode as well as native instructions. Therefore, the analyst is able to reveal the

behavior of a malware sample’s Java and native components as well as interactions be-

tween them and the rest of the system. Evaluation on two real world Android malware

13

samples, DroidKungFu and DroidDream from Genome [101], proved the capability of

DroidScope. No malware classification experiments were reported in the paper describ-

ing DroidScope.

Ham et al. [39] proposed a method that is very similar to CrowDroid. They

also aggregated real-time system calls to create a histogram using Linux strace [4] tool.

They discovered that some system call patterns can only occur in malicious applications

and some only in benign applications. Different from the K-means used in CrowDroid,

Ham et al., applied a discrimination algorithm based on Euclidean distance on 1260

malware samples distributed by Genome [101]. No classification accuracy was reported

by the authors.

Amos et al. [7] also used hand-selected dynamic features similar to Andromaly.

They collected memory, CPU, and binder information and evaluated their method on

a dataset consisting of 1330 malware and 408 benign applications. For classification,

random forests, naive Bayes, multilayer perceptrons, Bayes nets, logistic regression, and

decision tress were applied. The experiments showed they can achieve 95% accuracy

on new traces from applications included in the training set and 82% on traces from

applications that were not included.

Reina et al., presented CopperDroid [68], an approach built on top of QEMU [12]

to automatically perform out-of-the-box dynamic behavioral analysis of Android mal-

ware. CopperDroid records system call invocations by instrumenting QEMU to record

information when the swi instruction is executed. Binder analysis is also performed in

CopperDroid for reconstructing high-level Android-specific behaviors. Experiments on

malware distributed by Genome [101] and Contagio [1] were carried out by the authors

to assess the effectiveness of CopperDroid. No malware classification experiments were

reported in the paper describing CopperDroid.

Google is currently running a detection system called Bouncer. Little is known

about it, except that it is a QEMU-based dynamic analysis framework that bounces

applications off of the official Google Play market if they are deemed to be malicious.

14

Tchakounté et al. [85] scrutinized system call invocations initiated by the mali-

cious code at the moment the user runs it using the Linux strace [4] tool. With their

tool they discovered new scenarios of how the user can be lured to aid the malicious

developer.

Demme et al., examined the feasibility of building a malware detector in hard-

ware using existing performance counters [26] such as arithmetic operations executed

and L1 exclusive hits. After embedding the information collected from performance

counters into different feature vectors, several machine learning algorithms including

K nearest neighbor, decision trees, and random forests were applied for classification.

Experiments on 503 malware and 210 non-malware programs from both Android ARM

and Intel X86 platforms were performed. Results showed that the robustness and se-

curity of hardware anti-virus techniques have the potential to advance state-of-the-art

online malware detection.

Wei et al. [88] recorded system call invocations by manually installing and exe-

cuting each application on a real Android phone. N-gram vectors were generated from

the system call invocations and fed into an SVM and a naive Bayes for classification.

Experiments on 96 benign applications and 92 digital book malware samples showed

their methods can reach 94% accuracy.

Dimjasevic et al. [30] proposed MALINE, which also recorded system call invo-

cations for Android malware and converted them into two representations. One was

histogram and the other was a variant of the Markov Chain representation. Experi-

ments on 4289 malware and 12789 benign applications showed they can achieve 93%

detection accuracy.

2.3 Android Malware Detection using Hybrid Analysis

Hybrid methods combining static analysis and dynamic analysis have also been

done in prior work. These methods typically consist of analyzing the application before

installation and also recording the execution behavior. Static and dynamic analysis

are then used together for malware detection.

15

Blasing et al., proposed a tool called the AASandbox [14] that performs both

static and dynamic analysis. It was the first system applying hybrid analysis in a

very basic way for the Android platform. AASandbox scans the software for malicious

patterns without installation. It also intervenes and logs low-level interaction with

the system for further analysis during the application execution. An example run was

described by the authors to prove the correctness of AASandbox.

Zhou et al., proposed DroidRanger [102], which implements a combination of

permission-based behavioral footprinting to detect new samples of already known mal-

ware families and a heuristic-based filtering scheme along with dynamic execution

monitoring to detect unknown malicious families. Experiments with 204,040 applica-

tions collected from different Android markets in June 2011 revealed 32 malware from

the official Android market and 179 from alternative marketplaces.

Zheng et al., proposed SmartDroid [100], which is a hybrid analysis method to

reveal UI-based trigger conditions in Android applications. SmartDroid first uses static

analysis to extract expected activity switch paths by analyzing Activity Call Graphs

(ACG) and Function Call Graphs (FCG). ACG graphs contain nodes representing ac-

tivities. An edge between two activities if there is an intent created to switch activities.

Nodes in FCG graphs are sensitive APIs and a node is connected to another node if

it is called by the “invoke” instruction. SmartDroid uses dynamic analysis to traverse

each UI elements and explore the UI interaction paths towards the sensitive APIs.

SmartDroid found 7 malware families among 19 applications in their experiments. No

malware classification experiments on a large sample of applications were reported in

the paper describing SmartDroid.

Canfora et al., proposed a method for detecting malware based on the occur-

rences of a specific subset of system calls, a weighted sum of a subset of permissions

that the application required, and a set of combinations of permissions [19]. Various

machine learning methods including J48, LadTree, NBTree, random forests, random

tree, and RepTree were used for classification. Experiments on a dataset made up

of 200 benign and 200 malicious Android applications were carried out and the best

16

algorithm achieved a detection accuracy of 80%.

Lindorfer et al., proposed Andrubis [56, 89, 55], which performs both static and

dynamic analysis. During the static analysis stage, Andrubis extracts information from

an application’s manifest and bytecode such as requested permissions, services, broad-

cast receivers, activities, package name, SDK version, and a complete list of available

Java objects and methods. During dynamic analysis, Andrubis introduces multiple

stimulation approaches to increase the exploration of the application’s functionality.

Taint tracking, method tracing, system call invocation recording are also performed in

the dynamic analysis stage. Other than this, auxiliary analysis on network traffic is

also carried out. Andrubis provides a web interface for users to submit Android apps,

and it has collected a dataset of over one million Android applications including 40%

malware.

Spreitzenbarth et al., proposed Mobile-Sandbox [83], which is similar to Andru-

bis [56, 89, 55]. Mobile-Sandbox first matches the hash value of the testing application

against the VirusTotal database. Then it analyzes the manifest to extract permissions,

intents, services, and receivers. API calls that happen frequently in malware are also

extracted from the Dalvik bytecode. During the dynamic analysis stage, ltrace [3],

a common Linux debugging utility that intercepts library calls of a monitored appli-

cation, is included to track native code. Network traffic is also logged as auxiliary

analysis. Similar to Andrubis, Mobile-Sandbox provides a web interface for a user

to submit Android apps and returns reports of static and dynamic features. Accord-

ing to the paper describing Mobile-Sandbox, the major difference between Andrubis

and Mobile-Sandbox is that the latter can support applications beneath Android API

level 11 while Andrubis is limited to applications beneath API level 8. Additionally,

Andrubis is not able to track native code.

Yuan et al., proposed Droid-Sec [95]. In Droid-Sec, over 200 features from both

static and dynamic analysis are extracted including required permissions, sensitive API,

17

and dynamic behaviors emulated using DroidBox1. The features are represented as a

flat feature vector and fed into a DNN for classification. Experiments on 250 malicious

and 250 benign applications show Droid-Sec is able to reach 96.5% accuracy.

Yuan et al., then proposed DroidDetector [96]. It uses the same method as

proposed in Droid-Sec. In total, 192 features from both static and dynamic analyses

of Android applications are extracted by DroidDetector. It then characterizes malware

using a DNN-based deep learning model. DroidDetector was evaluated with 20,000

benign samples and 1760 malware samples. It achieved 96.76% detection accuracy.

2.4 Originality of Our Android Malware Analysis Method

There appears to be no existing work that adapts graph-based representation

to a dynamic analysis based method. Our dynamic method is different from all the

aforementioned methods because we developed novel graph-based representations for

Android applications by converting system call invocations to graphs. System calls have

been used for malware detection in other methods [85, 68, 17, 93, 39, 88, 30]. However,

in all the previous work, one feature vector is constructed for the entire application.

We used this as the baseline for our experiments. Our graph-based methods augment

the feature-vector-based methods by constructing a graph to represent the caller-callee

relationship of different processes.

Comparing with other hybrid analysis-based methods, our method applies deep

learning to improve the performance of each characterization techniques we use and

combine them using optimal weights computed by MKL.

Table 2.1 summarizes the previous Android malware analysis works and our

proposed method.

2.5 Graph Computation Parallelization

Graph-based methods have become an increasingly popular approach for learn-

ing patterns from graphs. It has been successfully used on protein classification [15]

1 https://code.google.com/p/droidbox/

18

https://code.google.com/p/droidbox/

Table 2.1: This table shows the summary of previous Android malware research
works.
System Static Dynamic Hybrid Parallelization Open Source Web Interface

Schmidt et al. [76] Yes No No No
DroidMat [91] Yes No No No
Peng et al. [63] Yes No No No
Sahs et al. [70] Yes No No No

RiskRanker [38] Yes No No No
PUMA [71] Yes No No No
MAMA [72] Yes No No No

Glodek et al. [36] Yes No No No
Gascon et al. [35] Yes No No No

Lee et al. [54] Yes No No No
Wolfe et al. [90] Yes No No No

DREBIN [10] Yes No Malware Samples No
DroidSIFT [98] Yes No No No
DroidMiner [94] Yes No No No
TaintDroid [32] Yes No Source Code No
CrowDroid [17] Yes No No No
Andromaly [80] Yes No Source Code No
DroidScope [93] Yes No Source Code No
Ham et al. [39] Yes No No No
Amos et al. [7] Yes No Source Code No

CopperDroid [68] Yes No No Yes
Tchakount et al. [85] Yes No No No

Demme et al. [26] Yes No No No
Wei et al. [88] Yes No No No
MALINE. [30] Yes No Source Code No

AASandbox [14] Yes No No No
DroidRanger [102] Yes No No No
SmartDroid [100] Yes No No No
Canfora et al. [19] Yes No No No

Andrubis [56, 89, 55] Yes No No Yes
Mobile-Sandbox [83] Yes No No Yes

Droid-Sec [95] Yes No No No
DroidDetector [96] Yes No No No

Proposed HADM Yes Yes No No

and image classification [60] [5] [16] [6] [41] [48]. However, the core part of all graph-

based classification methods, i.e., graph matching or graph similarity computation can

be expensive.

To the best of our knowledge, no parallelization of graph kernels has been pub-

lished. However, the transformation of a graph into a shortest path graph on the

GPU, in particular the Floyd-Warshall algorithm, has been done in the past. Har-

ish and Narayanan [42] presented a simple GPU implementation. They assigned each

atomic task to a single GPU thread. Their approach is limited by the time spent

on accessing global memory. Katz and Kider [49] improved Harish’s work by using

a blocked approach. In their implementation, shared memory is used, which resulted

19

in a 5x speedup over Harish’s work. Lund and Smith [57] applied a multi-stage ap-

proach, which enables them to remove data dependencies and make a more efficient use

of registers and shared memory. In the end, they achieved a 5x speedup over Katz’s

implementation.

2.6 Deep Learning Parallelization

Deep learning methods have become the most popular approach in many ma-

chine learning domains including speech recognition, image classification, and natural

language processing [9]. However, the computation involved in deep learning often

comes at a great cost. Therefore, parallelization of deep learning has been studied

by many researchers using different architectures. For example, AlexNet [52] paral-

lelized the deep learning training using two GPUs, DistBelief [24] used 16,000 CPU

cores for parallelization, and a COTS HPC system [21] consisting of 16 GPU servers

has also been studied for deep learning parallelization. Our method differs from the

previous methods because, instead of using traditional architectures, we explore the

parallelization of deep learning on PIM implemented via 3D die stacking.

20

Chapter 3

ANDROID MALWARE CLASSIFICATION USING DYNAMIC
ANALYSIS

3.1 Introduction

One key behavioral feature used in dynamic analysis of malware is the system

call invocations [85, 68, 17, 93, 39, 19, 40, 88, 30]. In previous work on Android mal-

ware analysis, the most common representation of the set of system call invocations is

to convert them into histograms. However, other representations including signatures,

n-grams, and the Markov Chains have been studied previously in Windows malware

analysis research [31, 8, 69, 18, 67]. Despite the differences, all methods work rea-

sonably well with high classification accuracies and low false positive rates. However,

each of these approaches has its drawbacks. The histogram representation can capture

the distribution of system calls, but ignores the structural information. The signature

method inherently prevents the detection of unknown malware of which no signatures

exist. N-gram analysis is not only unable to capture malware structural information,

but also introduces pressure on computational resources due to its large feature space.

The Markov Chain representation takes advantage of the transition probabilities be-

tween system calls, but it cannot record their order and structure. In this work, we

show that using of structure is important. Using structure we are able to achieve up

to 87.3% classification accuracy while without using structure we only achieve 83.3%.

The traditional histogram, signature, n-gram, and the Markov Chain represen-

tations can all be considered as feature-vector-based representations. In this chapter,

we first reimplement the representations used in previous work, namely system call

histograms, n-grams, and the Markov Chains for Android malware analysis. Then, we

21

develop novel graph-based representations, one for each of the three traditional feature-

vector-based representation, namely the Histogram System Call Graph (HSCG), the

N-gram System Call Graph (NSCG), and the Markov Chain System Call Graph (MC-

SCG). In the HSCG, processes with direct ancestral lineage to the main process are

collected. The main process is the first process created for the application, and thus the

first node in the graph. Each process is treated as a vertex and labeled with a histogram

of its system call invocations. The graph is formed by connecting parent/children pro-

cesses. The NSCG is similar to HSCG except the nodes in NSCG are labeled with

n-gram vectors. Similarly, nodes in the MCSCG are labeled with the Markov Chain

vectors. We also propose Ordered System Call Graph (OSCG) and Unordered System

Call Graph (USCG). In OSCG and USCG, each system call invocation is treated as a

vertex and labeled with the system call name. The difference between the OSCG and

the USCG is how the vertices are connected. We define a process subtree as a tree

containing all system call invocations of the corresponding process. Then, each vertex

connects to the previous system call invocation in OSCG, whereas all vertices connect

to the root of the process subtree in USCG. In both OSCG and USCG, an artificial

node labeled root is added as the root for the main process subtree, and all the other

process subtrees are rooted at the vertex that spawned the corresponding process.

In this research, we first use strace, the Linux system call utility to dynamically

collect system call invocations from the execution of an Android application. We run

each application in an Android emulator called Genymotion1. At the beginning of

emulation, we run each application for a certain amount of time without interference.

We then simulate a series of interactive events, and all the system call invocations that

happened during the emulation are recorded. We present a set of methods to convert

the system call trace from execution of a specific application into different feature-

vector-based and graph-based representations. After conversion, we use graph kernel

to compute the pairwise graph similarities of the Android applications for each graph

1 http://www.genymotion.com

22

http://www.genymotion.com

representation. The similarity measures are subsequently constructed and provided as

a kernel matrix to a machine learning model, e.g., Support Vector Machine (SVM) for

classification. Similarly, vector representations are also fed into an SVM to construct

the classification model. Figure 3.1 shows how we construct the dynamic analysis

model using graph representations and Figure 3.2 shows the model construction using

vector representations.

Figure 3.1: Dynamic analysis using graph-based representations. The system call
traces are converted to graphs and graph kernels are applied to construct
similarity kernel matrix. An SVM is used at the end for classification.

For feature-vector-based representations, Gaussian kernel, Linear kernel, and

Intersect kernel algorithms are evaluated. For graph-based representations, we use the

Shortest Path Graph Kernel (SPGK) algorithm with the HSCG, NSCG, and MCSCG

graphs. SPGK is suitable for similarity computations of graphs with continuous labels

(e.g., vectors). For the OSCG and USCG graphs, we use the Fast Subtree Kernel

(FSK) method, which is designed for graphs with discrete labels (e.g., strings). Since

23

Figure 3.2: Dynamic analysis using vector-based representations. The system call
traces are converted to vectors and fed into an SVM for classification.

SPGK is computationally expensive with a running time of O(n4), we parallelize this

algorithm using a hybrid method described in Chapter 5.

3.2 Android Application Emulation

To capture runtime execution behavior of an application, we record the system

call invocations during execution of the application using the Linux strace tool [4].

Our dynamic analysis of Android applications is performed in an emulated Android

OS environment named Genymotion. It is well known that malware tends to carry

out critical tasks upon initial execution. However, some malware may not execute

malicious code until after user interaction or until it is triggered by particular events.

Therefore, during our emulation, we first start the application and keep it running

for some time without any interference. Then we stimulate a series of user interaction

events using the Monkey toolkit provided by the Android SDK. We also stimulate other

events including phone call, SMS message, and movements while the app is running.

3.2.1 Emulation Procedure

The process of dynamically analyzing Android APK files is performed in a fully

automated manner. Before analysis begins, the system is initialized as follows: First,

from a Ubuntu 14.04 desktop, the Genymotion emulator is launched. Second, a folder

of APK files is created, which serves as the sample repository to analyze. Third, a

folder is created as the output repository to store the analysis result files. Given these

24

initialization steps, a python script is executed to manage the analysis procedure and

issues all necessary commands to the runtime environment. Communication between

the python script and the runtime environment is performed using the Android Debug

Bridge (ADB) tool. Given the initialization described above, the following steps are

performed by the python script to load and launch an APK in the runtime environment

and collect the execution data:

1. Install application from input repository

2. Retrieve zygote process id (PID)

3. Run strace on zygote

4. Start an application and run for 20 seconds

5. Retrieve the application PID

6. Simulate user interactions using Monkey and run for 10 seconds

7. Simulate phone call events and run for 10 seconds

8. Simulate SMS message events and run for 10 seconds

9. Simulate phone movement events and run for 10 seconds

10. Simulate a second run of user interactions using Monkey and run for 10 seconds

11. Stop strace, move log files to output repository

Steps 1-11 are iterated until all samples in the repository have been analyzed. Step

1 copies and installs the APK file into the Android emulator. Step 2 applies the ps

command to retrieve the PID of the zygote process. Step 3 starts the strace command

to record all system call invocations of zygote and its descendant processes. The

zygote process is a standard process running in the Dalvik Virtual Machine that is a

component of the Android runtime environment. Whenever an application is launched

in Android, the associated process of the application is created and assigned a PID

by zygote. By recording execution behavior of zygote, we are able to record the

runtime execution behaviors of all the applications that are going to start later from

the moment of their creation by zygote. Step 3 assures that we collect all relevant

25

data of the application from its launching time because we trace its parent process

zygote. Step 4 launches the application under analysis. The application is executed

for 20 seconds without any interference. Step 5 issues a ps command which provides

a list of all currently running processes and their PID. This list is saved to a file used

for identifying the PID of the application under analysis. Since the strace records all

processes with direct ancestral lineage to zygote, there can be multiple processes that

we can ignore during analysis. By recording the list of PIDs we are able to retrieve

information only related to the application under analysis and its descendant processes

and threads. The package name for the application under analysis is used to identify

the running process in the ps output. We conduct our analysis by using the PID

associated with the application’s package name in the ps output. Steps 6-10 stimulate

different events. In step 6 and 10, we use Monkey to generate 200 random events

including touch events, motion events, trackball events, navigation events, system key

events, and activity launching events. We also set the delay between events to 100

milliseconds. In step 7, we simulate four phone call events including incoming phone

call, answering phone call, making phone call, and rejecting phone call. In step 8,

we simulate receiving and sending SMS messages containing sensitive information like

password and bank account. In step 9, we stimulate the movement of a phone from one

location to another. After each stimulation step, we keep the application running for

10 seconds without any interference. Step 11 stops the strace and places the resulting

files in the output repository. Two files are retrieved, one containing the strace data

and the other with the ps output.

3.2.2 System Call Invocation Extraction

After we collect the strace data and the ps output for each application, the

package name, retrieved from each application’s manifest file, along with the strace

and ps files, are used as input to a script that converts the strace files to multiple

representations. This strace conversion method has two parts. The first extracts

system call invocations only belonging to the testing application since the strace log

26

file contains system call invocations of zygote and all its child processes. A system call

trace returned by the first part serves as input to the second part, which converts the

trace to feature vector or graph representations.

An important step in our strace conversion script is to look up the package

name in the ps output to identify the PID of the application. With the strace data and

PID of the application under analysis, our script can extract only the processes and

system call invocations belonging to the testing application. In the strace log file, each

line records one system call invoked by a particular PID. The lines can be parsed into

columns that record PID, invocation time, system call name, parameters and return

values respectively. Since the strace log file contains not only system call invocations of

the application under analysis, but all processes with direct ancestral lineage to zygote,

we need to extract information only related to the testing application. To achieve this,

our strace conversion script first creates a process list containing only the PID of the

application. Then, it traverses the strace log file. If an invocation is made by a process

in the process list, then the PID, name, and return value of this invocation are added

as an entry into the system call trace. If the name of this invocation is fork or clone,

it means a child process is spawned. On success, both system calls return the PID of

the child process. On failure, −1 is returned. If the return value of fork or clone is not

−1, our conversion script adds the return value that is the PID of the spawned child

process into the process list, then it continues the search. Finally, a system call trace

serving as an input for the subsequent conversion part is returned. Algorithm 1 shows

the detailed steps of extracting the related system call invocations. For the purpose of

demonstration, we create one synthetic system call trace shown in Figure 3.3.

3.2.3 System Call List

From the full dataset of system call traces, we collect a system call list contain-

ing 213 unique system calls referred to as the full system call list. Since the length of

the system call list plays a key role in most representations in terms of computation

27

Algorithm 1 Extract System Call Invocations

Input: strace, ps, package name
Output: system call trace

1: root pid = ps.search(package name)
2: process list.add(root pid)
3: for line in strace.readlines() do
4: (pid,time,name,parameter,ret val)=parse(line)
5: if pid in process list then
6: system call trace.add(pid,name,ret val)
7: if name == “fork” or name == “clone” then
8: if ret val != −1 then
9: process list.add(ret val)

10: end if
11: end if
12: end if
13: end for
14: return system call trace

PID Name Ret_val

580 open 28

580 read 52

580 write 22

580 fork 581

581 fstat 0

581 mprotect 0

580 read 37

580 fork 582

582 write 27

580 close 0

Figure 3.3: This figure shows an example System Call Trace. First column is PID,
second column is the instruction name, and the last column is the return
value.

time, we want to keep the list as short as possible while maintaining the same clas-

sification accuracy. To find out the appropriate list, we compute the average number

28

of invocations per application for each system call and sort them. The sorting is done

separately for benign traces and malicious traces. We extract the top K system calls

from both traces and merge them to get the reduced system call list. We then perform

experiments by setting K to be 5, 10, 20, and 213. Results show that using the top

20 system calls is not as accurate as using the full system call list but it is able to

reach a very close classification accuracy with significantly reduced computation time.

Detailed results are in Section 3.5 and the top 20 system calls for benign and malicious

applications are shown in Figure 3.4.

