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ABSTRACT
As computation becomes increasingly limited by data move-
ment and energy consumption, exploiting locality through-
out the memory hierarchy becomes critical to continued per-
formance scaling. Moving computation closer to memory
presents an opportunity to reduce both energy and data
movement overheads. We explore the use of 3D die stack-
ing to move memory-intensive computations closer to mem-
ory. This approach to processing in memory addresses some
drawbacks of prior research on in-memory computing and is
commercially viable in the foreseeable future.

Because 3D stacking provides increased bandwidth, we
study throughput-oriented computing using programmable
GPU compute units across a broad range of benchmarks,
including graph and HPC applications. We also introduce
a methodology for rapid design space exploration by ana-
lytically predicting performance and energy of in-memory
processors based on metrics obtained from execution on to-
day’s GPU hardware. Our results show that, on average, vi-
able PIM configurations show moderate performance losses
(27%) in return for significant energy efficiency improve-
ments (76% reduction in EDP) relative to a representa-
tive mainstream GPU at 22nm technology. At 16nm tech-
nology, on average, viable PIM configurations are perfor-
mance competitive with a representative mainstream GPU
(7% speedup) and provide even greater energy efficiency im-
provements (85% reduction in EDP).
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C.1.3 [Processor Architectures]: Other Architecture
Styles—heterogeneous (hybrid) systems
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1. INTRODUCTION
Processors have steadily become more computationally

capable and energy efficient, but improvements in band-
width, latency and energy consumption of off-chip memory
accesses have not kept pace with advances in processor ar-
chitectures [36, 40]. As a result, the memory system is often
a performance bottleneck and accounts for a significant, and
increasing, fraction of system level energy consumption [30,
43]. A 64b DRAM access now consumes nearly two orders
of magnitude more energy than a double-precision floating
point arithmetic operation [4, 15, 27].

Memory system energy consumption is of particular im-
portance for future high-performance computing systems.
Sample system goals for the US Department of Energy Ex-
ascale efforts include a memory bandwidth of 4 TB/s per
node at a system size of 100,000 nodes within a 20 MW
power budget [46]. Even with aggressive assumptions about
memory and interface technology improvements reducing to-
tal DRAM access energy from approximately 60-80 pJ/b for
DDR3 [4, 15] to 4 pJ/b1 [27, 44], sustaining 4 TB/s per node
over 100,000 nodes will consume 70% of the entire system’s
power budget on DRAM accesses alone.

This paper explores the potential of processing in memory
(PIM) implemented via 3D die stacking to reduce memory
access energy and improve performance. Recent industry
trends suggest the imminent adoption of 3D die stacking in
mass-produced memory parts [11]. Some vendors have de-
veloped DDR3 devices that internally incorporate 3D stack-
ing to increase capacity [5]. Multiple memory vendors are
participating in the Hybrid Memory Cube (HMC) consor-
tium aimed at commercializing “memory cubes” consisting
of 3D stacked DRAM dies atop a “base” logic die [37]. The
Wide I/O JEDEC standard for stacking memory with logic
devices aimed at mobile applications was released in early
2012 [1]. A similar JEDEC standard for high-performance
applications, High Bandwidth Memory (HBM), was released
recently [2]. A number of academic publications have also
explored the stacking of DRAM on logic dies [31, 35, 47].

Thermal challenges are a key impediment to stacking mem-
ory directly on top of a high-performance processor. Heat
generated by the processor reduces the retention time of
data in DRAM, requiring the throttling of processor per-
formance and/or increasing memory refresh rate, neither of
which is desirable in high-performance systems. In this pa-
per, we explore a system organization where memory is not

1Note that some predictions are much less optimistic (e.g.,
25 pJ/b in 7nm technology [15]).



stacked directly on the main compute processor. Instead,
an auxiliary, in-memory processor is incorporated on the
base logic die of each memory stack as shown in Figure 1.
Memory-intensive code may be offloaded to these in-memory
processors to exploit the high bandwidth and low-energy to
memory enabled by being stacked directly under the mem-
ory. As these in-memory processors are geared towards run-
ning memory-intensive code, their compute resources can
be optimized for low-energy operation and reduced ther-
mals. As the main compute processor (“host”) does not
have memory stacked on it, it is not subject to stringent
thermal constraints and can support high performance for
compute-intensive code. The primary goal of this study is
to determine the performance and energy characteristics of
such auxiliary, in-memory processors across a wide range of
applications.
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Figure 1: An example system with in-memory processors

Prior research has shown that the most significant per-
formance benefit of stacked DRAM is increased bandwidth
[16]. This motivates the incorporation of data-parallel ac-
celerators in the in-memory processors to effectively utilize
the available bandwidth. In this study, we focus on GPGPU
execution units as the in-memory data-parallel accelerators.
The programmability of modern GPUs also enables GPU-
accelerated in-memory processors to be utilized over a wide
range of applications. Further, the energy efficiency of GPU
architectures (in terms of operations/W) also helps reduce
thermal concerns for a given level of performance.

Evaluating PIM also presents new simulation challenges.
Applications