3.3 Dynamic Characterization

Section 3.2 describes how we collect the system call trace for each application.

Along with the system call list, they serve as input to the second part of our script,

which converts the trace to a feature vector or a graph representation.

3.3.1 Feature Vector Representations

We first convert the system call traces to three previously studied feature-vector-

based representations used in Android and Windows malware analysis.

3.3.1.1 System Call Histogram

The first previously studied representation of system call usage in Android mal-

ware analysis we look at is a histogram. To convert a system call trace into a histogram,

our strace conversion script takes the system call trace and a system call list as input.

Then it parses each line of the trace in order, finds the index of each system call name,

and increments the corresponding element of the histogram by one. Algorithm 2 shows

the algorithm to convert a system call trace to a histogram. For demonstration pur-

poses, we show the resulting histogram in Figure 3.5 converted from the system call

trace listed in Figure 3.3. In our experiments, we feed our script both the full sys-

tem call list and the top 20 system call list, and the resulting histograms are named

histogram-full and histogram-top20, respectively.

29

0 500 1000 1500 2000
Average Number of Calls per Application

madvise
open

sigprocmask
mmap2
fcntl64
gettid

getuid32
mprotect

close
epoll_wait

recvfrom
write

cacheflush
read

gettimeofday
getpid

nanosleep
ioctl

futex
clock_gettime

(a) Benign application

0 500 1000 1500 2000
Average Number of Calls per Application

fstat64
sigprocmask

open
madvise

fcntl64
mmap2

getuid32
epoll_wait

gettid
recvfrom

write
mprotect

close
nanosleep

read
gettimeofday

getpid
ioctl

futex
clock_gettime

(b) Malicious application

Figure 3.4: These figures show top 20 system calls per application on average for
benign and malicious applications.

30

Algorithm 2 System Call Histogram Conversion

Input: system call trace, system call list
Output: histogram

1: for line in system call trace do
2: (pid,name,ret val)=parse(line)
3: index=system call list.index(name)
4: histogram[index]+=1
5: end for
6: return histogram

open read fork close fstat mprotect write

1 2 2 1 1 1 2

Figure 3.5: This figure shows a System Call Histogram converted from the system
call trace shown in Figure 3.3.

3.3.1.2 N-gram

Another previously studied representation of system call trace in malware anal-

ysis is an n-gram [88]. An n-gram is a contiguous sequence of n system calls from the

system call trace. There are two parameters associated with n-gram: n as the number

of system call invocations in the sequence, and L as the number of unique system calls

which is also the size of the system call list. Given n and L, there can be Ln different

n-grams. Therefore, the dimension of the resulting n-gram feature vector grows expo-

nentially as we increase the value of n. In our experiments, we merge the top 20 system

calls from benign and malicious applications, which sets the L to be 23 instead of 213

to reduce the n-gram feature vector dimensions. For n, we test three values numbered

31

2, 3, and 4. Algorithm 3 shows the algorithm of converting a system call trace into an

n-gram histogram. Figure 3.6 shows the 2-gram histogram converted from the trace

listed in Figure 3.3.

Algorithm 3 N-gram histogram Conversion

Input: system call trace, system call list, n
Output: N-gram-histogram

1: s=len(system call trace)
2: l=len(system call list)
3: for i = 0→ s− n do
4: pos=0
5: for j = 0→ n do
6: line=system call trace[i+j]
7: (pid,name,ret val)=parse(line)
8: index=system call list.index(name)
9: pos+=index*pow(l,j)

10: end for
11: N-gram-histogram[pos]+=1
12: end for
13: return N-gram-histogram

open read 1

read write 1

write fork 1

fork fstat 1

fstat mprotect 1

mprotect read 1

read fork 1

fork write 1

write close 1

Figure 3.6: This figure shows a 2-gram Histogram converted from the system call
trace shown in Figure 3.3.

32

3.3.1.3 Markov Chain

Another representation of system calls that has been studied in Windows mal-

ware analysis research is the Markov Chain [8]. It can be viewed as a directed graph

where the vertices are the system calls and the edges are the transition probabilities

calculated by the data contained in the trace. For a Markov Chain graph, G = 〈V,E〉,

it consists of two sets, the vertex set V and the edge set E. V corresponds to the

system calls, while E, corresponds to the transition probability from one system call

to another. Given n system calls in the system call list, an adjacency matrix An×n can

be used to represent the Markov Chain graph. For each element Ai,j in the matrix, it

presents the transition probability from system call i to system call j. The adjacency

matrix can be treated as a 1D feature vector and fed into a machine learning model for

classification. Algorithm 4 shows pseudo code for converting a system call trace into

a Markov Chain adjacency matrix. Figure 3.7 shows the resulting Markov Chain con-

verted from Figure 3.3. In our experiments, we generate the Markov Chains using the

top 20 system calls and the full system call list, which we have named MarkovChain-

top20 and MarkovChain-full, respectively.

Algorithm 4 Markov Chain Conversion

Input: system call trace, system call list
Output: Adj mat

1: s=len(system call trace)
2: for i = 0→ s− 1 do
3: line1=system call trace[i]
4: line2=system call trace[i+1]
5: (pid1,name1,ret val1)=parse(line1)
6: (pid2,name2,ret val2)=parse(line2)
7: index1=system call list.index(name1)
8: index2=system call list.index(name2)
9: Adj mat[index1][index2]+=1

10: end for
11: for i = 0→ len(system call list) do
12: Adj mat[i]=Adj mat[i] / sum(Adj mat[i])
13: end for
14: return Adj mat

33

open read

fork

close

fstat

mprotect

write

1.0 1.0

0.5 0.5

0.5

0.5

1.0

1.0

Figure 3.7: This figure shows a Markov Chain converted from the system call trace
shown in Figure 3.3.

3.3.2 Graph Representations

To improve the classification accuracy of the feature-vector-based representa-

tions, we propose a graph-based representation that augments each traditional feature

vector representation. In these graphs, each vertex represents a process of the Android

application and each vertex is labeled with a feature vector. We also propose two

other graphs, in which each vertex represents a system call invocation and each vertex

is labeled with the system call name.

3.3.2.1 Histogram System Call Graph

First, we can construct the Histogram System Call Graph (HSCG) alternative

to a simple system call histogram representation. To generate an HSCG, our conversion

script reads the trace line by line and parses each one to the triple of (PID, system call

name, and return value). If the process corresponding to the PID of this record is not

yet a vertex of the graph, it is added as a vertex to the graph. If this is a fork or clone

system call, the return value, which is the PID of the spawned child process, is also

added as a vertex into the graph, and an edge from parent to child is also added. In an

34

HSCG graph, each vertex is associated with a system call histogram generated from

the system calls performed by the corresponding process. The algorithm of converting

a system call trace to an HSCG is shown in Algorithm 5. Figure 3.8 shows the resulting

Histogram System Call Graph converted from the system call trace in Figure 3.3.

Algorithm 5 Histogram System Call Graph Conversion

Input: system call trace, system call list
Output: graph

1: for line in system call trace do
2: (pid,name,ret val)=parse(line)
3: if pid not in graph.vertices() then
4: graph.add vertex(pid)
5: end if
6: if name == “fork” or name == “clone” then
7: graph.add vertex(ret val)
8: graph.add edge(pid,ret val)
9: end if

10: index=system call list.index(name)
11: graph.vertices(pid).feat vect[index]+=1
12: end for
13: return graph

An example of an HSCG graph converted from the DroidKungFu malware is

shown in Figure 3.9. Figure 3.9(a) shows the full HSCG and Figure 3.9(b) shows the

details of the root node (highlighted) of Figure 3.9(a). The vertex contains information

including PID, package name (com.safetest.myapn), and a list of system calls that

have been invoked. All the other vertices contain similar information, but refer to

different PIDs and will contain different system call vectors.

3.3.2.2 N-gram System Call Graph

We also create an N-gram System Call Graph (NSCG) as a graph-based alterna-

tive to the previously studied n-gram histogram. An NSCG shares the graph structure

with an HSCG. The only difference is that the vertices in NSCG are labeled with an

n-gram histogram for the corresponding process instead of the system call histogram.

35

PID 580

open 1

read 2

write 1

fork 2

close 1

PID 581

fstat 1

mprotect 1

PID 582

write 1

Figure 3.8: This figure shows a Histogram System Call Graph converted from the
system call trace shown in Figure 3.3.

In our experiments, we created 2-gram, 3-gram, and 4-gram graphs for the correspond-

ing n-gram histogram using the top 20 system call list. Dimensions of vertex labels

in these graphs are therefore 232, 233, and 234 respectively. Figure 3.10 shows the

resulting 2-gram System Call Graph converted from the system call trace shown in

Figure 3.3.

3.3.2.3 Markov Chain System Call Graph

Similarly, we create the Markov Chain System Call Graph (MCSCG) as an

alternative to the traditional Markov Chain representation. MCSCG shares the graph

structure with HSCG and NSCG. However, the vertices in MCSCG are labeled with

a Markov Chain, instead of a histogram or an n-gram. In our experiments, we create

MCSCG for both MarkovChain-top20 and MarkovChain-full. Dimensions of vertex

labels in the resulting graphs are 232 and 2132 respectively. Figure 3.11 shows the

resulting MCSCG converted the system cal trace shown in Figure 3.3.

36

PID: 584

PID: 585

PID: 587

PID: 588

PID: 589

PID: 591

PID: 592

PID: 594

PID: 595

PID: 599

PID: 600

PID: 601

PID: 602

PID: 603

PID: 604

PID: 605

PID: 606

PID: 607

PID: 609

PID: 614

PID: 596 PID: 612

PID: 623

PID: 624

PID: 610

PID: 622

PID: 626

PID: 627

PID: 613

PID: 625

(a) HSCG

PID: 584

name: com.safetest.myapn

ioctl(4002)

recv(31)

munmap(24)

open(41)

pivot_root(8)

close(52)

sigaction(1)

mprotect(877)

clone(19)

prctl(4)

SYS_224(60)

write(6)

setgroups32(1)

setgid32(1)

fstat64(31)

setuid32(1)

personality(2)

capset(1)

setrlimit(1)

msgget(5781)

getpriority(1)

socket(4)

getpid(1666)

getsockopt(3)

fcntl64(11)

access(7)

getuid32(1599)

ipc_subcall(1)

semop(4)

semget(2390)

dup(18)

read(37)

writev(15)

stat64(22)

_llseek(5)

pread(22)

gettimeofday(11)

mkdir(1)

chmod(3)

lseek(38)

syscall_983042(385)

sigprocmask(204)

getdents64(3)

flock(2)

fsync(1)

(b) Root Node

Figure 3.9: Visualization of an HSCG graph generated from the DroidKungFu mal-
ware. (a): the complete HSCG; (b): details of the root node (marked in
red) of (a).

37

PID 580

open read 1

read write 1

write fork 1

fork read 1

read fork 1

fork close 1

PID 581

fstat mprotect 1

PID 582

Figure 3.10: This figure shows an N-gram (2-gram) System Call Graph converted
from the system call trace shown in Figure 3.3.

PID 580

open read 1.0

read write 0.5

read fork 0.5

write fork 1.0

fork read 0.5

fork close 0.5

PID 581

fstat mprotect 1.0

PID 582

Figure 3.11: This figure shows a Markov Chain System Call Graph converted from
the system call trace shown in Figure 3.3.

38

3.3.2.4 Ordered System Call Graph

Different from the HSCG, the NSCG, and the MCSCG graphs, an Ordered

System Call Graph (OSCG) graph treats each system call invocation as a vertex and

connects a vertex to the next system call invocation of the same process. To construct

an OSCG graph, the strace conversion script first creates a root node for the graph,

then reads the system call trace line by line and treats each line as a vertex to add

to the graph. Each line is parsed into a PID of the process, the system call name,

and return value. The name becomes the discrete label of the vertex. Each vertex is

connected to the previous system call invocation of the same process. If the system

call is a fork or clone call, this invocation becomes the root of the subtree which

contains all system call invocations of the spawned child process. Algorithm 6 shows

the algorithm for converting a system call trace into a OSCG. A dictionary (also known

as associative array) named previous vertex is used to track indices of the previous

system call invocations for different processes. Figure 3.12 shows the resulting OSCG

converted from the system call trace listed in Figure 3.3.

open

read

fork fstat mprotect

read

fork

close

write

root

write

Figure 3.12: This figure shows an Ordered System Call Graph Converted from the
system call trace shown in Figure 3.3.

39

Algorithm 6 Ordered System Call Graph Conversion

Input: system call trace
Output: graph

1: index = 0
2: graph.add vertex(0)
3: graph.label(0) = “root”
4: for line in system call trace do
5: index += 1
6: (pid,name,ret val)=parse(line)
7: if index == 1 then
8: parent = 0
9: else

10: parent = previous vertex(pid)
11: end if
12: previous vertex(pid) = index
13: graph.add vertex(index)
14: graph.label(index) = name
15: graph.add edge(parent,index)
16: if name == “fork” or name == “clone” then
17: previous vertex(ret val) = index
18: end if
19: end for
20: return graph

3.3.2.5 Unordered System Call Graph

The Unordered System Call Graph (USCG) is very similar to OSCG. It also

treats each system call invocation as a vertex. In USCG, vertices of one process are

connected to a fork or clone call that spawned the process instead of the previous

vertex of the same process. To build a USCG, our strace conversion script first adds

to the graph a root vertex representing the PID of the application. It then reads down

the system call trace and again parses each line into a PID, name, and return value.

Each invocation is added to USCG as a vertex labeled with the system call name and

connected to the vertex representing the PID of this invocation. If it is a fork or

clone call, this vertex represents the PID of the spawned child process and therefore

becomes the root of the subtree of the child process’s invocations. Algorithm 7 shows

40

the algorithm to convert a system call trace into a USCG. Similar to Algorithm 6, a

dictionary named parent list is also used to track the parent vertex for each system

call invocation. Figure 3.13 shows the resulting USCG converted from the system call

trace listed in Figure 3.3.

Algorithm 7 Unordered System Call Graph Conversion

Input: system call trace
Output: graph

1: index = 0
2: graph.add vertex(0)
3: graph.label(0) = “root”
4: for line in system call trace do
5: index += 1
6: (pid,name,ret val)=parse(line)
7: if index == 1 then
8: parent list(pid)=0
9: end if

10: parent = parent list(pid)
11: graph.add vertex(index)
12: graph.label(index) = name
13: graph.add edge(parent,index)
14: if name == “fork” or name == “clone” then
15: parent list(ret val) = index
16: end if
17: end for
18: return graph

3.4 Classification

To automatically classify the Android applications into benign or malicious ap-

plications, we calculate similarities between feature vectors and similarities between

graphs depending on the representation we are using. The similarity measures are

constructed as a kernel matrix and fed into the Support Vector Machine (SVM) for

classification. We choose the SVM algorithm due to its accuracy as a supervised ap-

proach for binary classification. Additionally, SVMs can perform classification based

on a precomputed kernel matrix constructed using graph kernels or Multiple Kernel

41

root

open read fork read fork close

fstat mprotect

write

write

Figure 3.13: This figure shows an Unordered System Call Graph converted from the
system call trace shown in Figure 3.3.

Learning (MKL) in our context while most of the other machine learning models can-

not.

3.4.1 Kernel Matrix Construction for Vectors

For feature vector representations, we use different kernels to calculate similar-

ities between each pair of vectors. The similarity measures are constructed as kernel

matrices and fed into an SVM. For a given dataset D = {v1, v2, . . . , vn} of vectors, a

kernel matrix Mn×n is a symmetrical matrix where every element M(i, j) = k(vi, vj)

refers to the kernel function applied to a pair of vectors vi and vj. We evaluated three

popular kernels including the Gaussian kernel (Eq. 3.1), the Intersect kernel (Eq. 3.2)

and the Linear kernel (Eq. 3.3).

kgaussian(x, y) = exp(−
n∑

i=1

(xi − yi)2

σ
) (3.1)

kintersect(x, y) =
n∑

i=1

min(xi, yi) (3.2)

42

klinear(x, y) =
n∑

i=1

xi ∗ yi (3.3)

3.4.2 Kernel Matrix Construction for the HSCG, the NSCG, and the MC-

SCG Graphs

For the HSCG, the NSCG, and the MCSCG graphs, we use the Shortest Path

Graph Kernel (SPGK) algorithm to compute graph similarities and construct kernel

matrices. Details of the SPGK algorithm are described in Chapter 5. Here, we just give

a brief introduction to this algorithm. In the SPGK algorithm, first an input graph is

converted into an all pair shortest path graph using a Floyd-Washall algorithm. Then,

the SPGK algorithm for two shortest path graphs S1 = 〈V1, E1〉 and S2 = 〈V2, E2〉 is

computed as:

KSPGK(S1, S2) =
∑
e1∈E1

∑
e2∈E2

kwalk(e1, e2) (3.4)

where kwalk is a kernel for comparing two edge walks. The edge walk kernel kwalk is the

product of kernels on the vertices and edges along the walk. It can be calculated based

on the starting vertex, the ending vertex, and the edge connecting both. We assign e1

as the edge connecting nodes u1 and v1 of graph S1, and let e2 be the edge connecting

nodes u2 and v2 of graph S2. The edge walk kernel is defined as follows:

kwalk(e1, e2) = knode(u1, u2) · kedge(e1, e2) · knode(v1, v2) (3.5)

where knode and kedge are kernel functions for comparing vertices and edges, respectively.

The same notation is also applied in the following sections.

In our experiments, we pick the Brownian Bridge kernel (Eq. 3.6) as used in

Borgwardt et al. [15] with a c value of 2 for kedge. For knode, we evaluated the same

kernels used on constructing kernel matrices for vector sets including the Gaussian

kernel (Eq. 3.1), the Intersect kernel (Eq. 3.2) and the Linear kernel (Eq. 3.3).

kbrownian(e1, e2) = max(0, c− |e1 − e2|) (3.6)

43

3.4.3 Kernel Matrix Construction for the OSCG and the USCG Graphs

For graphs with discrete labels, e.g. the OSCG and the USCG graphs, the Fast

Subtree Kernel (FSK) algorithm [81] is applied to compute graph similarities. The

FSK algorithm iteratively constructs the fingerprints of a graph based on Weisfeiler-

Lehman’s procedure for isomorphism testing [81]. The algorithm is shown in Algo-

rithm 8. In each iteration, each vertex and its neighbors are represented by a string

consisting of their labels from the previous iteration (line 3). The string is then mapped

to a unique value also known as a fingerprint (shown in lines 4-7). After H iterations,

the graph is associated with a vector of H|V | fingerprints because each vertex is re-

labeled once in each iteration, and, eventually, every vertex will be associated with

H fingerprints. |V | is the total number of nodes in the graph. With the vectors of

fingerprint counters, a kernel on two graphs can be obtained by calculating the inner

product of the two vectors.

Algorithm 8 The Weisfeiler-Lehman Relabeling Process

1: for h = 1→ H do
2: for each vertex v in the graph do
3: cur sub← labelToString(v & its neighbors)
4: if hashtable.find(cur sub) then
5: label(v)← hashtable.get(cur sub)
6: else
7: label(v)← f(cur sub)
8: hashtable.insert(cur sub, label(v))
9: end if

10: end for
11: end for

3.4.4 Support Vector Machine

SVMs consist of two phases: training and testing. Given positive and negative

samples in the training phase, an SVM finds a hyperplane which is specified by the

normal vector w and perpendicular distance b to the origin that separates the two

classes with the largest margin γ [22]. Figure 3.14 shows a schematic depiction of

an SVM. During the testing phase, the samples are classified by the SVM prediction

44

model and assigned either a positive or negative label. The decision function f of the

linear SVM is given by

f(x) = 〈w, x〉+ b (3.7)

where x is a feature vector representing the sample. It is classified as positive if

f(x) > 0 and negative otherwise. In the training phase, 〈w, b〉 are computed as the

SVM prediction model from the training data. In the testing phase, the samples are

classified using Eq. 3.7 with w and b from the prediction model. To use a kernel matrix

as input, the decision function can be transformed to Eq. 3.8. In this equation, yi is the

class label of training data, w∗ and αi are parameters of the prediction model computed

from the training data. K(Ri, R) is the kernel value between a testing representation

R and a training representation Ri [77]. Once we fill the kernel values with the kernel

matrix, we can classify the testing applications.

f(R) = (w∗ +
N∑
i=0

αiyiK(Ri, R)) (3.8)

Positive

Negative

w

Margin γ

b

Origin

Figure 3.14: This figure shows an illustration of the SVM method. w is the normal
vector and b is the perpendicular distance to the origin.

45

3.5 Experimental Results

In our experiments, we train our SVM on a classification problem with two

classes, malicious or benign. For each representation, we construct a kernel matrix.

These kernel matrices are then fed into an SVM algorithm using ten-fold cross vali-

dation. We also evaluate 15 different values for the regularization parameter C in the

SVM, varying from 2−2 to 212 with a step value of 2. The experiments are repeated five

times with different cross validation partitions and the average classification accuracy

rates are reported.

The experiments are performed on a workstation with 128 GB memory, an AMD

Opteron 6386 CPU with 32 Piledriver cores clocked at 3.2 GHz, an AMD Radeon HD

7970 GPU with 32 compute units and 3 GB global memory, and a 2 TB hard drive.

3.5.1 Dataset

We collected 5888 applications from Google Play and VirusShare 2. To reveal

malicious and benign applications, we submit our samples to the VirusTotal 3 web

service and inspect the output of 51 commercial Anti-Virus (AV) scanners. We label

all applications as malicious that are detected by at least two of the scanners. The

other applications are labeled as benign. We end up with 1886 malicious applications

and 4002 benign applications. The malicious samples were mostly discovered in 2014,

and they are categorized into 39 families by a commercial AV scanner named AVG 4.

We recorded the runtime execution behaviors of the Android applications and

then converted them to different representations using our strace conversion scripts.

Table. 3.1 records the statistics including number of vertices, edges, and shortest paths

for the graphs generated from our malicious and benign samples. Since HSCG, NSCG,

and MCSCG graphs have exactly the same graph structures, we only show numbers

2 http://virusshare.com

3 https://www.virustotal.com/

4 http://free.avg.com/us-en/homepage

46

http://virusshare.com
https://www.virustotal.com/
http://free.avg.com/us-en/homepage

for HSCG in the table. Similarly, the OSCG and the USCG graphs have the same

statistics. Therefore, we only show numbers for OSCG in the table. Please note

that shortest paths are not used in FSK for the OSCG graphs, and thus we do not

count them for the OSCG graphs. On the statistics table, the graphs generated from

malware are slightly larger than the graphs that came from benign samples on average.

We hypothesize that malware tends to spawn additional processes to perform malicious

behaviors.

Table 3.1: Detailed statistics of vertices, edges, and shortest paths for graph repre-
sentations of Malicious (M) and Benign (B) applications. HSCG, NSCG,
and MCSCG graphs have the same statistics. OSCG and USCG graphs
have the same statistics.

Vertices Edges Shortest Paths
Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

HSCG (M) 7 114 29 6 113 28 6 229 42
HSCG (B) 7 109 24 6 108 23 6 411 33
OSCG (M) 150 29401 9005 149 29400 9004
OSCG (B) 140 32549 8528 139 32548 8527

3.5.2 Evaluation Metrics

In our experiments, we train our SVM on a classification problem with two

classes, malicious or benign. A confusion matrix is used in our method to evaluate

the effectiveness of different kernels. From the confusion matrix, we can calculate

True Positive Rate (TPR), False Positive Rate (FPR), False Negative Rate (FNR),

Accuracy, and Precision.

We let True Positive (TP) be the number of Android malware that are correctly

detected, True Negative (TN) be the number of benign applications that are correctly

classified, False Negative (FN) be the number of malware that are predicted as benign

application, and False Positive (FP) be the number of benign applications that are

classified as malware. Then our evaluation metrics are defined as follows:

TPR =
TP

TP + FN
(3.9)

47

FPR =
FP

FP + TN
(3.10)

FNR =
FN

TP + FN
(3.11)

Accuracy =
TP + TN

TP + TN + FP + FN
(3.12)

Precision =
TP

TP + FP
(3.13)

3.5.3 Different Kernels

For the SPGK algorithm, we need to pick a valid kernel function knode for

comparing vertices and another valid kernel function kedge for comparing edges. In our

experiments, we pick a Brownian Bridge kernel for kedge as used in Borgwardt et al. [15]

with a c value of 2 for kedge. For knode, we evaluate Gaussian kernels with different σ

values from 2−6 to 29 with a step value of 23, an Intersect kernel, and a Linear Kernel.

However, we report only the best classification results although they may be achieved

by different kernels in different graph sets.

Similarly, we apply different Gaussian kernels, an Intersect kernel, and a Linear

Kernel on feature-vector-based representations. Only the best classification accuracies

are reported.

For the FSK algorithm, there is no need for picking kernel functions or evaluating

parameters, so we only need to run FSK once for the OSCG graphs and once for the

USCG graphs. Note that, due to the large depth of the OSCG graphs, we cannot

exhaustively compare all the subtrees using FSK. We simply did not have enough

memory for that much computation on our machine. Hence, we limit the height of the

subtrees in OSCG graphs that we evaluate to be up to 18 in our experiments.

3.5.4 Result from Interaction Stimulation

To understand the importance of interaction stimulation, we first emulate each

application for 20 seconds without any interference and then apply various stimulation.

48

All system call invocations are recorded in one strace log file. We generate HSCG

graphs using only the first 20 seconds of the strace log files and name them HSCG-

nointeraction. We also generate HSCG graphs using the whole strace log files and

name them HSCG-interaction. By applying graph kernels on these two graph sets, the

SVM results show HSCG-nointeraction can reach 80.2% classification accuracy while

HSCG-interaction reaches 85.3%. The 5.1% improvement reveals that by applying

different stimulation, we are able to expose more malicious behaviors.

3.5.5 Result from Incomplete Strace

In our experiments, we run strace on zygote so we can record all system call

invocations of the testing application from the moment it is launched. This is an im-

portant step because malware tends to carry out malicious tasks upon initial execution.

If we only record the execution behavior after the application has been launched, for

example, like the method proposed by Wei et al. [88], important malicious behavior

may not be recorded. To understand the importance of complete strace log, we ignore

all system call invocations that happen during the first second of the strace log files and

generate HSCG graphs named HSCG-incomplete. We then compare its performance

with HSCG-interaction. Experiments show HSCG-incomplete reaches 84.5% clas-

sification accuracy which is 0.8% less than HSCG-interaction. Therefore, recording

system call invocations during initial execution can help reveal more malicious behav-

iors. The experiments in the rest of the dissertation are all based on full strace log

files.

3.5.6 Result from Top K System Call List

As mentioned in Section 3.2.3, we extract the top K system calls to reduce the

computation time. We generate HSCG graphs from strace log files using the top 5, top

10, and top 20 most frequent system calls. Then, we compare the classification results

using these graphs to using the HSCG graphs generated using the full system call list.

49

Table 3.2 shows the accuracy achieved by using different system call lists and

the corresponding graph kernel computation time on our workstation. It shows that

using the top 20 system calls cannot reach the same accuracy as using the full system

call list. Nevertheless, using the top 20 system calls is able to reach an accuracy level

of about 1% better than using top 15 system calls, 2% better than using top 10 system

calls, and 3.3% better than using top 5 system calls. In terms of computational cost,

using only the most frequent 20 system calls is 1.8x faster than using the full list.

Therefore, we use only the top 20 system call list for most of our experiments, unless

otherwise noted. For some representations that are not computationally expensive, we

experiment with both the full system call list and the top 20 system call list.

Table 3.2: This table shows the best classification accuracy and graph kernel com-
putation time for the HSCG graphs generated using different system call
lists.

graph Accuracy Time (sec)
HSCG-full 85.3% 68

HSCG-top20 83.3% 38
HSCG-top15 82.3% 30
HSCG-top10 81.3% 23
HSCG-top5 80.0% 17

3.5.7 Results from Feature Vector Representations

Here, we evaluate previously studied feature-vector-based representations in-

cluding histogram, n-gram, and the Markov Chain. We build system call histograms

with top 20 system calls and the full system call list. We name them histogram-top20

and histogram-full, respectively. For n-grams, we use the top 20 system call list and

evaluate different N values, where N is 2, 3, and 4. The resulting vector sets are named

2-gram-histogram, 3-gram-histogram, and 4-gram-histogram. To build our Markov

Chains, we use the top 20 system calls and the full list. The resulting feature vectors

are named MarkovChain-top20 and MarkovChain-full, respectively. These feature

vectors are fed into different kernels for constructing the kernel matrices. Then, the

50

matrices are fed into an SVM for five runs of ten-fold cross validation. We report the

best classification accuracy that each representation can achieve and the corresponding

False Positive Rate (FPR) in Table 3.3. The results show that an n-gram representa-

tion performs better when N value is larger. This is reasonable because larger N values

means more system call combinations are taken into consideration. Please note that

histogram-top20 is essentially 1-gram-histogram in our experiment. We also observe

that using a full system call list can achieve better classification accuracy for histogram

and Markov Chain compared to using top 20 system calls for these representations.

However, the FPR rates are also increased using the full system call list.

Table 3.3: This table shows the best classification accuracy and False Positive Rate
achieved by different feature-vector-based representations.

Vector set Accuracy FPR
histogram-top20 74.5% 8.2%

histogram-full 80.5% 9.1%
MarkovChain-top20 81.3% 8.4%

MarkovChain-full 82.6% 9.2%
2-gram-histogram 80.9% 8.1%
3-gram-histogram 82.8% 8.0%
4-gram-histogram 83.3% 8.0%

3.5.8 Result from HSCG, NSCG, and MCSCG Graphs

For each feature vector representation, we generate its corresponding graph

representation. HSCG is the graph representation for the system call histogram. In

particular, we generate HSCG using the top 20 system call list and the full list. We

name them HSCG-top20 and HSCG-full, respectively. The N-gram System Call

Graph (NSCG) is the graph representation for n-grams. We generate NSCG graphs

for 2-gram-histograms, 3-gram-histograms, and 4-gram-histograms using the top 20

system call list. We name these NSCG-2, NSCG-3, and NSCG-4, respectively. For

Markov Chain, we build a Markov Chain System Call Graph (MCSCG) and experiment

with a MCSCG-top20 and MCSCG-full using the top 20 and the full system call

51

list. The kernel matrices for these graph representations are fed to an SVM algorithm

for five runs of ten-fold cross validation. We also evaluated 15 different values for the

regularization parameter C in our SVM algorithm. Figure 3.15 shows the classification

accuracy for these different graph representations for different values of C. From the

figure, we observe that HSCG-top20 performs the worst and HSCG-full is slightly

better. NSCG-2 is not as effective as MCSCG-top20 because MCSCG has encoded

transitional probability information. MCSCG-full outperforms MCSCG-top20 due

to the utilization of a full system call list. Although, MCSCG-full is inferior to

NSCG-3. Overall, NSCG-4 reaches the best accuracy at 87.3%.

0.
25 0.
5

1.
0

2.
0

4.
0

8.
0

16
.0

32
.0

64
.0

12
8.

0
25

6.
0

51
2.

0
10

24
.0

20
48

.0
40

96
.0

C values

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

MCSCG-full
MCSCG-top20
HSCG-full
HSCG-top20
NSCG-2
NSCG-3
NSCG-4

Figure 3.15: This figure shows classification accuracy that achieved using different
C values for HSCG, NSCG, and MCSCG graphs

We directly compare the classification accuracy between feature-vector-based

representations and their corresponding graph-based representations in Table 3.4. On

average, a graph-based representation is able to reach 5.2% classification accuracy

improvement over the corresponding feature-vector-based representation. Thus, we can

conclude graph-based representation performs better than flat feature vectors using the

same strace information. This shows that the topology of the graph-based techniques

52

adds predictive power to the model.

Table 3.4: This table shows classification accuracy comparison between feature-
vector-based representation and its corresponding graph-based represen-
tation.

Vector Graph Improvement
histogram-top20 74.5% 83.3% 8.8%

histogram-full 80.5% 85.3% 4.8%
MarkovChain-top20 81.3% 85.9% 4.6%

MarkovChain-full 82.6% 87.2% 4.6%
2-gram-histogram 80.9% 85.9% 5.0%
3-gram-histogram 82.8% 87.1% 4.3%
4-gram-histogram 83.3% 87.3% 4.0%

Average 5.2%

3.5.9 Result from OSCG and USCG graphs

For the Ordered System Call Graph (OSCG) and the Unordered System Call

Graph (USCG) representations, we computed the graph similarities using the Fast

Subtree Kernel (FSK) algorithm. Similar to the other representations, the resulting

kernel matrices were fed into our SVM algorithm for five runs of ten-fold cross vali-

dation with 15 different values for the regularization parameter C. The classification

results are shown in Figure 3.16. Experiments show that using USCG graphs we are

able to achieve a classification accuracy of 79.1% while using OSCG graphs we can

only reach 53.5%. This was expected because we cannot compare all subtrees in our

OSCG representation due to the subtree height limitation for applying FSK on this

representation. We observe that USCG graphs are not as accurate as most of the

feature-vector-based representations and other three graph-based representations due

to the loss of ordering information.

3.5.10 Graph Kernel Running Time

For n input graphs, each graph kernel returns a kernel matrix of size n×n. The

kernel matrix is symmetric, therefore we only compute its diagonal and the top half

53

0.
25 0.
5

1.
0

2.
0

4.
0

8.
0

16
.0

32
.0

64
.0

12
8.

0
25

6.
0

51
2.

0
10

24
.0

20
48

.0
40

96
.0

C values

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

USCG
OSCG

Figure 3.16: This figure shows FSK classification accuracy with different C values
for OSCG and USCG graphs.

corresponding to (n2 + n)/2 entries. In our dataset, we have 5888 samples in total.

Therefore, we generate 5888 system call traces, one trace for each application execution

and then convert these into 5888 graphs for each graph representation and feed the

graphs into the corresponding graph kernels. Consequently, each graph kernel needs

to compute the similarity between (58882 + 5888)/2 pairs of graphs given n is 5888.

To speedup computation, we parallelize the Shortest Path Graph Kernel using

the hybrid method described in Chapter 5. We also parallelize the kernel methods

applied on feature vector sets using OpenMP. Table 3.5 shows the kernel matrix com-

putation time for HSCG, NSCG, MCSCG, and 4-gram-histogram. SPGK-Intersect is

applied on HSCG, NSCG, and MCSCG while Intersect is applied on 4-gram-histogram.

It shows that the computation time of SPGK-Intersect algorithm increases as the ver-

tex label dimension increases. Overall, the time to construct a kernel matrix for the

whole training set is reasonable. Moreover, once the training is complete, computing

graph similarities against the training graphs for one testing graph is much faster.

54

Table 3.5: This table shows kernel matrix computation time (seconds) for HSCG,
NSCG, MCSCG, and 4-gram-histograms.

HSCG HSCG MCSCG MCSCG NSCG NSCG NSCG 4-gram
-top20 -full -top20 -full -2 -3 -4 -histograms

38 68 177 225 172 276 369 12

3.6 Related Work

To the best of our knowledge, there is no existing work that systematically ana-

lyzes different representations of system call invocations for Android malware. There is

also no prior work comparing the feature-vector-based representation with the graph-

based representation for system calls.

Wei et al., recorded system call invocations for 96 benign applications and 92

malware samples by manually installing and executing each application on an Android

phone [88]. They converted the system call invocations into 1-gram, 2-gram, 3-gram,

and 4-gram feature vectors. However, their method was not automated and thus can-

not be applied to a larger number of Android applications. They only recorded the

system call invocations after the application had been started. Information about how

the application was launched and executed was ignored by the authors, and as a result

their strace log files are incomplete. In our method, we automatically analyze each

application. Since we strace the zygote process, instead of the testing application,

we are able to record the complete set of system call invocations. Dimjasevic et al.,

also recorded system call invocations for Android malware and converted them into

two representations [30]. One was histograms and the other one was a variant of our

Markov Chain representation. Canzanese et al. [20], recorded system call traces for

Windows binaries and convert them into n-gram vectors. Classification algorithms in-

cluding logistic regression, naive Bayes, random forests, nearest neighbors, and nearest

centroid are tested. The methods proposed in [88], [30], and [20] are reimplemented

as the baseline in this chapter.

55

Canali et al., performed a thorough evaluation of accuracy of system-call-based

Windows malware detection [18]. They built different signatures of system calls based

on n-grams, n-bags, and n-tuples. Then, a signature matching is performed to detect

malware. Our method is different because our method is not signature-based. Anderson

et al., compared Markov Chains with n-gram representations based on instruction

traces collected from Windows executables [8]. Wagner et al., proposed a graph model

based on Linux system call traces which is very similar to our HSCG [86]. However,

their random walk graph kernel is expensive and does not scale. In our work, we adapt

previous representations and propose novel representations for comparison. We also

parallelize the graph kernel to achieve reasonable computation time.

3.7 Conclusion

In this chapter, we evaluate the classification performance of traditional feature-

vector-based representations and novel graph-based representations for system call in-

vocations. We first implement previously studied histogram, n-gram, and the Markov

Chain representations for system call usage in Android malware analysis. To improve

the classification accuracy of the traditional feature-vector-based representations, we

propose three graph-based representations where each process is treated as a vertex

and labeled with a feature vector. We also explore two other graph representations

where each system call invocation is treated as a vertex and labeled with the system call

name. Graph kernels are then applied to the graph-based representations to compute

graph similarities that are subsequently classified with an SVM algorithm.

To evaluate these representations, we collected a dataset of 4002 benign and

1886 malicious Android applications. We show by feeding system interactions while

dynamically analyzing our applications, the classification accuracy can be improved.

Subsequent experiments on this dataset showed using graph-based representations are

capable of improving the classification accuracies of the corresponding feature-vector-

based representations by 5.2% on average.

56

Chapter 4

ANDROID MALWARE CLASSIFICATION USING HYBRID
ANALYSIS

4.1 Introduction

In Chapter 3, we present our dynamic Android malware classification method

using graph-based representations. In this chapter, we augment the dynamic analysis

with a static analysis method and present HADM, Hybrid Analysis for Detection of

Malware

For dynamic analysis based on system call invocations, n-gram vectors and the

NSCG graphs with different N values including 1, 2, 3, and 4 are selected to construct

HADM. We select them because they each achieved good classification accuracy. For

static analysis, we extract nine different feature sets including requested permissions,

permission request APIs, used permissions, advertising networks, intent filters, sus-

picious calls, network APIs, providers, and low level instruction sequences. Among

these features, the instruction sequences are represented using n-gram feature vectors.

Similar to the system call n-gram feature vectors, we evaluate four different N values

including 1, 2, 3, and 4 for instruction sequences. All the other static features are

converted into histograms. As a result, we generate four feature vector sets for instruc-

tion sequences, four feature vector and four graph sets for system call sequences, and

one feature vector set for each of the other static features. The feature vector sets are

subsequently fed into deep learning methods and combined with the four graph sets

using hierarchical Multiple Kernel Learning (MKL) to construct the hybrid classifier.

Deep learning has been widely studied and shown to perform well on machine

learning domains including speech recognition, natural language processing, and image

classification in the past two decades. In our method, we train one Deep Neural

57

Network (DNN) constructed by stacking Restricted Boltzmann Machines (RBM) for

each of our feature vector sets including system call feature vectors and static feature

vectors. The DNN learned features are concatenated to the original features to form

the new DNN feature vector sets. Experiments show that higher level features learned

from DNN in conjunction with the original features can improve the classification

accuracy of each individual feature vector set. Different kernels are then applied on

the new DNN feature vector sets to compute similarities of the Android applications.

Similarly, different graph kernels are applied on the graph feature sets. The similarity

output from each vector kernel or graph kernel can be subsequently constructed as a

kernel matrix and fed into an SVM for classification. In HADM, a two-level MKL is

applied to combine the discriminative power of different kernel matrices. In the first

level, kernel matrices from different kernels are combined as the learning result of the

corresponding feature vector set. Similarly, kernel matrices from different graph kernels

are combined. In the second level, MKL is applied again to combine all learning results

from the first level. The final kernel matrix is then fed into an SVM to construct our

hybrid classification model. Figure 4.1 shows the framework of our HADM method.

4.2 Hybrid Characterization

In total, 10 static and dynamic feature sets are extracted from our malicious and

benign Android applications including requested permissions, permission request APIs,

used permissions, advertising networks, intent filters, suspicious calls, network APIs,

providers, instruction sequences, and system call sequences. In total, we generate 16

feature vector sets and 4 graph sets.

4.2.1 Hybrid Analysis Features

Requested permissions: Permission system is the first barrier and one of

the most important security mechanisms introduced by Android. Therefore, the re-

quested permission is one of the most used static features in Android application analy-

sis [33]. Prior to installation of an application, it provides users with a list of requested

58

Figure 4.1: This figure shows framework of HADM. Static features are converted
to feature vector representations and dynamic features are converted to
feature vector and graph representations. Each feature vector set is fed
into a DNN for learning. The DNN features are concatenated with the
original feature vectors to construct DNN feature vector sets. Multiple
kernels and graph kernels are applied to each DNN or graph feature set.
The learning results are then combined using a two-level MKL.

59

permissions (e.g., SEND SMS, RECEIV E SMS, INSTALL PACKAGE). Users

normally grant the permissions without knowledge of the capabilities of these permis-

sions, therefore an application can install itself and perform malicious behaviors such

as sending premium SMS messages. In our experiments, we collect 1304 requested

permissions listed in manifest files of our Android samples.

Permission request APIs: The Android permission can be requested by

a series of critical API calls. For example, a installPackage API call can request

permission INSTALL PACKAGE and a sendDataMessage call requests permission

SEND SMS. In total, 246 such API calls are collected from our benign and malicious

samples.

Used permissions: Some Android applications request multiple permissions,

but only use a subset of the requested permissions. By extracting the used permissions,

we can obtain a more precise observation of an application’s intention. In total 66 used

permissions are collected from our dataset.

Advertising networks: Advertising networks are increasing in numbers in

the Android platform to offer developers a variety of monetization models and to help

them maximize their revenues. This feature may not be necessarily related to malicious

behaviors, but we collect 76 different advertising networks from our samples. The most

popular networks are Google Ads, AdMob, and MobClik.

Intent filters: Intent is information about inter-process and intra-process com-

munication. It is a passive data structure holding an abstract description of an action

to be performed. Therefore, we can infer it as the intentions of the application. For

example, an application can take a picture or can dial a phone number. In total, we

collect 1016 different intent filters from our dataset.

Suspicious calls: A subset of API calls is capable of accessing sensitive data,

communicating over the network, sending and receiving messages, and executing exter-

nal commands. These suspicious API calls are frequently used by malware developers.

For example, readSMS can read SMS messages, sendSMS can send SMS messages,

60

getCellLocation is able to get your location, Runtime�exec is able to execute exter-

nal commands, and System�load is able to load external libraries. In total, we collect

394 such calls.

Network APIs: We extract the used network APIs because malware tends to

access the network and send out sensitive data. For instance, android.net.wifi.STAT

E CHANGE broadcasts an intent action indicating that the state of Wi-Fi connec-

tivity has changed; android.net.wifi.supplicant.CONNECTION CHANGE notices

both connections to and disconnections from a wifi network. In total, we collect 29

such APIs from our samples.

Providers: The provider declares a component which supplies structured ac-

cess to data managed by the application. For example, android.provider.Telephony.S

MS RECEIV ED broadcasts that a new text-based SMS message has been received

by the device and this intent will be delivered to all registered receivers as a notification.

In total, we are able to collect 966 providers from our samples.

Instruction sequences: We utilize an Android tool called Androguard1 to

extract low level instructions (also known as Dalvik bytecode) from an application. For

each instruction, we keep only its name, while parameters and output are abandoned.

We are able to collect 159 unique instructions from our samples.

System call sequences: For dynamic analysis, system call is the most used

feature [33]. We described the details about recording system call invocations in Sec-

tion 3.2.

4.2.2 Feature Vector Representations

After extracting the features, we embed them into vector space using n-gram

representation described in Section 3.3.1.2. In HADM, we first build 1-gram vectors

for all features. Then for instruction and system call sequences, we extract the top 20

instructions and system calls, and build 2-gram, 3-gram, and 4-gram vectors for both.

In total, we generate four feature vector sets for instruction sequences, four feature

1 https://code.google.com/p/androguard/

61

https://code.google.com/p/androguard/

vector sets for system call sequences, and one feature vector set for each of the other

features. The 12 static and 4 dynamic feature vector sets are inputs for subsequent

deep learning.

4.2.3 Graph Representations

For dynamic system call invocations, we can convert them into a graph-based

representation described in Section 3.3.2.2. For simplicity, we refer to the graph repre-

sentation as an n-gram graph for the rest of this dissertation. To construct the graph,

a process tree of the Android application is first extracted from the strace log. Each

process is represented as a vertex and connected with its child processes. Then, for

each vertex, we collect system call invocations belonging to the corresponding process,

and convert them to an n-gram vector. The resulting n-gram vector is attached to the

vertex as its label. In total, we generate 1-gram, 2-gram, 3-gram, and 4-gram graphs

for the system call sequences.

4.3 Deep Learning Model

Deep learning has shown promise in speech recognition, image classification,

and other machine learning domains. It has also been shown that combining advanced

features derived by deep learning with the original features provides significant gains.

For example, Sarikaya et al. obtained 0.1% to 1.9% absolute classification accuracy

improvements on a problem of natural language understanding using combined fea-

tures [73]. After generating 16 feature vector sets, we train one Deep Neural Network

(DNN) for each of the vector sets. Then the DNN learned features are concatenated

with the original feature vectors and used for classification.

In our experiment, we select Deep Auto-encoder as our deep learning model.

It is a DNN whose output target is the input data itself which serves our purpose

of learning new features and combining new features with the original features for

classification. The building block of a deep auto-encoder is a probabilistic model called

Restricted Boltzmann Machine (RBM). DNN is often initialized or pre-trained using

62

stacked RBMs. In some literature, DNN is also referred to as Deep Belief Network

(DBN) [28].

4.3.1 Restricted Boltzmann Machine

An RBM is an energy-based generative model that consists of two layers: a

layer of binary visible units v and a layer of binary hidden units h. The units in

different layers are fully connected with no connection between units in the same layer.

Figure 4.2(a) shows an RBM with 2 units in the visible layer and 3 units in the hidden

layer.

Details of how to train an RBM can be found in [43]. In our experiments, the

standard Contrastive Divergence (CD) learning procedure is applied. In the training

process, input vectors are first divided into batches and then fed into a training pro-

cess for a number of iterations until convergence. The training process consists of three

steps. The first step is called positive or forward propagation. In this step, probabili-

ties of hidden units are sampled from the input and the positive gradient is computed.

The second step is negative or backward propagation where the visible units are re-

constructed from the hidden units and then the hidden activities are re-sampled from

the reconstructed visible units. The negative gradient is also computed in this step.

In the third step, the weight matrix is updated based on the difference of the positive

gradient and the negative gradient. Algorithm 9 shows the training process of RBM.

In our experiments, we use the same parameters for training RBMs as used

in [51] . The RBMs are initialized with very small random weights and trained for

80 iterations using mini-batches of size 128. The learning rate is set to be 0.001. We

also use a momentum of 0.9 to speedup the learning process. All the training in our

experiments are performed on an AMD RadeonTM HD 7970 GPU.

4.3.2 Deep Auto-encoder

Deep auto-encoder can be constructed by stacking independently trained RBMs.

Each RBM is stacked on top of previous RBM such that the hidden layer of previous

63

(a) RBM

(b) Deep Auto-encoder

Figure 4.2: An example of RBM and Deep Auto-encoder. (a): a RBM with 2 units in
the visible layer and 3 units in the hidden layer. (b): Deep auto-encoder
constructed by flipping the stacked RBMs.

64

Algorithm 9 RBM Training Process

Input: batch set, Weight matrix W , learning rate l
Output: Weight matrix W

1: for number of iterations do
2: for number of batches do
3: From batch V , compute hidden activation H = V ×W
4: Compute positive gradient Gp = V ×H
5: From H, sample a reconstruction V

′
= H ×W

6: From V
′
, re-sample hidden activation H

′
= V

′ ×W
7: Compute negative gradient Gn = V

′ ×H ′

8: Update weight matrix W , W+ = l × (Gp −Gn)
9: end for

10: end for

RBM become the visible layer of the current RBM. Each new layer of deep auto-

encoder aims to extract higher-level dependencies between the original input vectors,

thereby improving the ability of the network to capture the underlying regularities in

the data [65]. The first layer of the network is expected to extract low-level features

from the input vectors while each new layer is expected to gradually refine previously

learned concepts, and therefore produce more abstract concepts [53].

After layer-by-layer pre-training the RBMs, we stack them and then “unroll” the

generative model to form a deep auto-encoder. In our experiments, we first train four

RBMs and stack them to form a five-layer network. The weight matrices of RBMs are

used as the initial weight matrices for the five-layer network. By “unrolling” the stacked

RBMs, we flip the five-layer network and create a deep nine-layer network whose lower

layers use the matrices to encode the input and whose upper layers use the matrices in

reverse order to decode the input. Figure 4.2(b) shows a deep auto-encoder constructed

by stacking multiple RBMs and then “unrolling” the stacked RBMs. The auto-encoder

can be fine-tuned using back-propagation of error derivatives [27]. Algorithm 10 shows

the training process of the deep auto-encoder. To fine-tune the auto-encoder, we use

a learning rate of 10−6 for all layers and train for 5 iterations. The fine-tune processes

in our experiments are also performed on an AMD RadeonTM HD 7970 GPU. Output

from the central layer of the deep auto-encoder is concatenated to the original input to

65

improve the classification accuracy. We refer to the resulting feature vectors as DNN

vectors in the remaining sections of this dissertation.

Algorithm 10 Deep Auto-encoder Training Process

Input: batch set, Weight matrices, learning rate l
Output: Weight matrices

1: for number of iterations do
2: for number of batches do
3: Assign batch V to be A0, the activity of layer 0
4: for layer i from 1 to n do
5: Compute the activity of layer i,Ai = Ai−1 ×Wi−1
6: end for
7: Compute error for last layer, En = An − A0

8: for layer i from n-1 to 0 do
9: Back propagate error, Ei = Ei+1 ×Wi

10: end for
11: for layer i from 0 to n-1 do
12: Update weight matrix, Wi+ = l × Ai × Ei+1

13: end for
14: end for
15: end for

4.4 Classification

To automatically classify the Android applications into benign or malicious ap-

plications, we calculate similarities between feature vectors and similarities between

graphs. The similarity measures are constructed as a kernel matrix and fed into a

Support Vector Machine (SVM) described in Section 3.4 for classification. To further

improve the accuracy, we also apply a hierarchical Multiple Kernel Learning (MKL)

method to combine different kernel matrices and build the final hybrid classifier.

4.4.1 Multiple Kernel Learning

One simple way to combine learning results from different features is to con-

catenate different feature vectors to create a large vector and use it for classification.

However, this simple method assigns the same weight to different features which may

66

lead to suboptimal learning results compared to training on individual features be-

cause some features may play more important roles in the learning than other features.

Therefore, we need to assign different weights to different features based on their signif-

icance during learning. Such optimal weights can be calculated by the MKL algorithm.

MKL is an SVM based method for use with multiple kernels. An SVM takes

one kernel matrix as input to build a classifier. However, when it comes to learning,

it makes more sense to extract different features from all available sources, learn these

features separately and then combine the learning results. MKL does this by taking

kernel matrices constructed from different features and different kernels, and is able to

find an optimal kernel combination to build the classifier. In addition to the SVM αi

and bias term w∗, MKL learns one more parameter which is the kernel weights βj in

training. Eq. 4.1 shows the resulting kernel method from MKL.

f(R) = (w∗ +
N∑
i=0

αi

M∑
j=0

βjyiKj(Ri, R)) (4.1)

4.4.2 Hierarchical MKL

In our experiments, we choose to use Generalized MKL with the Spectral Pro-

jected Gradient decent optimization algorithm (SPG-GMKL) [47] to perform MKL.

Since we construct multiple kernel matrices for each vector set and each graph set, we

first use SPG-GMKL to combine different kernel matrices of the same vector or graph

feature set. Experiments show we gain limited classification accuracy improvement in

the first level of MKL. Because we explore multiple kernels with different parameters

and reported only the best result. Combining different kernels learned from the same

features may not necessary improve the performance. However, in the second level,

SPG-GMKL is applied again to combine all MKL kernel matrices generated in the

first level to learn the final hybrid classifier and much better improvement is achieved.

4.5 Experimental Results

In our method, we extract 10 static and dynamic features and convert them to

16 feature vector sets and 4 graph feature sets. We first evaluate the performance of

67

each individual feature vector set. Then we train one DNN for each vector set and build

the DNN vector set by concatenating DNN learned features with the original features.

We show that using the DNN features are able to help improving the classification

accuracy. Furthermore, for each of the DNN vector sets, learning occurs by multiple

kernels and the learning results are combined using MKL. Similarly, we apply SPGK

on the graph sets and construct multiple kernel matrices for each graph set. The kernel

matrices of the graph sets are also combined using MKL. Finally, all resulting MKL

kernel matrices are combined by applying MKL again to build the final hybrid classifier.

4.5.1 Experimental Setup

The same experimental setup described in Section 3.5 is applied to the feature

sets described in this section. The same dataset consisting of 1886 malicious appli-

cations and 4002 benign applications are used. All the experiments are run on the

same workstation with an AMD Opteron 6386 CPU and an AMD Radeon HD 7970

GPU. To measure the classification results, the same evaluation metrics are used. We

also repeat the ten-fold cross validation five times and report the average classification

accuracies.

4.5.2 Results from Original Vector and Graph set

First, we evaluate the performance of each original feature vector and graph set.

As described in Section 3.5.3, three kernels consisting of Gaussian kernels, Intersect

kernels, and Linear kernels are applied to our feature vector sets. Similarly, SPGK-

Gaussian, SPGK-Intersect, and SPGK-Linear kernels are applied on the graph feature

sets. For Gaussian kernel, we also evaluate different σ values from 2−6 to 29 with a

step value of 23. These kernel matrices are fed into an SVM for five runs of ten-fold

cross validation.

In Table 4.1, the first column lists the different feature sets. The second col-

umn shows the best accuracy achieved by each of the original feature vector sets or

graph sets. We observe that the overall best accuracy is achieved by 4-gram vector set

68

converted from instruction sequences. It reaches 93.5% accuracy. Among the static

features other than instruction sequences, requested permissions, the most used static

feature in previous static analysis methods [33] performs best and reaches 86.6% ac-

curacy. For the vector and graph sets converted from system call sequences, 4-gram

graph performs best with an 87.3% accuracy. As concluded in Chapter 3, the graph

set performs better than the corresponding vector set by about 5% on average. This

shows that the topology of the graph-based techniques adds predictive power to the

model.

4.5.3 Results from DNN

Second, we evaluate the performance of each DNN vector set. In our deep auto-

encoder, number of units in the first layer equals to the dimension of input feature

vector. We only need to select the layer sizes for the hidden layers of four stacked

RBMs. In our experiment, we evaluate all combinations of 4 layer sizes selected from

128, 256, 512, 1024, 2048, and 4096. The DNN learned features in conjunction with

original features are then evaluated using the same method as described in Section 4.5.2.

In Table 4.1, the third column shows the best accuracy achieved by combining original

and DNN vectors. The fourth column lists the corresponding network sizes. In the

third column, the data marked in bold shows DNN improves the performance of the

original feature vector. We observe that 15 out of 16 feature vector sets can be improved

by appending DNN learned features. By using DNN features the maximum accuracy

improvement can be achieved is 0.5% by intent filters and 3-gram system call vectors.

The best performance is also achieved by 4-gram instruction feature vectors at 93.8%.

4.5.4 Results from first level MKL

In the third experiment, we apply MKL on each DNN vector set and each graph

set. Since we evaluate multiple Gaussian kernels with different σ values, we first select

a Gaussian kernel matrix with the best performance, then combine it with Intersect

69

and Linear kernel matrices using SPG-GMKL. The same process is applied to SPGK-

Gaussian, SPGK-Intersect, and SPGK-Linear for graph sets.

The fifth column of Table 4.1 shows the results of applying MKL on each vector

or graph feature set. Similarly, the data marked in bold means a performance im-

provement was achieved. In total, 9 out of 20 DNN vector sets and graph sets can

be improved by MKL, and the maximum absolute improvement is 0.3%. The sixth

column of Table 4.1 shows the weights of Gaussian, Intersect, and Linear kernel matri-

ces learned by MKL. It should be noted that in vector and graph sets converted from

system call sequences, the weight of Gaussian kernel is 0.00 because it can actually

degrade the accuracy if we include Gaussian kernel in MKL for these sets. We observe

that improvement from the first level of MKL is limited because we evaluated multiple

kernels with different parameters and reported the best results. After such a large

kernel search, we may not be able to improve the performance further even with MKL.

4.5.5 Result from second level MKL

After applying the first level MKL to combine kernel matrices for each vector

or graph set, we apply SPG-GMKL again to combine the 20 kernel matrices generated

by the first level MKL. The second level MKL weights learned from SPG-GMKL for

static and dynamic features are listed in Table 4.2 and Table 4.3, receptively. And,

classification results of the final hybrid classifier are shown in Table 4.4. The best

classification accuracy we are able to achieve using HADM on our dataset is 94.7%

with a FPR of 1.8%. Compared to the best accuracy that can be achieved by the

original features, which is 93.5%, we obtain a 1.2% absolute improvement.

4.5.6 Results from concatenating Original Feature Vectors

To compare our HADM method with traditional feature-vector-based methods,

we perform experiments by concatenating original feature vectors and feeding them

to an SVM for classification. A total of five experiments were performed. In the first

experiment, we concatenated all original vector sets. In the second experiment, we

70

Table 4.1: This table shows classification results of different representations. Acc.
means accuracy, Perm. means permissions, Req. means requested, Inst.
means instructions, g. means gram, Sys. means system call sequence, and
vect. means vector.

Original DNN DNN MKL MKL
Acc. Acc. Network Sizes Acc. Weights

Static Features

Perm. APIs 83.9% 84.3% 4096-512-4096-512 84.4% [0.32, 5.63, 5.63]
Used Perm. 80.8% 80.9% 4096-512-4096-512 81.0% [0.33, 5.62, 5.62]
Req. Perm. 86.6% 87.1% 1024-512-256-128 87.3% [0.66, 5.82, 5.59]

Ad. networks 72.8% 72.9% 128-128-128-128 72.9% [0.07, 4.54, 4.54]
Intent filters 84.0% 84.5% 1024-1024-1024-1024 84.5% [3.12, 4.51, 7.68]

Suspicious calls 81.3% 81.5% 4096-4096-4096-4096 81.5% [0.53, 5.88, 5.88]
Network APIs 75.6% 75.7% 512-256-512-256 75.7% [0.01, 8.39, 11.55]

Providers 69.1% 69.1% 4096-512-4096-512 69.1% [0.00, 7.82, 9.74]
Inst. 1-g. 87.0% 87.4% 4096-4096-4096-4096 87.4% [9.97, 4.66, 1.75]
Inst. 2-g. 90.2% 90.3% 512-1024-512-1024 90.6% [9.67, 8.12, 3.79]
Inst. 3-g. 92.3% 92.5% 256-512-256-512 92.5% [8.07, 11.37, 4.86]
Inst. 4-g. 93.5% 93.8% 2048-2048-2048-2048 93.8% [6.90, 11.95, 4.44]

Dynamic System Calls

Sys. 1-g. vect. 80.5% 80.8% 2048-2048-2048-2048 80.8% [0.00, 5.35, 2.56]
Sys. 2-g. vect. 80.9% 81.0% 4096-4096-4096-4096 81.3% [0.00, 6.11, 2.76]
Sys. 3-g. vect. 82.8% 83.3% 512-256-512-256 83.6% [0.00, 7.51, 3.20]
Sys. 4-g. vect. 83.3% 83.7% 256-512-256-512 83.9% [0.00, 8.20, 3.39]

Sys. 1-g. graph 85.3% 85.5% [0.00, 7.84, 3.95]
Sys. 2-g. graph 85.9% 86.2% [0.00, 8.99, 4.22]
Sys. 3-g. graph 87.1% 87.1% [0.00, 9.83, 4.41]
Sys. 4-g. graph 87.3% 87.3% [0.00, 10.43, 4.59]

Table 4.2: This table shows MKL weights of the static features for the final classifier.
Permission Used Requested Ad.

APIs Permissions Permissions networks

3.104 2.152 4.888 1.905

Intent Suspicious Network Providers
filters calls APIs

1.465 2.678 1.266 1.481

Instruction Instruction Instruction Instruction
1-gram vector 2-gram vector 3-gram vector 4-gram vector

1.137 1.410 2.699 4.392

71

Table 4.3: This table shows MKL weights of the dynamic features for the final clas-
sifier.

System call System call System call System call
1-gram vector 2-gram vector 3-gram vector 4-gram vector

0.578 0.673 1.041 1.357

System call System call System call System call
1-gram graph 2-gram graph 3-gram graph 4-gram graph

1.221 1.498 2.054 2.434

Table 4.4: This table shows classification results from the final classifier.

TP FN FP TN TPR FPR FNR Accuracy Precision

1647 239 71 3931 87.3% 1.8% 12.7% 94.7% 95.9%

concatenated all static feature vector sets. In the third experiment, we concatenated

all static feature vector sets other than the instruction vector sets and in the fourth

experiment we concatenated all instruction vectors. Finally, in the last experiment, we

concatenated all system call vector sets.

Results of these experiments are shown in Table 4.5. A check mark means

the corresponding vector set is included in concatenation. The table shows by simply

concatenating all vector sets, the best accuracy that can be reached is 93.4%, while

concatenating only static features achieves 93.6% accuracy. These results are close to

using just 4-gram instruction vector set which reaches 93.5% accuracy. These experi-

ments show that adding more features may not necessarily increase the classification

accuracy. However, in our HADM method, we refine each feature vector set with DNN

and combine different features using weights learned by MKL. Therefore, we are able

to improve classification accuracy over individual feature vector sets or graph sets or

simply combining them.

72

Table 4.5: This table shows classification results from simply concatenating the orig-
inal feature vector sets.

Permission APIs X X X
Used permissions X X X
Req. permissions X X X

Ad. networks X X X
Intent filters X X X

Suspicious calls X X X
Network APIs X X X

Providers X X X
Inst. 1-gram X X X
Inst. 2-gram X X X
Inst. 3-gram X X X
Inst. 4-gram X X X

syscall 1-gram X X
syscall 2-gram X X
syscall 3-gram X X
syscall 4-gram X X

Accuracy 93.4% 93.6% 92.5% 93.4% 83.8%

4.5.7 Comparison with State-of-the-art

There is one well-known Android malware classification method using hybrid

analysis that provides public access: Andrubis2. We submitted all of our 5888 samples

to Andrubis for analysis. For each application, Andrubis is able to return a malicious-

ness rating between 0 and 10. In their rating system, 0 means likely benign and 10

means likely malicious. After we get the maliciousness ratings for our samples, we set

a threshold t. We evaluate t = {1 − 9} where if t = 1 means that any application

returning 1 or higher is classified as malicious. Table 4.6 shows the classification re-

sults obtained using different thresholds. First, we notice that 572 samples failed to

be executed by Andrubis. However, these samples are emulated fine in our method.

We believe this is because Andrubis can only analyze applications using API level 8

(Android 2.3) or lower [83]. In our method, API level 17 (Android 4.2) is used. Hence,

we are able to emulate more recent applications. The third row of Table 4.6 shows the

2 https://anubis.iseclab.org/

73

https://anubis.iseclab.org/

True Positive. The fourth row shows the True Negative. The fifth row shows classifi-

cation accuracy without failure which is calculated as (TP+TN)/(5888-572). The last

row shows overall accuracy which is calculated as (TP+TN)/5888. The best accuracy

Andrubis achieved is 85.2% when we ignore failed samples and 76.9% when we count

the failures as wrong detections. Consequently, the HADM proposed in this chapter is

able to reach a significantly better accuracy on our dataset than the Andrubis method.

Table 4.6: This table shows classification results from Andrubis. Acc. means accu-
racy and F. means failure.

Threshold 1 2 3 4 5 6 7 8 9

Failure 572 572 572 572 572 572 572 572 572
TP 1253 1212 1176 1146 1130 1114 1083 1040 979
TN 2993 3166 3261 3327 3367 3406 3447 3483 3518

Acc. w/o F. 80.0% 82.4% 83.5% 84.1% 84.6% 85.0% 85.2% 85.1% 84.6%
Overall Acc. 72.1% 74.4% 75.4% 76.0% 76.4% 76.8% 76.9% 76.8% 76.4%

4.6 Related Work

A few hybrid methods have been proposed before for Android malware clas-

sification including AASandbox [14], DroidRanger [102], SmartDroid [100], Andru-

bis [56, 89, 55], and Mobile-Sandbox [83]. In contrast to these methods, HADM applies

deep learning techniques to improve the performance of each feature vector set, and it

combines the results from feature vector sets and graph sets using hierarchical MKL.

Droid-Sec [95] is the first work to apply deep learning to Android malware

classification. It extracts over 200 features from both static and dynamic analyses and

then feeds these into a DNN for classification. Experiments on 250 malicious and 250

benign applications show Droid-Sec is able to reach 96.5% accuracy. DroidDetector [96]

uses the same method as proposed in Droid-Sec. It extracts 192 features from both

static and dynamic analyses and characterizes malware using a DNN-based model.

DeepSign is another work that applies deep learning [23] on Windows malware signature

generation and classification. It uses the Cuckoo sandbox 3 to record the execution

3 https://cuckoosandbox.org

74

https://cuckoosandbox.org

behavior of each malware. Then, it treats the behavior report as a raw text file and

uses uni-grams to convert each report into a 20,000 bit vector. The bit vectors are then

fed into DNN to generate signatures. At the end, the signatures are fed into an SVM

for classification. Experiments on 1800 malware samples without benign applications

show that DeepSign is able to reach 96.4% accuracy. Saxe. et al. [74] also applied

deep learning to Windows binary analysis. It extracts four different sets of static

features and converts them into 1024-length vectors. The vectors are then fed into a

DNN with two hidden layers for classification. In our method, we extract significantly

more features from many more samples. More importantly, we train a DNN for each

individual feature vector set and combine the DNN learned features with the original

features and then perform classification using hierarchical MKL. This method has been

shown to improve deep learning results.

MKL has been studied previously in Windows malware analysis by Anderson

et. al. [8]. They apply Gaussian kernel and Spectral kernel on the same features and

combine them using MKL. We improve upon their method by using hierarchical MKL

and multiple features.

4.7 Conclusion

In this Chapter, we propose a hybrid Android malware classification method

named HADM. We first evaluate the performance of 16 feature vector sets and 4 graph

sets generated from 10 static and dynamic features collected from Android applications.

To improve the classification accuracy, we train one DNN for each feature vector set

and concatenate the DNN learned features with the original features. Multiple kernels

are then applied on the DNN vector sets and multiple graph kernels are applied on the

graph sets. The kernel learning results are combined using MKL to further improve

accuracy. At the end, MKL is applied again to the combined resulting MKL kernel

matrices to build the final hybrid classifier.

Evaluation of different features on our dataset show that the best classification

accuracy that can be achieved using static analysis is 93.5% by 4-gram instruction

75

feature vectors, and the best accuracy that can be achieved using dynamic analysis

is 87.3% by 4-gram system call graphs. Furthermore, the application of hierarchical

MKL is able to yield a best classification accuracy among all our models by achieving

94.7%.

76

Chapter 5

PARALLELIZATION OF SHORTEST PATH GRAPH KERNEL

5.1 Introduction

In Chapters 3 and 4, we applied Shortest Path Graph Kernel (SPGK) on

graphs to compute pairwise similarities. In this chapter, we focus on accelerating

SPGK, as originally proposed by Borgwardt et al. [15]. Research has shown that it is

highly competitive in terms of accuracy and running time, when compared with other

kernel algorithms [81]. To the best of our knowledge, no other work has addressed

the parallelization of shortest path graph kernels. Note that the sequential version of

this algorithm runs in O(n4), which makes it only appropriate for instances from small

graphs.

For a given dataset D = {g1, g2, . . . , gn} of graphs, our experiments focus on

the calculation of the corresponding kernel matrix Mn×n, a symmetric matrix where

every element M(i, j) = SPGK(gi, gj) refers to the shortest path graph kernel function

applied to a pair of input graphs gi and gj.

Our proposed method splits the original shortest path kernel into two parts and

makes the calculation much faster. We call it the Fast Computation of Shortest Path

Kernel, referred to as FCSP. We explored two different parallelization schemes of FCSP

on the CPU using OpenMP. One focuses on the parallelization of FCSP on a single pair

of graphs while the other focuses on the parallelization of calculating the entire kernel

matrix. Next, we split the FCSP into three different GPU kernels using OpenCL,

which calculates, the similarities between the vertices of the input graphs, the edges

from the two input graphs, and the aggregation of similarities into the final value for

FCSP on the GPU. We implement four different GPU parallelization schemes. The

77

first uses a 1D scheme for domain decomposition; the second uses a 2D scheme for

domain decomposition. The third and fourth overlap communication and computation

of the first and second methods. We observed that the OpenMP implementations work

better when the input graphs are small, while the GPU implementations perform better

for larger graphs. This information suggests a hybrid implementation combining CPU

parallelization with the best GPU parallelization. The hybrid scheme is based on a

graph size threshold. Graphs smaller than the threshold size are assigned the CPU

parallelization, and larger graphs are performed using GPU parallelization.

To measure the performance of different implementations, we conduct three sep-

arate experiments, in which we apply our different accelerated codes to several datasets.

In the first experiment, we create nine synthetic datasets. Graphs in the same dataset

have exactly the same number of nodes, and they are all fully connected. We also cre-

ate one additional dataset containing graphs with various sizes to test the performance

of the hybrid implementation. In the second experiment, we measure the speedups in

the kernel matrix calculation for different samples of graphs from real-world scientific

datasets; specifically four datasets from the bioinformatics domain are used. In the

third experiment, we feed the HSCG-full graphs created in Chapter 3 into different

implementations and measure the speedups. As expected, a hybrid implementation

achieved the best performance because the graph sizes can vary from less than ten

nodes to over one hundred nodes in these datasets, and different graphs prefer either

CPU or GPU parallelization implementations depending on their sizes.

5.2 Shortest Path Graph Kernel

The Shortest Path Graph Kernel (SPGK) was proposed by Borgwardt and

Kriegel [15]. Basically, this kernel counts the number of shortest paths of the same

length having similar start and end vertex labels in two input graphs. One of the moti-

vations for using this kernel is that it avoids the problem of “tottering” found in graph

kernels that use random walks [58]. Tottering is the act of visiting the same nodes

78

multiple times thereby artificially creating high similarities between the input graphs.

In shortest path kernels, vertices are not repeated in paths, so tottering is avoided.

In practice, a graph kernel based on shortest paths will require determining

all shortest distances in a graph, a problem that is solvable in polynomial time. For

example, the Floyd-Warshall algorithm [34] calculates the shortest distances for all

pairs of nodes in O(n3) time, where n denotes the number of vertices. In order to define

a kernel that counts shortest paths of similar distances, the original graphs must be

transformed into shortest path graphs. This step is a preprocessing requirement before

calculating the shortest path graph kernel. Figure 5.1 illustrates the transformation of

a labeled graph into a shortest path graph.

1

2

1

4

1

3

1

5

1

6

1

(a) Original Graph

1

3

2

2

1

5

3

4

1

6

3

1

1

3

1

2

2

24

2

4

(b) Shortest Path Graph

Figure 5.1: Illustration of the transformation of a labeled graph into a shortest path
graph. Note that the set of vertices is the same in both graphs. Every
edge connecting a pair of vertices in the shortest path graph (5.1(b)) is
labeled with the length of the shortest path between these pair of vertices
in the original graph (5.1(a)).

79

Given a graph G = 〈V,E〉, a shortest path graph is a graph S = 〈V ′, E ′〉, where

V ′ = V and E ′ = {e′1, . . . , e′m} such that e′i = (ui, vi) if the corresponding vertices ui

and vi are connected by a path in G. Each edge in the shortest path graph is labeled

with the shortest distance between the two nodes in the original graph.

SPGK for two shortest path graphs S1 = 〈V1, E1〉 and S2 = 〈V2, E2〉 is computed

as follows:

KSPGK(S1, S2) =
∑
e1∈E1

∑
e2∈E2

kwalk(e1, e2) (5.1)

where kwalk is a kernel for comparing two edge walks. The edge walk kernel kwalk is

the product of kernels on the vertices and edges along the walk. It can be calculated

based on the start vertex, the end vertex, and the edge connecting both. Let e1 be the

edge connecting nodes u1 and v1 of graph S1, and e2 be the edge connecting nodes u2

and v2 of graph S2. The edge walk kernel is defined as follows:

kwalk(e1, e2) = knode(u1, u2) · kedge(e1, e2) · knode(v1, v2) (5.2)

where knode and kedge are kernel functions for comparing vertices and edges, respectively.

Pseudo-code for a naive implementation of the Shortest Path Graph Kernel is

presented in Algorithm 11. Given two input graphs g1 and g2, line 2-7 loops over the

shortest path matrices to find all pairs of paths. Line 8 calculates the kedge and line

10-11 calculates knode. Line 12 calculates kwalk and computes the summation.

This kernel is attractive because it retains expressivity while avoiding tottering.

Moreover, it can be applied to all graphs in which Floyd-Warshall can be performed,

and it allows for continuous labels in vertices and edges. The runtime complexity of

this kernel is O(n4), because the Floyd-Warshall transformation can be done in O(n3)

and the kernel calculation requires a pairwise comparison on the number of edges of the

shortest path graphs. The latter takes O(n2 ∗ n2), because in the worst case scenario

the shortest path graph is a complete graph, having n vertices and n(n−1)
2

edges.

80

Algorithm 11 Shortest Path Graph Kernel Algorithm
1: K ← 0
2: for i, j = 0→ n node[g1] do
3: w1← sp mat[g1][i][j]
4: if i 6= j AND w1 6= INF then
5: for m,n = 0→ n node[g2] do
6: w2← sp mat[g2][m][n]
7: if m 6= n AND w2 6= INF then
8: k edge← EdgeKernel(w1, w2)
9: if k edge > 0 then

10: k node1← NodeKernel(g1, g2, i,m)
11: k node2← NodeKernel(g1, g2, j, n)
12: K+ = k node1 ∗ k edge ∗ k node2
13: end if
14: end if
15: end for
16: end if
17: end for
18: return K

5.3 Fast Computation of the Shortest Path Graph Kernel

An implementation of the Shortest Path Graph Kernel (Algorithm 11) has three

issues that slow down its performance. The first is the number of control flow oper-

ations. Four for loops and two if statements slow down the program performance

whether sequential or parallelized. The second issue is potential redundant computa-

tion of knode. Let us consider two graphs as shown in Figure 5.2(a). When we compare

walk D�E with A�B, we need to compute knode on (D,A) and (E,B). When we

compare walk D�F with A�B, knode on (D,A) and (F,B) have to be calculated. So

there is a redundant calculation of knode on (D,A) which wastes computation resources

and time. This can be solved by memorizing the knode computation as discussed below.

The third drawback is the random memory access pattern in Algorithm 11. Sequential

memory access is preferred on the CPU and especially for SIMD architectures like the

GPU. The sequential and random read bandwidths on a Nehalem CPU and Fermi

GPU have been measured before [45] and the results are shown in Table 5.1. One can

clearly observe a 9x difference in bandwidth on the CPU, and 28x difference on the

81

GPU.

Table 5.1: This table shows sequential and random memory read bandwidth on CPU
and GPU.

Platform Sequential Read Random Read

Nehalem CPU 8.6 GB/s 0.9 GB/s
Fermi GPU 76.8 GB/s 2.7 GB/s

To address the issues of Algorithm 11, we propose a different way to calculate

the shortest path graph kernel. We refer to this as the Fast Computation of Shortest

Path Graph Kernel (FCSP). In this method, the calculation of the shortest path graph

kernel is divided into two main components. First, we calculate all possible instances

of knode into a vertex kernel matrix. Second, we calculate all required values for kwalk.

Note that the kernel functions knode and kedge used to calculate the similarity between

a pair of nodes and a pair of edges can be different from application to application. In

our experiments, we use the Gaussian kernel 3.1 and the Brownian Bridge kernel 3.6

which are positive semidefinite [78].

For the first component, we call V ertexKernel, we proceed as follows. Assuming

that the order of g1 is m and the order of g2 is n, we create a matrix Vm×n for storing

the knode values, where every entry is the value of knode(u, u
′) for u being a node of g1

and u′ being a node of g2. By using this scheme, the redundant computation of knode

is eliminated.

The second component, we call WalkKernel, is responsible for calculating kwalk,

and takes advantage of a new representation of the shortest path adjacency matrix.

The new representation is composed of three equally-sized arrays. The length of these

arrays is the number of edges in the corresponding matrix. The three arrays store the

weight of the edge, the index of the starting vertex, and the index of the ending vertex.

This representation is inspired by the formats of storing a sparse matrix on GPUs [11]

which can solve the low memory utilization problem for sparse matrices access. By

applying this transformation, the two if statements in Algorithm 11 can be removed

and four for loops are reduced to two.

82

The pseudo-code of our new method is presented in Algorithm 12. Given input

graphs g1 and g2, function V ertex Kernel calculates all possible instances of knode

sequentially and stores them in a matrix V for later access. Function Walk Kernel

takes advantage of the three 1D arrays converted from shortest path matrix, which

creates more sequential memory access and less branch divergence. It calculates all

kwalk computation and sums them up as the final similarity between two input graphs.

Algorithm 12 Fast Computation of Shortest Path graph kernel

1: function vertex kernel
2: for i = 0→ n node[g1] do
3: for j = 0→ n node[g2] do
4: V [i][j]← NodeKernel(g1, g2, i, j)
5: end for
6: end for
7: end function
8:

9: function walk kernel
10: K ← 0
11: for i = 0→ n node[g1] do
12: x1← edge x1 g1[i]
13: y1← edge y1 g1[i]
14: w1← edge w1 g1[i]
15: for j = 0→ n node[g2] do
16: x2← edge x2 g2[j]
17: y2← edge y2 g2[j]
18: w2← edge w2 g2[j]
19: k edge← EdgeKernel(w1, w2)
20: if k edge > 0 then
21: k node1← V [x1][x2]
22: k node2← V [y1][y2]
23: K+ = k node1 ∗ k edge ∗ k node2
24: end if
25: end for
26: end for
27: return K
28: end function

83

5.4 FCSP running on the Multi-Core CPU

In our experiments we evaluate the calculation of a kernel matrix from a given

input dataset of n graphs. A kernel matrix is a symmetric matrix where every entry

M [i, j] for i, j ≤ n is the corresponding shortest path graph kernel between graphs gi

and gj. Here, we present two different schemes of FCSP parallelization on multicore

CPUs. Both schemes are implemented using OpenMP.

In the first scheme called OpenMP Graph, we perform the FCSP computation

on a single pair of graphs running in parallel. For the first part of FCSP , which is

V ertex Kernel, we create a shared 2D matrix for all the OpenMP threads. Then we

parallelize the outside loop, which is line 2 in V ertexKernel in Algorithm 12, using

the dynamic parallel for pragma. In Walk Kernel, we create an array with the size

equal to the number of OpenMP threads. This array stores the summed kwalk from all

OpenMP threads. We use the same dynamic parallel for pragma to parallelize line 11

of Algorithm 12 because the dynamic pragma is observed to be faster than the static

pragma for this code.

The second scheme is parallelization of the kernel matrix calculation, and is

referred to as OpenMP Matrix. In this scheme, we create the same number of threads

as the number of CPU cores available. Each thread resides on one core. To calculate

the symmetric kernel matrix for a set of input graphs, the top half triangle of the

matrix is transformed to a 1D array. Each OpenMP thread takes one element in the

1D array in order, applies the FCSP , fills in the result, and then goes to the next

iteration until all elements are computed.

5.5 FCSP running on the GPU

The GPU is a massively parallel co-processor present in many desktops and

laptops. The most powerful GPUs can perform more FLOPS and have more memory

bandwidth than the most powerful CPUs [61]. Moreover, the development of program-

ming environments, like CUDA and OpenCL, allows programmers to run multiple

threads in parallel using the power of the GPU for general-purpose applications.

84

The CUDA and OpenCL models use an SPMD model where a program known

as a kernel represents a single scalar execution entity. In CUDA terminology, which

we use throughout for simplicity, this is known as a thread. These CUDA threads are

organized for execution into a 1D, 2D or 3D grid of structures known as thread blocks,

which perform local computation and are co-located on the same execution unit of the

GPU. Thread blocks have access to an on-chip shared memory and can synchronize

their constituent threads with each other. Threads are further executed in 16-, 32- or

64- element batches called warps where each thread is a single SIMD lane and a warp

is analogous to an x86 thread executing an SSE or AVX instruction. This mapping

of neighboring threads to a single SIMD vector can lead to efficiency losses known as

thread divergences when threads are mapped to the same warp, but follow different

control flow paths.

We present our different GPU parallelizations of the FCSP . We first introduce

two different domain decomposition techniques for FCSP parallelization. Then we

reduce the total running time of these two implementations by overlapping communi-

cation and computation. We then propose a hybrid method that combines multicore

CPU and GPU parallelization.

5.5.1 Two Domain Decompositions in GPU Parallelization

FCSP is a suitable application for parallelization. In FCSP, branches are re-

moved, no load balancing issue exists between GPU threads, and the coalesced memory

access is satisfied. We are therefore able to achieve significant speedups with this ap-

proach.

In our GPU implementation, the FCSP is divided into three GPU kernels. The

first one is V ertex Kernel. It calculates all possible instances of knode and stores them

in a matrix for later access. The second kernel is Walk Kernel which calculates all

the required values for kwalk and stores them in a matrix or array. The last component

is Reduction Kernel which sums up all kwalk values into a small array which is copied

to CPU memory and summed up as the final similarity.

85

For the first component, named V ertex Kernel, we proceed as follows. Assum-

ing that g1 has m vertices and g2 contains n, we allocate a buffer Vm×n on the GPU

memory for storing the knode value. A GPU thread grid is created, where each thread

calculates an entry of V . Since we remove the divergence, all threads in this component

are running in parallel.

The second component, named Walk Kernel, is responsible for calculating

kwalk. Given two input graphs, suppose the number of paths in g1 is a and g2 has

b paths. We assume g1 has more paths than g2 without a loss of generality. For the

graph with n nodes, the paths can vary from 0 to n2. Therefore, the domain decom-

position for GPU threads can be challenging. In our implementation, we applied two

different methods. The first method is 1D decomposition in which we assign a GPU

thread to one path in g1. This thread will loop through all the b paths in g2, calculate

the corresponding kwalk values, and sum them up. An array of a elements will be re-

turned at the end. The second scheme is 2D decomposition. In this method we assign

one GPU thread to one pair of paths. So each thread will calculate kwalk between two

paths. A matrix of a× b will be returned. The calculation of kwalk requires knode, that

has already been calculated and cached.

The third GPU kernel is Reduction Kernel. If we use the 1D domain decom-

position scheme in WalkKernel, a reduction is performed on a elements. Otherwise,

the reduction is performed on a× b elements. After reduction, a small resulting array

is copied back to the CPU. Finally, the similarity between the graphs is calculated by

adding up all the values in the array.

The biggest advantage of parallelizing FCSP on the GPU is efficiency. There is

no execution divergence between threads because of the shortest path matrix conver-

sion in V ertex Kernel and Walk Kernel. The sequential coalesced memory access is

satisfied in all three kernels.

To make the above discussion easy to understand, we show a simple example in

Figure 5.2. Figure 5.2(a) shows the two input graphs and the corresponding shortest

path adjacency matrices. Figure 5.2(b) demonstrates how V ertex Kernel calculates

86

D

E F

A

B

C

A
A
B
C

B C D
D
E
F

E F
0 1 2
0 0 1
0 0 0

0 1 1
0 0 0
0 0 0

(a) Input Graphs

A D0 A E1 A F2

B D3 B E4 B F5

C D6 C E7 C F8

(b) Vertex Kernel

A B

D E

A B

D F
0

A C

D E

A C

D F1

B C

D E

B C

D F2

(c) Walk Kernel (1D)

A B

D E

A B

D F
0

A C

D E

A C

D F
2

B C

D E

B C

D F
4

1

3

5

(d) Walk Kernel (2D)

Figure 5.2: Example for applying Shortest Path Graph Kernel using FCSP . Fig-
ure 5.2(a) shows the input graphs and the corresponding shortest path
adjacent matrices. Figure 5.2(b) depicts the V ertex Kernel and each
GPU thread’s assignment. Figure 5.2(c) shows the Walk Kernel with
1D domain decomposition and each GPU thread’s calculations. Fig-
ure 5.2(d) shows the Walk Kernel with 2D domain decomposition and
each GPU thread’s calculations.

87

knode(u, u
′) for the inputs. Since there are three vertices in each graph, we create a

thread grid of size 3× 3, as shown in the figure. Each thread in the grid is responsible

for calculating one knode(u, u
′). Results are stored in a matrix and can be cached for

later access. Figure 5.2(c) shows the Walk Kernel with 1D decomposition. Since there

are three edges in the first input graph, we create three GPU threads. Each thread

loops through the two edges in the other input graph. The knode values for its vertices

are pre-calculated and cached. This allows the threads to finish the calculation of kwalk

extremely fast. Figure 5.2(d) shows the Walk Kernel with 2D decomposition. Since

there are three paths in one graph and two paths in the other, six GPU threads are

created. Each thread calculates the kwalk between one pair of paths.

Before the GPU kernel execution, the two input graphs have to be copied to the

GPU memory. So if there are n comparisons, n memory transfers between the CPU and

the GPU are needed. This results in a huge overhead. To avoid the unnecessary and

duplicated memory transfers, we can simply copy all the graph data into GPU memory.

Then at each kernel execution, the GPU thread can fetch needed data according to its

targeting graph offset.

5.5.2 Overlapping Communication with Computation

In our GPU implementation, the last kernel is the Reduction Kernel. A small

array is copied to the CPU and summed up for calculating the final similarity. This

memory copy from GPU to CPU and computation on CPU may not require much

time. However, given n input graphs, the GPU method needs to be called n2 times.

As a result, there may be considerable time spent on memory transfers and CPU

computation. Our experiments show that the portion of time spent on the reduction

memory transfer can vary from 6% to 50% of the total computation. Fortunately, this

part can be hidden by overlapping it with GPU computation. When the reduction

kernel completes, we initiate a non-blocking memory transfer. We then assign another

pair of graphs to the V ertex Kernel. As the memory transfer is asynchronous it can be

overlapped with the next V ertex Kernel execution. When V ertex Kernel completes

88

we initiate a non-blocking execution of Walk Kernel and the CPU accumulates the

reduction result array to obtain the similarity result while the GPU is executing. Our

experiments show this scheme can hide most of the time spent due to memory transfers.

5.5.3 Hybrid Implementation – Combining CPU and GPU

From our experiments, we observed that the implementation with the best per-

formance varied depending on different datasets. When the graphs were small, the

CPU implementations beat all the GPU implementations. The GPU with 2D decom-

position beat the GPU with 1D decomposition when graphs were small, but it did not

improve over the OpenMP implementations. However, when the graphs are large, the

GPU with 1D decomposition performs the best. The experiments show that the com-

putation/communication overlapped implementations always performed better than

the ones without overlapping. Combining a CPU/GPU implementation seems to be a

good idea. We hypothesize that many real world datasets have graphs of a variety of

different sizes. So in our Hyrbrid implementation, we first set a threshold T1 for aver-

age graph size in the input dataset. If the average graph size is smaller than T1, then

we use OpenMP Matrix to calculate the full kernel matrix. Otherwise, we set another

threshold T2 for graph size to decide graphs that should be run on the CPU vs. the

GPU. When the number of shortest paths in both input graphs are smaller than T2,

we use OpenMP Graph to calculate the similarity. Otherwise, the GPU 1D overlap

is used.

5.6 Experimental Results

All the experiments were conducted on a GPU cluster where each node has

a NVIDIA C2050 GPU. This GPU is based on the GF100 (Fermi) architecture. It

contains 14 multiprocessors with 32 processors each, totaling 448 parallel processors.

Each multiprocessor contains 32K registers and 64KB, which are split between shared

memory and L1 cache. Programmers can allocate 16KB for shared memory and 48KB

for L1 cache or 48KB for shared memory and 16KB for L1 cache. In addition to the

89

GPUs, each node contains two Intel 5530 Quad core Nehalem CPUs clocked at 2.4

GHz with 8MB cache. For our OpenMP implementation, we used 16 CPU threads.

We tested our GPU accelerated versions of the shortest path graph kernel using

three datasets. The first dataset is synthetic. The second dataset is a scientific dataset

containing labeled graphs using discrete values. The third dataset is the HSCG-full

graphs created in Chapter 3. For performance comparisons, we take memory copies

and all the other overhead into consideration, and the total running time is used.

5.6.1 Synthetic Datasets

To test the performance of all our implementations, we created several synthetic

datasets. Our OpenMP implementations perform well on datasets with small graphs,

while the GPU implementations perform better on datasets with larger graphs.

First, we created nine different datasets. We call these homogeneous datasets

because each dataset contains graphs of the same sizes, i.e., graphs in the same set

have the same number of nodes. All the graphs are fully connected, which means that

for each pair of vertices there is an edge connecting them. Since the graphs are fully

connected, the number of Shortest Paths (SP) equals to the number of edges. Each

dataset has 256 graphs. The 9 datasets contain graphs with 10, 15, 20, 25, 30, 35, 40,

45, and 50 nodes. The largest number of nodes we use is 50 because the average number

of nodes in the real scientific datasets we tested had less than 50 nodes. However, we

are able to process large graphs with thousands of nodes, as long as they fit into GPU

memory. If the graph size goes beyond the GPU’s memory capability, we can still

cut a graph into multiple chunks and process them chunk by chunk. However, in this

dissertation we do not present results on such large graphs.

We first evaluated the naive sequential implementation of the shortest path

graph kernel and the FCSP on the CPU. Then, we evaluated our two different

OpenMP implementations and four different GPU implementations on the synthetic

datasets. Table 5.2 shows statistics for all nine datasets. In order to test the perfor-

mance of our Hybrid implementation, we created another dataset with mixed sized

90

graphs. In this mixed dataset, we create 180 graphs with 10 nodes and 76 graphs

with 50 nodes. The comparison between graphs of 10 nodes only can be handled by

OpenMP Graph, and the comparison between two graphs where at least one of them

has 50 nodes can be handled by GPU 1D overlap. We pick the 180:76 ratio because

the number of graphs assigned to the CPU would roughly equal the number of graphs

assigned to the GPU in this case.

Table 5.2: This table shows statistics about the number of nodes and Shortest Paths
(SP) for our synthetic datasets. Because the graphs are fully connected,
the number of edges equals to the number of SP.

Dataset Avg. Nodes Avg. SP

10-nodes 10 90
15-nodes 15 210
20-nodes 20 380
25-nodes 25 600
30-nodes 30 870
35-nodes 35 1190
40-nodes 40 1560
45-nodes 45 1980
50-nodes 50 2450

Table 5.3 shows the total running time in seconds of the naive SPGK imple-

mentation and the FCSP on nine synthetic datasets. Thanks to the branch divergence

removal, redundant computation elimination, and sequential memory access, our se-

quential FCSP algorithm running on a CPU is able to achieve a 76x speedup over the

naive sequential SPGK algorithm running on the same CPU.

After comparing our FCSP with the naive implementation, we developed and

evaluated six different FCSP parallelizations on the CPU and GPU. For GPU 1D and

GPU 2D, we measured the running times spent on the three GPU kernels. The time

breakdown is shown in Figure 5.3. As the graph size increases the ratio of WalkKernel

gets larger, and the percentages for V ertexKernel and memory copy decreases in both

GPU 1D and GPU 2D. The percentage for reduction goes up in GPU 2D because the

total number of kwalk values to be summed increases exponentially (n2) as the graph

size increases. However, in GPU 1D, the increase is linear. The percentage of memory

91

Table 5.3: This table shows speedups of FCSP over a naive SPGK implementation
on CPU.

Dataset SPGK time(sec) FCSP time(sec) Speedup

10-nodes 127.99 2.35 54.56
15-nodes 695.24 11.69 59.46
20-nodes 2275.60 37.16 61.25
25-nodes 5668.74 91.42 62.00
30-nodes 11990.24 190.82 62.83
35-nodes 26220.74 355.50 73.76
40-nodes 45850.24 609.67 75.21
45-nodes 74817.26 983.35 76.08
50-nodes 115728.37 1513.69 76.45

copy costs varies from 6% to 50% of the total running time in different datasets. So it

is necessary to hide this cost.

The speedup of each parallelization version over sequential FCSP is shown in

Figure 5.4. The x-axis shows the exact number of nodes of each graph in the corre-

sponding dataset while the y-axis shows the speedup over sequential FCSP. It is appar-

ent that OpenMP Matrix’s performance is stable obtaining 8x speedup on average.

This is reasonable because there are sixteen OpenMP threads running in parallel in

a shared memory system. Even FCSP is optimized, meaning it is still memory band-

width bound, which prevents it from getting 16x speedup. In our OpenMP Graph

method, the overhead for OpenMP initialization occurs once for each pair of graphs.

So the initialization happens n(n−1)
2

times given n input graphs. This is the main

reason why OpenMP Graph performs worse than OpenMP Matrix especially when

the graph size is small. For the GPU implementations, the overlapped implementa-

tions are faster than the non-overlapped implementations, which proves that hiding

memory copy cost by overlapping communication with computation can help reduce

total running time. The GPU 1D overlap performs best in four GPU parallelization

methods on almost all datasets except the first one. Also, GPU 1D overlap starts to

outperform OpenMP implementations when the graph size increases to 35. It reaches

a speedup of 18x on the largest dataset.

92

10 15 20 25 30 35 40 45 50

%
 o

f
to

ta
l

Exact Number of Nodes in Each Graph in Datasets

GPU_1D_VertexKernel
GPU_1D_WalkKernel

GPU_1D_Reduction
GPU_1D_memory_copy

(a) Time breakdown for GPU 1D

10 15 20 25 30 35 40 45 50

%
 o

f
to

ta
l

Exact Number of Nodes in Each Graph in Datasets

GPU_2D_VertexKernel
GPU_2D_WalkKernel

GPU_2D_Reduction
GPU_2D_memory_copy

(b) Time breakdown for GPU 2D

Figure 5.3: Time breakdown for the GPU 1D and GPU 2D implementation on
the nine datasets. (a) shows the running times in percentages for the
V ertexKernel, WalkKernel, Reduction, and memory copy forGPU 1D
on nine synthetic datasets, and (b) shows the running times in percent-
ages for the GPU 2D.

93

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 15 20 25 30 35 40 45 50

S
p
e
e
d
u
p
 O

v
e
r

F
C

S
P

 o
n
 S

e
q
u
e
n
ti
a
l
C

P
U

Exact Number of Nodes in Each Graph in Datasets

OpenMP_Graph
OpenMP_Matrix

GPU_1D
GPU_2D

GPU_1D_overlap
GPU_2D_overlap

Figure 5.4: This figure shows speedups of CPU and GPU parallelization schemes over
sequential FCSP on 9 synthetic homogeneous datasets. For graphs with
small number of nodes, OpenMP Matrix performs best. For graphs
with large number of nodes, GPU 1D overlap performs best.

94

To test the performance of our Hybrid implementation, one additional dataset

was created. In this dataset, only two sizes of graphs were included: five node graphs

and fifty node graphs. The average graph size for dataset is larger then the T1 threshold

in our Hybrid implementation, so OpenMP Matrix is not selected. However, there

is a clear boundary T2 we can set in our Hybrid implementation for choosing which

algorithm to use. Our Hybrid algorithm uses OpenMP Graph when graph similarities

of five nodes are calculated. It then switches to the GPU 1D overlap implementation

when similarities of large graphs are calculated. Table 5.4 shows the running time in

seconds of our different implementations on the mixed dataset. As can be seen, Hybrid

performs the best which is consistent with our expectation.

Table 5.4: This table shows running time (seconds) on the mixed dataset for different
implementation.

OpenMP OpenMP GPU GPU GPU GPU Hybrid
Graph Matrix 1D 2D 1D overlap 2D overlap
24.446 20.349 22.137 32.252 19.751 29.336 19.042

5.6.2 Scientific Datasets

We also carried out experiments with real-world scientific datasets from the

bioinformatics domain, with graphs that contain discrete labels at the nodes. These

datasets were used in prior work to highlight the effectiveness and efficiency of shortest

path graph kernels [81]. The datasets are described as follows: (a) MUTAG contains

mutagenic aromatic and heteroaromatic nitro compounds [25]; (b) ENZYMES is a

dataset of protein tertiary structures of enzymes from the Brenda database [79]; (c)

NCI1 and NCI109 are two datasets of chemical compounds screened for activity against

non-small cell lung cancer and ovarian cancer cell lines, respectively [87]. Detailed

statistics about these datasets are shown in Table 5.5.

In this experiment, we used each of the four scientific datasets as input to our

two OpenMP implementations, four GPU implementations, and one hybrid imple-

mentation. We show the time breakdown for GPU 1D on four scientific datasets in

95

Table 5.5: This table shows detailed statistics about the number of nodes, edges, and
Shortest Paths (SP) for the four scientific datasets.

Dataset Total Graphs Avg. Nodes Avg. Edges Min. SP Max. SP Avg. SP

MUTAG 188 17 39 90 756 324
ENZYMES 600 32 124 2 15500 1215

NCI1 4110 29 64 6 11130 1005
NCI109 4127 29 64 12 11130 995

Figure 5.5. It shows that the time spent on memory copy takes up to 31% in MUTAG,

which has the smallest average number of SP, and 17% in ENZYMES, which has the

largest average number of SP. We use the performance of OpenMP Graph as a baseline

for comparison. The results from all the other implementations are shown in Table 5.6.

Clearly, the overlapped GPU implementations outperform the non-overlapped methods

in all four datasets. In the first dataset MUTAG, the OpenMP Matrix and Hybrid

perform the same and beat all the other implementations because the dataset is so

small that Hybrid selects OpenMP Matrix for kernel matrix computation. MUTAG

only has 324 shortest paths on average. The computation power of the GPU cannot

be fully utilized on this dataset. As a result, all GPU implementations do not perform

well. In the other three datasets, Hybrid always performs the best. We also notice

that the Hybrid implementation achieves its maximum speedup for ENZYMES, which

is the dataset with the largest average number of nodes and edges.

Table 5.6: This table shows speedups over OpenMP Graph on four scientific datasets
(M. stands for Matrix and o. stands for overlap)

Dataset OpenMP M. GPU 1D GPU 2D GPU 1D o. GPU 2D o. Hybrid

MUTAG 1.33 0.28 0.21 0.33 0.38 1.33
ENZYMES 1.05 1.73 0.78 1.89 0.94 1.92

NCI1 1.13 1.45 0.73 1.66 0.90 1.78
NCI109 1.11 1.38 0.69 1.58 0.87 1.70

96

MUTAG ENZYMES NCI1 NCI109

%
 o

f
to

ta
l

Four Scientific Data Sets

GPU_1D_VertexKernel
GPU_1D_WalkKernel

GPU_1D_Reduction
GPU_1D_memory_copy

Figure 5.5: This figure shows time breakdown for GPU 1D on four scientific datasets.

5.6.3 Malware Dataset

In the last experiment, we evaluated different parallelization schemes with the

malware graphs, e.g., the HSCG-full graphs, created in Chapter 3. Statistics includ-

ing number of vertices, edges, and shortest paths for the HSCG-full graphs generated

from our malicious and benign samples are recorded in Table. 3.1. Speedups for dif-

ferent implementations over the OpenMP Graph are shown in Table 5.7. Because the

HSCG-full graphs are small, their average number of shortest paths is 42 for malware

graphs and 33 for benign graphs, utilization of GPU computation power is low and re-

sult in bad performance. However, the Hybrid implementation automatically selected

OpenMP Matrix for computation and therefore reaches the same best performance.

Table 5.7: This table shows speedups over OpenMP Graph on the HSCG-full
graphs created in Chapter 3. (M. stands for Matrix and o. stands for
overlap)

Dataset OpenMP M. GPU 1D GPU 2D GPU 1D o. GPU 2D o. Hybrid

HSCG 1.36 0.10 0.09 0.11 0.10 1.36

97

5.7 Conclusion

In this chapter, we targeted fast and efficient parallelization of the shortest path

graph kernel on the CPU and GPU. We proposed the Fast Computation of Shortest

Path graph kernel. We observed up to 76x speedup using FCSP over a naive imple-

mentation of SPGK when we run both sequentially. We parallelized FCSP on the CPU

using two OpenMP methods and on the GPU using four OpenCL implementations.

We also proposed a hybrid scheme to combine the benefit of CPU and GPU paral-

lelization. Our experiments showed the best implementation of FCSP depends on the

size of the graphs being processed. For small graphs, the OpenMP implementations

on the CPU performs best while for large graphs the GPU implementation performs

best. Therefore, a hybrid algorithm that selects the optimal algorithm per graph size

works best in all datasets.

98

Chapter 6

PARALLELIZATION OF DEEP LEARNING

6.1 Introduction

Deep learning has shown promise in domains such as speech recognition, image

classification, and natural language processing [9]. State-of-the-art deep learning mod-

els often contain a large number of neurons, resulting in millions or even billions of free

parameters [21]. To train such complex models, tremendous computational resources,

energy, and time are required. Recently, a significant amount of effort has been put into

speeding up deep learning by taking advantage of high-performance systems. Despite

that, AlexNet [52] takes more than five days to train on two GPUs; DistBelief [24]

uses 16,000 cores to train a neural network in a few days; COTS HPC system [21]

scales to neural networks with over 11 billion parameters using a cluster of 16 GPU

servers. While these prior works have successfully accelerated computation by map-

ping deep learning to existing architectures, relatively little research has been done to

evaluate the potential of emerging architecture designs, such as in-memory computing,

to improve the performance of deep learning.

In Chapter 4, we built DNN vector sets by performing training on GPU. In this

chapter, we explore the potential of Processing In Memory (PIM) implemented via 3D

die stacking to improve the performance of deep learning. While PIM research has been

active for a few decades, it has not been commercially viable due to manufacturing and

economic challenges. However, recent advances in 3D die stacking technology make it

possible to stack a logic die with one or more memory dies which enables a new class of

PIM solutions. These solutions build on the same underlying 3D stacking technology

used by recent memory technologies such as Hybrid Memory Cube (HMC) [62] and

99

High Bandwidth Memory (HBM) [2]. It has been demonstrated that a broad range

of applications can achieve competitive performance on viable 3D-stacked PIM con-

figurations compared with a representative mainstream GPU [97]. We evaluate the

performance of scaling deep learning models on a system with multiple PIM devices.

In this system, the host is a high-performance mainstream APU. This host is attached

to several memory modules, each with PIM capabilities consisting of a small APU.

From the two most popular deep learning models, Convolutional Neural Net-

work (CNN) and Deep Belief Network (DBN), we select three frequently used and

representative layers: the convolutional layer, the pooling layer, and the fully con-

nected layer. Across the multiple PIM devices, we parallelize these layers individually.

Two parallelization schemes are evaluated, which are data parallelism and model par-

allelism. The data parallelism approach keeps a copy of the full neural network model

on each device but partitions the input data into mini batches across them. We eval-

uate data parallelism on all three layers. The model parallelism approach partitions

the neural network model and distributes one model partition to each device. We

apply model parallelism to the fully connected layer, as the number of parameters in

this layer increases drastically as the network grows. Memory capacity can often be

a limiting factor for fully connected layers. When the model is too large to fit into a

PIM’s memory, it is essential to partition the model across multiple PIMs using model

parallelism.

Experiments show that by scaling deep learning models to multiple PIMs avail-

able in a system, we are able to achieve better or competitive performance compared

with a high-performance host GPU in many cases across the different layers studied.

We show that model parallelism consumes much less memory than data parallelism on

fully connected layers, and it also reaches better performance when the number of input

images per batch is small. However, as the batch size increases, data parallelism scales

better due to the absence of synchronization and it outperforms model parallelism.

100

6.2 Deep Learning Models

Deep Belief Networks (DBN) are constructed by chaining a set of Restricted

Boltzmann Machines (RBM) [44]. We explain the details of RBM in Section 6.2.3.

Here we show an example of a DBN trained for speech recognition in Figure 6.1. The

model takes as an input a spectral representation of a sound wave. The input is then

processed by several RBMs where each RBM may contain a different number of hidden

units. Finally, the DBN translates the input sound wave to text output.

Figure 6.1: A simple DBN used for speech recognition. The input audio is processed
by several RBMs and then translated to text.

Unlike DBN, CNN may consist of multiple different layers. The most basic ones

are convolutional, pooling, and fully connected layers. The fully connected layer has

effectively the same characteristics as the RBM. The details of each layer are discussed

in the following subsections. Here we show an example of a CNN model trained for

digit recognition in Figure 6.2. The input to this model is an image containing one

hand-written digit. The input is first processed by the convolutional layer where each

filter outputs one feature map. The feature maps are downsampled by the max pooling

layer. Outputs from the pooling layer are then processed by the fully connected layer.

The final output layer contains 10 neurons where each neuron represents one digit.

The neuron with the highest probability is the prediction result of the input.

101

Figure 6.2: A simple CNN used for digit recognition. Input is an image of a hand-
written digit. After processing by the convolutional layer, the pooling
layer, and the fully connected layer, the CNN outputs a neuron with the
highest probability as the prediction result.

Traditionally, deep learning applications consist of two phases: training and

prediction. The training phase contains forward propagation and backward propaga-

tion for weight updates [13, 75]. In forward propagation, input images are processed

through all layers in the deep learning model with initial weights. In backward prop-

agation, error is computed based on the model output. The error is then propagated

back through all layers and is then used to update the weights for each layer. The

prediction phase contains only the forward propagation using the weights learned in

the training phase. This study focuses on the three common layers in the forward

propagation: convolutional, pooling, and fully connected, as the forward propagation

is key to both the training and prediction phases.

6.2.1 Convolutional Layer

The Convolutional layer is the core building block of CNN. The input of this

layer is a batch of images, and each image has 3 dimensions including width, height,

and depth (or channels). The convolutional layer applies one or several convolutional

filters (or kernels) to each 3D input volume. The filters are spatially small along the

width and height dimensions, but they have the same depth as the input volume.

Although not required, practitioners usually set the filter to have the same size along

width and height dimensions in practice and they call this hyperparameter filter size.

102

During the forward propagation, each 3D filter is applied by sliding it across the width

and height dimensions of each input volume, producing a 2D feature map of that filter.

Each time we slide the filter across the input, we compute the dot product between

the entries of the filter and the 3D sliding window. The hyperparameter stride defines

how far we slide the filter. Assuming stride as 1, we slide the filter by only 1 spatial

unit for the next convolution. Also, a technique called zero-padding can be applied

to add zeros surrounding the input volume, so the filter can be applied to the border

elements of the input.

Figure 6.3 shows an example of 2D convolution. The input is 4 × 4 with zero

padding. The filter size is 3, and the output is also 4× 4 because we set stride size to

be 1. The red window slides along the width and height of the input. Dot products

between entries in the input red window and filter are performed and output to the

resulting feature map.

Figure 6.3: An example of 2D Convolution. Dot product for elements in the two red
windows is performed.

6.2.2 Pooling Layer

Input to pooling layer is usually the output from convolutional layer after an

element-wise non-linear transformation. The pooling layer is used to reduce the spatial

size of the input through downsampling. By doing so, the amount of parameters and

computation can be greatly reduced which can also help alleviate overfitting. The most

common pooling operation in CNN is max pooling. It involves sliding a 2D window

103

along the width and height of the input on every channel. Each window outputs a max

value of the elements within the window. Therefore, the output of the pooling layer is

spatially downsampled on width and height but remains the same depth as the input.

Similar to the convolutional layer, the output size depends on the choices of kernel size

and stride. Figure 6.4 shows an example of performing max pooling on a 4 × 4 input

with a filter size of 2 and stride size of 2. The maximum value of each window in the

input is the output in the resulting feature map.

Figure 6.4: An example for max pooling. Different colors mean different pooling
windows and the corresponding results.

6.2.3 Fully Connected Layer

The fully connected layer in CNN can be treated as the RBM used in DBN. An

RBM is an energy-based generative model that consists of two layers: a layer of visible

units v, and a layer of hidden units h. The units in different layers are fully connected

with no connections among units in the same layer. Figure 6.5 shows a very small

RBM with 4 units in the visible layer and 3 units in the hidden layer for illustration

purposes. In total, there are 4× 3 edges in the network. Weights associated with these

edges are represented as a 4 × 3 weight matrix. In CNN, input of a fully connected

layer is usually the output of a pooling layer. Each 3D volume from the pooling layer

can be unrolled to a large 1D vector. The dimension of the 1D vector equals the visible

layer size of the RBM. By unrolling all 3D volumes from the pooling layer, we are then

able to represent them as a 2D matrix, which we then multiply with the weight matrix

to derive the output of the fully connected layer.

104

Figure 6.5: This figure shows a simple RBM with 4 units in the visible layer and 3
units in the hidden layer.

6.3 PIM Architecture

Figure 6.6 shows our system organization consisting of one host and four PIM

stacks. Each PIM stack has a logic die containing the in-memory processor and memory

(DRAM) dies on top of it.

In our system design, both the host and in-memory processors are Accelerated

Processing Units (APU). Each APU consists of CPU and GPU cores on the same silicon

die which enables the execution of both CPU- and GPU-oriented general-purpose code

on either the host or PIM. Selecting an APU as the in-memory processor lowers the

barrier to adoption and allows the use of existing rich sets of development tools for

CPUs and GPUs. For this evaluation, we focus on the GPU execution units of the

host and the PIM APUs.

The in-memory processor in each memory stack has high-bandwidth access to

the memory stacked on it at a peak of 320 GB/s. The capacity of each memory stack

is 4 GB. The host also has direct access to the memory stacked atop the PIM devices

but at a reduced bandwidth, since those accesses must be over a board-level memory

interface. We model the host memory interface on Hybrid Memory Cube (HMC) [62]

at 160 GB/s peak bandwidth per memory stack (i.e., 1/2 the internal bandwidth), which

105

results in aggregate host bandwidth of 640 GB/s across the four memory stacks. In

order to model more mainstream hosts with lower memory bandwidth, we also evaluate

designs where the host has 1/4 and 1/8 the internal bandwidth per memory stack.

We model a unified address space among the host and PIM devices that allows

direct access from any PIM device to any memory within the system. Access to remote

memory (i.e., memory in other PIM stacks) by PIM devices is modeled at 1/8 the intra-

stack bandwidth per stack.

HostLogic die with PIM

Memory

dies

Memory stack

Figure 6.6: A node with four PIM stacks. Host can access all PIM stacks simultane-
ously. Each PIM stack can remotely access the other PIM stacks.

6.4 PIM Performance Model

A key challenge for memory systems research is the need for evaluating realistic

applications with large datasets that can be prohibitive to run on cycle-level simulators.

This issue is exacerbated as PIM expands the design space that must be explored.

Therefore we perform our evaluations using a model that analyzes performance on

existing hardware and uses machine learning techniques to predict the performance on

future system organizations [92].

The model is constructed by executing a sufficiently large number of diverse

kernels (the training set) on native GPU hardware and characterizing their execution

through performance counters. Each hardware parameter that we are interested in

scaling for future systems is varied to identify the performance sensitivity of each kernel

to that hardware parameter. We then use a clustering algorithm to identify groups of

kernels with similar scaling characteristics. Once the model is constructed, we can run

106

a new kernel at a single hardware configuration, and use its performance counters as

a signature to map it to one of the clusters formed during model construction. The

cluster identifies the scaling characteristics of the kernel, which is used to predict the

performance for future machine configurations of interest, including PIM. The accuracy

of this approach has been shown to be comparable to cycle-level models for exploring

the design space of key architectural parameters such as compute throughput and

memory bandwidth [92].

6.5 Deep Learning on Multiple PIMs

The key challenge in implementing deep learning algorithms on a system with

multiple PIMs is partitioning the data among the memory stacks and dispatching the

scoped compute kernels to the PIMs corresponding to the data partitions in order to

exploit the high memory bandwidth available from each PIM to its local memory stack.

Due to the high parallelism and throughput requirements of deep learning algorithms,

we focus on the GPU execution units of the host and PIM APUs.

6.5.1 Data Parallelism and Model Parallelism

We explore two approaches to parallelize deep learning models on multiple PIM

GPUs: data parallelism and model parallelism. In data parallelism, the input batch

of images is partitioned across PIMs. Each PIM GPU gets a subset of the data and

works on the full model. In model parallelism, the neural network model is partitioned

across PIM GPUs. Each GPU works on one partition of the model using the full input

batch.

The advantage of data parallelism is that each PIM gets a copy of the model,

allowing each one to operate independently on its data without any inter-PIM com-

munication. This is often desirable in cases where the model fits within the memory

capacity of a single stack and the overhead of replicating the model on all PIM stacks is

acceptable. Further, by increasing batch size, data parallelism can be made arbitrarily

scalable and efficient. For example, if there are 8 PIMs and the batch size is 256, then

107

each PIM gets 32 input images which may result in low GPU usage. If we increase the

batch size to 1024, then each PIM can get 128 input images and higher GPU usage.

However, increasing the batch size can increase response time for latency-critical pre-

diction tasks and adversely affect convergence rates in model training. Therefore, the

batch sizes are typically set to be hundreds. For example, AlexNet uses a batch size of

128 and VGG nets [82] use 256. In this study, we evaluate batch sizes up to 1024.

The advantage of model parallelism is to enable training and prediction with

much larger deep learning models. For example, COTS HPC system trains a network

with more than 11 billion parameters which requires about 82 GB memory. Such a

model is too large to fit into one single node using data parallelism, and thus needs to be

partitioned using model parallelism. However, inter-PIM communication is inherent

in model parallelism. As the model is partitioned across PIMs, each PIM can only

compute a subset of neuron activities. They require synchronization to get the full

neuron activities. In Figure 6.7, we show how to partition the RBM example from

Figure 6.5 across two PIMs. PIM1 gets visible unit v1 and v2 while PIM2 gets visible

unit v3 and v4. When computing the neuron activities of h1, h2, and h3, PIM1 only

computes the contributions from v1 and v2 and PIM2 only computes the contributions

from v3 and v4. However, the full activities come from all units in the visible layer;

therefore the contributions from PIM1 and PIM2 are summed together to generate the

correct result.

6.5.2 Convolutional Layer Parallelization

In deep learning models, convolutional layers cumulatively contain most of the

computation, e.g., 90% to 95%, but only a small fraction of the parameters, e.g.,

5% [50]. As we focus only on the prediction phase of deep learning in this study

(i.e., there is no backward propagation and no weights update) the two parallelization

schemes result in the same amount of computation for convolutional layers. Suppose

there are I input images, F filters, and the image size is S by S. With a stride of

1, the total number of convolutions is I × F × S × S. For data parallelism across N

108

Figure 6.7: This figure shows model partitioning of the RBM example shown in
Figure 6.5 across two PIMs.

PIMs, each PIM is responsible for (I/N)×F×S×S convolutions because input data is

partitioned. For model parallelism, each PIM is assigned I×(F/N)×S×S convolutions

because the set of filters is partitioned. Therefore, the amount of computation is the

same for each PIM GPU no matter which parallelization scheme is applied. Further,

due to the small size of the model parameter set, memory capacity pressure is not a

factor in convolutional layers. Therefore, for simplicity, this study only evaluates data

parallelism on convolutional layers. Given N PIM devices, the input batch of images

is evenly partitioned to N mini batches. Each mini batch is assigned to one PIM and

then propagates forward independently.

6.5.3 Pooling Layer Parallelization

For the pooling layers, there are no model parameters. Therefore, we can only

apply data parallelism. However, depending on the parallelization scheme applied on

the previous convolutional layer, the convolutional layer may have different groupings

of the same output resulting in different input groupings to the pooling layer. This

does not affect the correctness of the application. For example, consider an input to the

previous convolutional layer with eight images and four filters. In model parallelism

109

across two PIM GPUs, each PIM outputs eight images where each image has two

feature maps. In data parallelism, each PIM outputs four images where each image

has four feature maps. Nevertheless, the total amount of computation for each PIM

stays the same for the subsequent pooling layer.

6.5.4 Fully Connected Layer Parallelization

In contrast to the convolutional layers, fully connected layers contribute a small

part of the computation, e.g., 5% to 10%, but the majority of the model parameters,

e.g., 95% [50]. Fully connected layers can choose to deploy whichever parallelization

scheme was used in previous layers. However, if the model is too large to fit into each

PIM’s memory, then model parallelism is required to train and predict at that large

scale. Therefore, we evaluate both data and model parallelism on a fully connected

layer. Please note that, by applying model parallelism on a fully connected layer,

synchronization is needed at the end. As shown in Figure 6.7, hidden layer activities

from PIM1 and PIM2 need to be summed together to get the correct hidden layer

activities. In our implementation, this reduction across PIMs happens on the host.

The host accesses each PIM’s memory, performs the reduction, and writes the results

back to, for example, PIM0. The other PIMs can then retrieve the results from PIM0.

6.6 Experimental Results

To show the potential of scaling deep learning algorithms on multiple PIMs, we

evaluate three representative layers: the convolutional, pooling, and fully connected

layers. We first run these layers with varying application parameters on an AMD

RadeonTM HD 7970 GPU with 32 compute units and 3 GB device memory. During each

run, we profile and collect the performance counters of all kernels. We then scale the

performance on the native hardware to multiple desired hosts and PIM configurations

applying the methodology described in Section 6.4.

110

6.6.1 PIM configurations

In our experiments, we set the memory bandwidth to 320 GB/s and peak com-

putation throughput to 650 GFLOPS for each PIM device. Two node organizations

are explored. The first node organization has a host and four PIM stacks shown in

Figure 6.6. The second one has a host and eight PIM stacks. The objective is to com-

pare the performance of deep learning parallelization on multiple PIM devices against

the performance of the host GPU. For accurate comparison, we set the peak FLOPS

of the host GPU to be equal to the aggregate peak FLOPS of all PIM devices. The

host accesses the memory stacks at lower bandwidth than in-stack memory access from

the PIMs. Three host bandwidths are evaluated: 1/2, 1/4, and 1/8 of the in-stack PIM

bandwidth per memory stack. However, the host can simultaneously access all the

memory stacks.

Table 6.1 shows the configurations used for host and PIM. There are a total of

six host configurations; three of them have four PIMs and the other three have eight

PIMs. The host configurations are named in the pattern of Host N B where N is the

number of PIM stacks and B is the total memory bandwidth available to the host.

For example, Host 4 640 means this host has 4 PIM stacks and 640 GB/s memory

bandwidth in total. Two PIM configurations are listed as 4PIM and 8PIM in the

table.

6.6.2 Results on Convolutional Layer

We first explore data parallelism on convolutional layer. The size of a single

input image is 256 by 256 in width and height. The number of channels per image is

16. The number of images per input batch is 256. The number of filters is 16. The

depth of each filter is set to be 16 but different filter sizes including 3, 5, 7, and 11 are

evaluated. We select these filter sizes because they were used in state-of-the-art deep

learning models. For example, AlexNet uses filter sizes 11, 5, and 3. VGG nets set the

filter size to be 3. The stride size is set to be 1 for all cases for simplicity. For 4-PIM

and 8-PIM configurations, the input batch is partitioned into mini batches, taking the

111

Table 6.1: This table shows different host and PIM configurations.

Host 4 160 Host 4 320 Host 4 640 4PIM

Number of CUs 32 32 32 64
Engine Frequency (MHz) 1300 1300 1300 650

Total DRAM BW (GB/s) 160 320 640 1280
DRAM BW/stack (GB/s) 40 80 160 320
Number of DRAM stacks 4 4 4 4

Host 8 320 Host 8 640 Host 8 1280 8PIM

Number of CUs 64 64 64 128
Engine Frequency (MHz) 1300 1300 1300 650

Total DRAM BW (GB/s) 320 640 1280 2560
DRAM BW/stack (GB/s) 40 80 160 320
Number of DRAM stacks 8 8 8 8

data parallelism approach. Each PIM is assigned one mini batch and computes the

convolution independently. For all host configurations, since there is only one GPU,

no data partition is needed.

Figure 6.8 shows the normalized execution time for the convolutional layer.

Each of the four subfigures shows results obtained using a particular filter size. In

these subfigures, the Y-axis shows execution time normalized to Host 4 160 with a

filter size of 3. The X-axis lists the different configurations: six host design points,

4-PIM design, and 8-PIM design. When the filter size is 3, the execution times of

4PIM and 8PIM are slightly worse than the Host 4 640 and Host 8 1280 respectively.

However, they do outperform the other host configurations. When the filter size is

increased to 5, 7 or 11, running convolutional layer on multiple PIMs is faster than

on all the host configurations. The observation fits our expectation because larger

filter size means more memory access per convolution. The high memory bandwidth

provided by PIM stacks makes it beneficial to run larger convolutions on PIM devices.

6.6.3 Results on Pooling Layer

The pooling layer is also evaluated with data parallelism because it has a highly

localized compute pattern and there is no neural network model. We again use the

112

Hos
t_4

_1
60

Hos
t_4

_3
20

Hos
t_4

_6
40

4P
IM

Hos
t_8

_3
20

Hos
t_8

_6
40

Hos
t_8

_1
28

0
8P

IM
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

filter size: 3

(a) Results from convolution filter size 3

Hos
t_4

_1
60

Hos
t_4

_3
20

Hos
t_4

_6
40

4P
IM

Hos
t_8

_3
20

Hos
t_8

_6
40

Hos
t_8

_1
28

0
8P

IM
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

filter size: 5

(b) Results from convolution filter size 5

Hos
t_4

_1
60

Hos
t_4

_3
20

Hos
t_4

_6
40

4P
IM

Hos
t_8

_3
20

Hos
t_8

_6
40

Hos
t_8

_1
28

0
8P

IM
0

1

2

3

4

5

6

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

filter size: 7

(c) Results from convolution filter size 7

Hos
t_4

_1
60

Hos
t_4

_3
20

Hos
t_4

_6
40

4P
IM

Hos
t_8

_3
20

Hos
t_8

_6
40

Hos
t_8

_1
28

0
8P

IM
0

2

4

6

8

10

12

14

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

filter size: 11

(d) Results from convolution filter size 11

Figure 6.8: Convolutional layer results from different filter sizes. All results are
normalized to Host 4 160 with filter size 3 shown in Figure 6.8(a).

113

Hos
t_4

_1
60

Hos
t_4

_3
20

Hos
t_4

_6
40

4P
IM

Hos
t_8

_3
20

Hos
t_8

_6
40

Hos
t_8

_1
28

0
8P

IM
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

filter size: 2

(a) Results from pooling filter size 2

Hos
t_4

_1
60

Hos
t_4

_3
20

Hos
t_4

_6
40

4P
IM

Hos
t_8

_3
20

Hos
t_8

_6
40

Hos
t_8

_1
28

0
8P

IM
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

filter size: 3

(b) Results from pooling filter size 3

Hos
t_4

_1
60

Hos
t_4

_3
20

Hos
t_4

_6
40

4P
IM

Hos
t_8

_3
20

Hos
t_8

_6
40

Hos
t_8

_1
28

0
8P

IM
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

filter size: 4

(c) Results from pooling filter size 4

Hos
t_4

_1
60

Hos
t_4

_3
20

Hos
t_4

_6
40

4P
IM

Hos
t_8

_3
20

Hos
t_8

_6
40

Hos
t_8

_1
28

0
8P

IM
0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

filter size: 5

(d) Results from pooling filter size 5

Figure 6.9: Pooling layer results from different filter sizes. All results are normalized
to Host 4 160 with filter size 2 shown in Figure 6.9(a).

114

single image size of 256 width by 256 height in pixels with 16 channels. Batch size is set

to 256. There are various pooling operations used in deep learning applications. How-

ever, their computational and memory access characteristics are very similar. Hence,

we pick the commonly used max pooling for our evaluation. The max pooling operation

is performed using a 2D window at each channel of the input image. Large filters are

typically not used in pooling because too much information can be lost. For example,

AlexNet uses a filter size of 3 for pooling, VGG nets use 2 as the filter size, and a filter

size of 5 was used in the COTS HPC system. As a result, we evaluate filter sizes 2, 3,

4, and 5. So we can evaluate how the performance changes as the filter size increases.

The stride size is set to the filter size for simplicity.

Figure 6.9 shows the normalized execution time of the pooling layer using dif-

ferent filter sizes on the proposed configurations. We pick the execution time from

Host 4 160 using a filter size of 2 as the baseline for normalization. When filter size is

small (e.g., 2), the performance of multiple PIM stacks is competitive with the host. As

the filter size increases, more significant performance improvement is observed on the

two PIM configurations. This observation is similar to convolutional layer results as

it also benefits from the high memory bandwidth of the PIMs. As filter size increases,

more memory access is needed for each pooling operation.

6.6.4 Results on Fully Connected Layer

We evaluate both data and model parallelism on a fully connected layer. We first

compute the memory consumption per PIM for these two parallelization schemes. The

results are shown in Figure 6.10. In this figure, the solid lines are for data parallelism

and the dashed lines represent model parallelism. The red lines are for the 4-PIM

configurations and the green lines are for the 8-PIM configurations. Different markers

correspond to different input batch sizes. This figure shows that data parallelism

consumes substantially more memory per PIM for one fully connected layer. Our

evaluation shows that varying the number of PIMs or batch sizes does not change the

memory consumption significantly for data parallelism, as the large number of model

115

parameters in the fully connected layer consumes most of the memory and is replicated

on each memory module. However, in model parallelism, the model parameters are

partitioned among the memory modules, resulting in moderate growth in memory

capacity demand with both model size and input batch size. Further, with model

parallelism, adding more PIMs reduces the memory pressure per PIM. In theory, if the

batch size is large enough, model parallelism can consume a similar amount of memory

as data parallelism. However, as batch size is typically small (e.g., 128 or 256), model

parallelism is preferred in a fully connected layer due to lower memory consumption.

0 5 10 15 20
Layer size (K)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
em

or
y

pe
r

PI
M

 (
G

B)

RBM_Data_Paral_batchsize_256_pims_4
RBM_Data_Paral_batchsize_512_pims_4
RBM_Data_Paral_batchsize_1024_pims_4
RBM_Data_Paral_batchsize_256_pims_8
RBM_Data_Paral_batchsize_512_pims_8
RBM_Data_Paral_batchsize_1024_pims_8
RBM_Model_Paral_batchsize_256_pims_4
RBM_Model_Paral_batchsize_512_pims_4
RBM_Model_Paral_batchsize_1024_pims_4
RBM_Model_Paral_batchsize_256_pims_8
RBM_Model_Paral_batchsize_512_pims_8
RBM_Model_Paral_batchsize_1024_pims_8

Figure 6.10: This figure shows memory consumption per PIM for data parallelism
and model parallelism on fully connected layer.

We then evaluate the execution time for both data and model parallelization

schemes using 4-PIM and 8-PIM configurations and compare them with host execu-

tions. Figure 6.11 records the results, normalized to Host 4 160 with a batch size of

116

128. The four subfigures correspond to four different batch sizes: 128, 256, 512, and

1024. The layer size is fixed at 4096 which was used in AlexNet and VGG nets. For

each subfigure, the Y-axis records normalized execution times and the X-axis lists dif-

ferent configurations. Please note that, 4PIM data means data parallelism on 4-PIM

configuration. Similarly, 8PIM model stands for model parallelism on 8-PIM configura-

tion. Because synchronization is needed in model parallelism, we use different colors to

represent different components of execution time in the 4PIM model and 8PIM model.

Purple represents OpenCL kernel execution time on PIM GPU, which excludes the

reduction procedure that runs on the host GPU. The green segment represents the

reduction across PIMs performed on host GPU, including memory access to all PIM

stacks and writing the final results back to the first PIM in the configuration (PIM0).

Yellow represents the time that all the other PIMs copy the reduction result from

PIM0 to their local memory stacks. Please note that for PIM to PIM memory copy, we

assume the memory bandwidth is 1/8 of the local in-stack memory access bandwidth.

Therefore, for remote PIM memory access, the bandwidth is configured at 40 GB/s.

This figure shows that model parallelism performs better than data parallelism and

is comparable to host executions when batch size is small, e.g., 128. However, when

we increase the batch size, model parallelism loses its advantage to data parallelism

due to synchronization cost. However, with large batch sizes, both data and model

parallelism on multiple PIM stacks outperform host executions.

6.7 Conclusion

In this chapter, we evaluate the performance of deep learning models on PIM

devices. We study three types of layers from CNN and DBN, which are two of the

most popular forms of deep learning models. The fully connected layer is parallelized

across multiple PIM devices using data parallelism, which partitions the input set,

and model parallelism, which partitions the model parameter set. Our results show

that memory capacity requirements of data parallelism increase much more rapidly

than for model parallelism as the model size increases. Further, we show that model

117

Hos
t_4

_1
60

Hos
t_4

_3
20

Hos
t_4

_6
40

4P
IM

_d
at

a

4P
IM

_m
od

el

Hos
t_8

_3
20

Hos
t_8

_6
40

Hos
t_8

_1
28

0

8P
IM

_d
at

a

8P
IM

_m
od

el
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

batch size: 128

Kernel execution
Inter-PIM Communication
Host Reduction

(a) Results from batch size 128

Hos
t_4

_1
60

Hos
t_4

_3
20

Hos
t_4

_6
40

4P
IM

_d
at

a

4P
IM

_m
od

el

Hos
t_8

_3
20

Hos
t_8

_6
40

Hos
t_8

_1
28

0

8P
IM

_d
at

a

8P
IM

_m
od

el
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

batch size: 256

Kernel execution
Inter-PIM Communication
Host Reduction

(b) Results from batch size 256

Hos
t_4

_1
60

Hos
t_4

_3
20

Hos
t_4

_6
40

4P
IM

_d
at

a

4P
IM

_m
od

el

Hos
t_8

_3
20

Hos
t_8

_6
40

Hos
t_8

_1
28

0

8P
IM

_d
at

a

8P
IM

_m
od

el
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

batch size: 512

Kernel execution
Inter-PIM Communication
Host Reduction

(c) Results from batch size 512

Hos
t_4

_1
60

Hos
t_4

_3
20

Hos
t_4

_6
40

4P
IM

_d
at

a

4P
IM

_m
od

el

Hos
t_8

_3
20

Hos
t_8

_6
40

Hos
t_8

_1
28

0

8P
IM

_d
at

a

8P
IM

_m
od

el
0
1
2
3
4
5
6
7
8

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

batch size: 1024

Kernel execution
Inter-PIM Communication
Host Reduction

(d) Results from batch size 1024

Figure 6.11: Fully Connected layer results from different batch sizes. All results are
normalized to Host 4 160 with batch size 128 shown in Figure 6.11(a).

118

parallelism performs better at small input batch sizes while data parallelism performs

better as input batch size increases. We parallelize convolutional and pooling layers

across multiple PIM devices using data parallelism. We also vary key parameters for

each of the layers over commonly used ranges of values. Our results show that PIM

achieves competitive or superior performance compared to a high-performance host

GPU across a variety of system and model parameter ranges.

119

Chapter 7

CONCLUSION

In this dissertation, we present a novel hybrid Android malware classification

method named HADM. It consists of a static analysis method using multiple static

features and a dynamic analysis method using novel graph-based representations. For

the graph-based dynamic analysis, we use computationally expensive graph kernels to

calculate graph similarities. Therefore, we parallelize the Shortest Path Graph Kernel

(SPGK) using multiple-core CPUs and GPUs. For vector-based static and dynamic

analysis methods, the bottleneck is deep learning computation. Since its parallelization

has been studied on existing CPU and GPU architectures, we explore the potential for

an emerging architecture design named PIM.

First, we propose a novel dynamic analysis method using graph representa-

tions converted from system call invocations recorded during executions of Android

applications. We implement three traditional feature vector representations including

histogram, n-gram, and the Markov Chain. These methods represent each Android ap-

plication as one flat feature vector which is unable to capture rich structural information

of a malicious application. Therefore we propose to augment previously studied feature

vector representations with graph structure of the application’s system call graph to

improve the classification accuracy. Three graph representations including Histogram

System Call Graphs (HSCG), N-gram System Call Graphs (NSCG), and Markov Chain

System Call Graphs (MCSCG) are introduced in which each process is treated as a

vertex and labeled with a feature vector. The graphs are then constructed by con-

necting parent/children processes. In HSCG, each vertex is labeled with a system call

histogram generated from the invocations belonging to the corresponding process. Sim-

ilarly, vertices in NSCG and MCSCG are associated with n-gram and Markov Chain

120

vectors. Graph kernels are then applied on the graphs to compute graph similarities

that are subsequently classified with an SVM algorithm. To compare the performance

of vector and graph representations, we collect thousands of Android applications from

Google Play and VirusShare. In our dataset, 4002 samples are categorized as benign

applications and 1886 samples are categorized as malware by VirusTotal. Experiments

on this dataset show, for flat feature vector representations, the best classification ac-

curacy that can be achieved is 83.3% by 4-gram vector. Experiments also show, for

graph representations, NSCG-4 reaches the best classification accuracy at 87.3%. On

average, graph representations are capable of improving the classification accuracies of

the corresponding feature vector representations by 5.2%.

Second, since dynamic analysis has its drawbacks, we augment it with a static

analysis method using multiple features and propose a hybrid Android malware classifi-

cation method named HADM, in which both dynamic and static features are extracted

including requested permissions, permission request APIs, used permissions, advertis-

ing networks, intent filters, suspicious calls, network APIs, providers, instruction se-

quences, and system call sequences. These features are represented as 16 feature vector

sets and 4 graph sets. For each feature vector set, we train one DNN which is con-

structed by stacking four layer-by-layer pre-trained RBMs. The DNN learned features

are concatenated with the original features to construct DNN vector sets. Different

kernels are then applied to the DNN vector sets. Similarly, different graph kernels

are applied to the graph sets. The learning results from different sets are combined

using a two-level MKL to build a final hybrid classifier. In the first level, learning from

different vector or graph kernels on the same vector or graph set are combined. In

the second level, all learning results from the first level are combined. Experiments

on the same dataset of benign and malicious Android applications show that the best

classification accuracy that can be achieved using static analysis is 93.5% by a 4-gram

instruction vector, and that the best accuracy using dynamic analysis is 87.3% by a

4-gram system call graph. Experiments also show that, by combining different features

using hierarchical MKL, our final hybrid classifier is able to yield the best classification

121

accuracy of 94.7%.

Third, we evaluate the parallelization of shortest path graph kernel on multi-

core CPUs and GPUs. We first analyze different drawbacks of the original Shortest

Path Graph Kernel (SPGK) and propose Fast Computation of Shortest Path kernel

(FCSP). We then parallelize FCSP on a multi-core CPU using two OpenMP methods.

One focuses on the parallelization of FCSP on a single pair of graphs while the other

focuses on the parallelization of kernel matrix construction. We also parallelize FCSP

on the GPU using four OpenCL implementations. The first one applies 1D domain de-

composition to the walk kernel while the second uses 2D decomposition. The third and

the fourth implementations overlap communication with computation for the first and

the second implementations. To evaluate the performance of different implementations,

synthetic datasets, scientific datasets, and malware graphs are collected. Experiments

on these datasets show FCSP reaches 76x speedup over the naive SPGK when running

them sequentially on a single-core CPU. Experiments also show for small graphs, the

OpenMP implementations on the CPU perform best while for large graphs the GPU

implementations are better than the CPU implementations. Therefore, we propose

a hybrid scheme that selects the CPU or GPU implementation based on graph size.

Experiments show the hybrid algorithm works best for all of our datasets.

Last, we evaluate the parallelization of deep learning models on multiple PIM

devices. Deep learning has been studied in existing architectures including CPUs and

GPUs. However, little research has been done to evaluate the potential of emerging

architecture design, such as PIM, which utilizes a 3D die stacking technology to move

memory close to logic die and therefore reduces data movement overhead. We select

three representative layers including the convolutional layer, pooling layer, and fully

connected layer from popular deep learning models and then parallelize them across

multiple PIMs. Two parallelization schemes are studied including data parallelism and

model parallelism on a fully connected layer. Data parallelism partitions the input

data across multiple PIMs, but each PIM keeps a full copy of the model. In contrast,

model parallelism partitions the network model across PIMs. Each PIM works on one

122

model partition using the full input batch. Our results show that data parallelism

consumes much more memory than model parallelism. Furthermore, we show model

parallelism performs better at small input batch sizes while data parallelism performs

better at large batch sizes due to the absence of synchronization. For convolutional and

pooling layers, we parallelize them across multiple PIM devices using data parallelism

because convolutional layers have a small model and pooling layers have no model.

Our results show PIM achieves competitive or superior performance compared to a

high-performance host GPU across a variety of system and model parameter ranges.

123

BIBLIOGRAPHY

[1] Contagio mobile malware. http://contagiominidump.blogspot.com. Accessed
on Jan-21-2016.

[2] High bandwidth memory dram. https://www.jedec.org/

standards-documents/docs/jesd235. Accessed on Jan-21-2016.

[3] Ltrace linux man page. http://linux.die.net/man/1/ltrace. Accessed on
Jan-21-2016.

[4] Strace linux man page. http://linux.die.net/man/1/strace. Accessed on
Jan-21-2016.

[5] N. Acosta-Mendoza, A. Morales-Gonzalez, A. Gago-Alonso, E. Garcia-Reyes, and
J. Medina-Pagola. Image classification using frequent approximate subgraphs. In
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Appli-
cations. 2012.

[6] E. Aldea, J. Atif, and I. Bloch. Image classification using marginalized kernels for
graphs. In Proceedings of the 6th International Conference on Graph-based Repre-
sentations in Pattern Recognition (GbRPR), pages 103–113, Berlin, Heidelberg,
2007.

[7] B. Amos, H. Turner, and J. White. Applying machine learning classifiers to dy-
namic android malware detection at scale. In Proceedings of the 9th International
Wireless Communications and Mobile Computing Conference (IWCMC), pages
1666–1671, July 2013.

[8] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane. Graph-based malware
detection using dynamic analysis. Journal in Computer Virology, 7(4):247–258,
2011.

[9] I. Arel, D. C. Rose, and T. P. Karnowski. Deep machine learning - a new frontier
in artificial intelligence research. IEEE Computational Intelligence Magazine,
5(4):13–18, Nov 2010.

[10] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck. Drebin: Effec-
tive and explainable detection of android malware in your pocket. In Proceedings
of the Network and Distributed System Security Symposium (NDSS), 2014.

124

http://contagiominidump.blogspot.com
https://www.jedec.org/standards-documents/docs/jesd235
https://www.jedec.org/standards-documents/docs/jesd235
http://linux.die.net/man/1/ltrace
http://linux.die.net/man/1/strace

[11] N. Bell and M. Garland. Efficient sparse matrix-vector multiplication on CUDA.
NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation, December
2008.

[12] F. Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of the
USENIX Annual Technical Conference (ATC), pages 41–41, Berkeley, CA, USA,
2005.

[13] Y. Bengio. Learning deep architectures for ai. Foundations and trends in Machine
Learning, 2(1):1–127, 2009.

[14] T. Blasing, L. Batyuk, A. D. Schmidt, S. A. Camtepe, and S. Albayrak. An
android application sandbox system for suspicious software detection. In Pro-
ceedings of the 5th International Conference on Malicious and Unwanted Software
(MALCON), pages 55–62, Oct 2010.

[15] K. M. Borgwardt and H. P. Kriegel. Shortest-path kernels on graphs. In Pro-
ceedings of the IEEE International Conference on Data Mining (ICDM), pages
74–81, 2005.

[16] L. Brun and W. Kropatsch. Contains and inside relationships within combina-
torial pyramids. Pattern Recognition, 39(4):515–526, April 2006.

[17] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: behavior-based
malware detection system for android. In Proceedings of the 1st ACM workshop
on Security and privacy in smartphones and mobile devices (SPSM), pages 15–26,
2011.

[18] D. Canali, A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda.
A quantitative study of accuracy in system call-based malware detection. In Pro-
ceedings of the 2012 International Symposium on Software Testing and Analysis
(ISSTA), pages 122–132, New York, NY, USA, 2012.

[19] G. Canfora, F. Mercaldo, and C. A. Visaggio. A classifier of malicious android
applications. In Proceedings of the 8th International Conference on Availability,
Reliability and Security (ARES), pages 607–614, Sept 2013.

[20] R. Canzanese, S. Mancoridis, and M. Kam. Run-time classification of malicious
processes using system call analysis. In Proceedings of the 10th International
conference on Malicious and Unwanted Software (MALCON), October 2015.

[21] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew. Deep learn-
ing with cots hpc systems. In Proceedings of the 30th International Conference
on Machine Learning (ICML), pages 1337–1345, 2013.

[22] N. Cristianini and J. Shawe-Taylor. An introduction to support vector machines
and other kernel-based learning methods. Cambridge university press, 2000.

125

[23] O.E. David and N.S. Netanyahu. Deepsign: Deep learning for automatic malware
signature generation and classification. In Proceedings of the International Joint
Conference on Neural Networks (IJCNN), pages 1–8, July 2015.

[24] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, and Q. V. Le. Large scale distributed deep networks. In Pro-
ceedings of the Neural Information Processing Systems (NIPS), pages 1223–1231,
2012.

[25] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman,
and C. Hansch. Structure-activity relationship of mutagenic aromatic and het-
eroaromatic nitro compounds. correlation with molecular orbital energies and
hydrophobicity. Journal of Medicinal Chemistry, 34(2):786–797, 1991.

[26] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethumadhavan,
and S. Stolfo. On the feasibility of online malware detection with performance
counters. In Proceedings of the 40th Annual International Symposium on Com-
puter Architecture (ISCA), pages 559–570, New York, NY, USA, 2013.

[27] L. Deng, M. L. Seltzer, D. Yu, A. Acero, A. R. Mohamed, and G. E. Hinton.
Binary coding of speech spectrograms using a deep auto-encoder. In INTER-
SPEECH, pages 1692–1695, 2010.

[28] L. Deng and D. Yu. Deep learning: Methods and applications. Found. Trends
Signal Process., 7:197–387, June 2014.

[29] A. Desnos. Androguard - reverse engineering, malware and goodware analysis of
android applications. http://code.google.com/p/androguard/. Accessed on
Jan-21-2016.

[30] M. Dimjaševic, S. Atzeni, I. Ugrina, and Z. Rakamaric. Android malware detec-
tion based on system calls. Technical report, University of Utah, 2015.

[31] M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A survey on automated dynamic
malware-analysis techniques and tools. ACM Computing Surveys, 44(2):6:1–6:42,
March 2008.

[32] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth.
Taintdroid: An information-flow tracking system for realtime privacy monitoring
on smartphones. In Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation (OSDI), 2010.

[33] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab. A review on feature
selection in mobile malware detection. Digital Investigation, 13(0):22 – 37, 2015.

[34] R. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5:345+,
1962.

126

http://code.google.com/p/androguard/

[35] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck. Structural detection of android
malware using embedded call graphs. In Proceedings of the 2013 ACM Workshop
on Artificial Intelligence and Security (AISec), pages 45–54, New York, NY, USA,
2013.

[36] W. Glodek and R. Harang. Rapid permissions-based detection and analysis of
mobile malware using random decision forests. In Proceedings of the IEEE Mili-
tary Communications Conference (MILCOM), pages 980–985, Nov 2013.

[37] Mehmet Gonen and Ethem Alpaydin. Multiple kernel learning algorithms. J.
Mach. Learn. Res., 12:2211–2268, July 2011.

[38] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker: Scalable and
accurate zero-day android malware detection. In Proceedings of the 10th Inter-
national Conference on Mobile Systems, Applications, and Services (MobiSys),
2012.

[39] Y. J. Ham and H. Lee. Detection of malicious android mobile applications based
on aggregated system call events. International Journal of Computer and Com-
munication Engineering, 3, 2014.

[40] Y. J. Ham, D. Moon, H. Lee, J. D. Lim, and J. N. Kim. Android mobile appli-
cation system call event pattern analysis for determination of malicious attack.
International Journal of Security and Its Applications (SERSC), 8(1):213–246,
2014.

[41] Z. Harchaoui and F. Bach. Image classification with segmentation graph kernels.
In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1–8, 2007.

[42] P. Harish and P. J. Narayanan. Accelerating large graph algorithms on the
gpu using cuda. In Proceedings of the 14th international conference on High
performance computing (HiPC), pages 197–208, Berlin, Heidelberg, 2007.

[43] G. E. Hinton. A practical guide to training restricted boltzmann machines.
In Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012.

[44] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18(7):1527–1554, July 2006.

[45] S. Hong, T. Oguntebi, and K. Olukotun. Efficient parallel graph exploration
on multi-core cpu and gpu. In Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 78–88, 2011.

[46] IDC. Smartphone os market share, q1 2015. Technical report.

127

[47] A. Jain, S.V.N. Vishwanathan, and M. Varma. Spg-gmkl: Generalized multiple
kernel learning with a million kernels. In Proceedings of the 18th ACM Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD).

[48] C. Jiang and F. Coenen. Graph-based image classification by weighting scheme.
In Applications and Innovations in Intelligent Systems XVI, pages 63–76.
Springer London, 2009.

[49] G. J. Katz and J. T. Kider, Jr. All-pairs shortest-paths for large graphs on the
gpu. In Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS sympo-
sium on Graphics Hardware (GH), pages 47–55, 2008.

[50] A. Krizhevsky. One weird trick for parallelizing convolutional neural networks.
CoRR, abs/1404.5997, 2014.

[51] A. Krizhevsky and G. E. Hinton. Using very deep autoencoders for content-based
image retrieval. In Proceedings of the European Symposium on Artificial Neural
Networks (ESANN), 2011.

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In Proceedings of the Neural Information
Processing Systems (NIPS), pages 1097–1105. 2012.

[53] N. Le Roux and Y. Bengio. Representational power of restricted boltzmann
machines and deep belief networks. Neural Computation, 20(6):1631–1649, June
2008.

[54] S. Lee, J. Lee, and H. Lee. Screening smartphone applications using behav-
ioral signatures. In Security and Privacy Protection in Information Processing
Systems, volume 405 of IFIP Advances in Information and Communication Tech-
nology, pages 14–27. 2013.

[55] M. Lindorfer, M. Neugschwandtner, and C. Platzer. Marvin: Efficient and Com-
prehensive Mobile App Classification Through Static and Dynamic Analysis. In
Proceedings of the 39th Annual International Computers, Software and Applica-
tions Conference (COMPSAC), 2015.

[56] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. van der
Veen, and C. Platzer. Andrubis-1,000,000 apps later: A view on current an-
droid malware behaviors. In Proceedings of the the 3rd International Workshop
on Building Analysis Datasets and Gathering Experience Returns for Security
(BADGERS), 2014.

[57] B. D. Lund and J. W. Smith. A multi-stage cuda kernel for floyd-warshall. CoRR,
abs/1001.4108, 2010.

128

[58] P. Mahé, N. Ueda, T. Akutsu, J.L. Perret, and J.P. Vert. Extensions of marginal-
ized graph kernels. In Proceedings of the International Conference on Machine
Learning (ICML), pages 552–559, 2004.

[59] N. Mawston. Android captured record 85 percent share of global smartphone
shipments in q2 2014. Smartphone report, Strategy Analystics, 2014.

[60] A. Morales-Gonzalez, N. Acosta-Mendoza, A. Gago-Alonso, E. B. Garcia-Reyes,
and J. E. Medina-Pagola. A new proposal for graph-based image classification
using frequent approximate subgraphs. Pattern Recognition, 47(1):169 – 177,
2014.

[61] NVIDIA. Nvidia cuda programming guide: Version 3.2. NVIDIA Corporation,
2010.

[62] J. T. Pawlowski. Hybrid memory cube: breakthrough dram performance with
a fundamentally re-architected dram subsystem. In Proceedings of the 23rd Hot
Chips Symposium (HC), 2011.

[63] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru, and
I. Molloy. Using probabilistic generative models for ranking risks of android apps.
In Proceedings of the 2012 ACM Conference on Computer and Communications
Security (CCS), pages 241–252, New York, NY, USA, 2012.

[64] PulseSecure. 2015 mobile threat report. Technical report, 2015.

[65] M. Ranzato, Y. Boureau, and Y. L. Cun. Sparse feature learning for deep belief
networks. In Proceedings of the Neural Information Processing Systems (NIPS),
pages 1185–1192. 2007.

[66] V. Rastogi, Y. Chen, and X. Jiang. Catch me if you can: Evaluating android
anti-malware against transformation attacks. IEEE Transactions on Information
Forensics and Security, 9(1):99–108, Jan 2014.

[67] D. K. S. Reddy, S. K. Dash, and A. K. Pujari. New malicious code detection
using variable length n-grams. In Information Systems Security, volume 4332 of
Lecture Notes in Computer Science, pages 276–288. 2006.

[68] A. Reina, A. Fattori, and L. Cavallaro. A system call-centric analysis and stim-
ulation technique to automatically reconstruct android malware behaviors. In
Proceedings of the 6th European Workshop on Systems Security (EuroSec), 2013.

[69] K. Rieck, P. Trinius, C. Willems, and T. Holz. Automatic analysis of malware
behavior using machine learning. Journal of Computer Security, 19(4):639–668,
Dec 2011.

129

[70] J. Sahs and L. Khan. A machine learning approach to android malware detection.
In Proceedings of the European Intelligence and Security Informatics Conference
(EISIC), pages 141–147, Aug 2012.

[71] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. Bringas, and G. lvarez.
Puma: Permission usage to detect malware in android. In International Joint
Conference CISIS12-ICEUTE12-SOCO12 Special Sessions, volume 189 of Ad-
vances in Intelligent Systems and Computing, pages 289–298. 2013.

[72] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, J. Nieves, P. G. Bringas,
and G. Alvarez. Mama: Manifest analysis for malware detection in android.
Cybernetics and Systems - Intelligent Network Security and Survivability, 44(6-
7):469–488, October 2013.

[73] R. Sarikaya, G. E. Hinton, and A. Deoras. Application of deep belief networks
for natural language understanding. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 22(4):778–784, April 2014.

[74] J. Saxe and K. Berlin. Deep neural network based malware detection using two
dimensional binary program features. CoRR, abs/1508.03096, 2015.

[75] J. Schmidhuber. Deep learning in neural networks: An overview. CoRR,
abs/1404.7828, 2014.

[76] A. D. Schmidt, R. Bye, H. G. Schmidt, J. Clausen, O. Kiraz, K. A. Yuksel, S. A.
Camtepe, and S. Albayrak. Static analysis of executables for collaborative mal-
ware detection on android. In Proceedings of the IEEE International Conference
on Communications (ICC), pages 1–5, June 2009.

[77] B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA,
2001.

[78] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, 2001.

[79] I. Schomburg, A. Chang, C. Ebeling, M. Gremse, C. Heldt, G. Huhn, and
D. Schomburg. Brenda, the enzyme database: updates and major new devel-
opments. Nucleic Acids Research, 32(suppl 1):D431–D433, 2004.

[80] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss. Andromaly: a be-
havioral malware detection framework for android devices. Journal of Intelligent
Information Systems, 38(1):161–190, 2012.

[81] N. Shervashidze and K. Borgwardt. Fast subtree kernels on graphs. In Proceedings
of the Neural Information Processing Systems Conference (NIPS), pages 1660–
1668, 2009.

130

[82] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

[83] M. Spreitzenbarth, T. Schreck, F. Echtler, D. Arp, and J. Hoffmann. Mobile-
sandbox: combining static and dynamic analysis with machine-learning tech-
niques. International Journal of Information Security, pages 1–13, 2014.

[84] K. Tam, S. J Khan, A. Fattori, and L. Cavallaro. Copperdroid: Automatic
reconstruction of android malware behaviors. In Proceedings of the Symposium
on Network and Distributed System Security (NDSS), 2015.

[85] F. Tchakounté and P. Dayang. System calls analysis of malwares on android.
International Journal of Science and Technology, 2(9), 2013.

[86] C. Wagner, G. Wagener, R. State, and T. Engel. Malware analysis with graph
kernels and support vector machines. In Proceedings of the 4th International
Conference on Malicious and Unwanted Software (MALWARE), pages 63–68,
Oct 2009.

[87] N. Wale and G. Karypis. Comparison of descriptor spaces for chemical compound
retrieval and classification. In Proceedings of the 6th International Conference
on Data Mining (ICDM), pages 678–689, Washington, DC, USA, 2006.

[88] Y. Wei, H. Zhang, L. Ge, and R. Hardy. On behavior-based detection of mal-
ware on android platform. In Proceedings of the IEEE Global Communications
Conference (GLOBECOM), pages 814–819, Dec 2013.

[89] L. Weichselbaum, M. Neugschwandtner, M. Lindorfer, Y. Fratantonio, V. van der
Veen, and C. Platzer. Andrubis: Android malware under the magnifying glass.
Vienna University of Technology, Techical Report, TRISECLAB-0414-001, 2014.

[90] B. Wolfe, K. Elish, and D. Yao. Comprehensive behavior profiling for proactive
android malware detection. In Information Security, volume 8783 of Lecture
Notes in Computer Science, pages 328–344. 2014.

[91] D. Wu, C. Mao, T. Wei, H. Lee, and K. Wu. Droidmat: Android malware
detection through manifest and api calls tracing. In Proceedings of the 7th Asia
Joint Conference on Information Security (Asia JCIS), pages 62–69, Aug 2012.

[92] G. Wu, J. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou. GPGPU
performance and power estimation using machine learning. In Proceedings of the
IEEE 21st International Symposium on High Performance Computer Architec-
ture (HPCA), 2015.

[93] L. K. Yan and H. Yin. Droidscope: seamlessly reconstructing the os and dalvik
semantic views for dynamic android malware analysis. In Proceedings of the 21st
USENIX Security Symposium, 2012.

131

[94] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras. Droidminer: Automated
mining and characterization of fine-grained malicious behaviors in android ap-
plications. In Computer Security - ESORICS 2014, Lecture Notes in Computer
Science. 2014.

[95] Z. Yuan, Y. Lu, X. Wang, and Y. Xue. Droid-sec: deep learning in android
malware detection. In Proceedings of the ACM conference on SIGCOMM, 2014.

[96] Z. Yuan, Y. Lu, and Y. Xue. Droiddetector: android malware characterization
and detection using deep learning. Tsinghua Science and Technology, 21(01):114–
123, 2016.

[97] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and M. Igna-
towski. Top-pim: Throughput-oriented programmable processing in memory. In
Proceedings of the 23rd International Symposium on High-performance Parallel
and Distributed Computing (HPDC), pages 85–98, New York, NY, USA, 2014.

[98] M. Zhang, Y. Duan, H. Yin, and Z. Zhao. Semantics-aware android malware
classification using weighted contextual api dependency graphs. In Proceedings
of the 2014 ACM Conference on Computer and Communications Security (CCS),
2014.

[99] S. Zhao, X. Li, G. Xu, L. Zhang, and Z. Feng. Attack tree based android malware
detection with hybrid analysis. In Proceedings of the IEEE 13th International
Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom), 2014.

[100] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou. Smartdroid:
An automatic system for revealing ui-based trigger conditions in android appli-
cations. In Proceedings of the 2nd ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices (SPSM), pages 93–104, New York, NY, USA,
2012.

[101] Y. Zhou and X. Jiang. Dissecting android malware: Characterization and evo-
lution. In 2012 IEEE Symposium on Security and Privacy (SP), pages 95–109,
May 2012.

[102] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of my market: De-
tecting malicious apps in official and alternative Android markets. In Proceedings
of the Network and Distributed System Security Symposium (NDSS), Feb 2012.

132

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	2 Background
	2.1 Android Malware Detection using Static Analysis
	2.2 Android Malware Detection using Dynamic Analysis
	2.3 Android Malware Detection using Hybrid Analysis
	2.4 Originality of Our Android Malware Analysis Method
	2.5 Graph Computation Parallelization
	2.6 Deep Learning Parallelization

	3 Android Malware Classification Using Dynamic Analysis
	3.1 Introduction
	3.2 Android Application Emulation
	3.2.1 Emulation Procedure
	3.2.2 System Call Invocation Extraction
	3.2.3 System Call List

	3.3 Dynamic Characterization
	3.3.1 Feature Vector Representations
	3.3.1.1 System Call Histogram
	3.3.1.2 N-gram
	3.3.1.3 Markov Chain

	3.3.2 Graph Representations
	3.3.2.1 Histogram System Call Graph
	3.3.2.2 N-gram System Call Graph
	3.3.2.3 Markov Chain System Call Graph
	3.3.2.4 Ordered System Call Graph
	3.3.2.5 Unordered System Call Graph

	3.4 Classification
	3.4.1 Kernel Matrix Construction for Vectors
	3.4.2 Kernel Matrix Construction for the HSCG, the NSCG, and the MCSCG Graphs
	3.4.3 Kernel Matrix Construction for the OSCG and the USCG Graphs
	3.4.4 Support Vector Machine

	3.5 Experimental Results
	3.5.1 Dataset
	3.5.2 Evaluation Metrics
	3.5.3 Different Kernels
	3.5.4 Result from Interaction Stimulation
	3.5.5 Result from Incomplete Strace
	3.5.6 Result from Top K System Call List
	3.5.7 Results from Feature Vector Representations
	3.5.8 Result from HSCG, NSCG, and MCSCG Graphs
	3.5.9 Result from OSCG and USCG graphs
	3.5.10 Graph Kernel Running Time

	3.6 Related Work
	3.7 Conclusion

	4 Android Malware Classification Using Hybrid Analysis
	4.1 Introduction
	4.2 Hybrid Characterization
	4.2.1 Hybrid Analysis Features
	4.2.2 Feature Vector Representations
	4.2.3 Graph Representations

	4.3 Deep Learning Model
	4.3.1 Restricted Boltzmann Machine
	4.3.2 Deep Auto-encoder

	4.4 Classification
	4.4.1 Multiple Kernel Learning
	4.4.2 Hierarchical MKL

	4.5 Experimental Results
	4.5.1 Experimental Setup
	4.5.2 Results from Original Vector and Graph set
	4.5.3 Results from DNN
	4.5.4 Results from first level MKL
	4.5.5 Result from second level MKL
	4.5.6 Results from concatenating Original Feature Vectors
	4.5.7 Comparison with State-of-the-art

	4.6 Related Work
	4.7 Conclusion

	5 Parallelization of Shortest Path Graph Kernel
	5.1 Introduction
	5.2 Shortest Path Graph Kernel
	5.3 Fast Computation of the Shortest Path Graph Kernel
	5.4 FCSP running on the Multi-Core CPU
	5.5 FCSP running on the GPU
	5.5.1 Two Domain Decompositions in GPU Parallelization
	5.5.2 Overlapping Communication with Computation
	5.5.3 Hybrid Implementation – Combining CPU and GPU

	5.6 Experimental Results
	5.6.1 Synthetic Datasets
	5.6.2 Scientific Datasets
	5.6.3 Malware Dataset

	5.7 Conclusion

	6 Parallelization of Deep Learning
	6.1 Introduction
	6.2 Deep Learning Models
	6.2.1 Convolutional Layer
	6.2.2 Pooling Layer
	6.2.3 Fully Connected Layer

	6.3 PIM Architecture
	6.4 PIM Performance Model
	6.5 Deep Learning on Multiple PIMs
	6.5.1 Data Parallelism and Model Parallelism
	6.5.2 Convolutional Layer Parallelization
	6.5.3 Pooling Layer Parallelization
	6.5.4 Fully Connected Layer Parallelization

	6.6 Experimental Results
	6.6.1 PIM configurations
	6.6.2 Results on Convolutional Layer
	6.6.3 Results on Pooling Layer
	6.6.4 Results on Fully Connected Layer

	6.7 Conclusion

	7 Conclusion
	Bibliography

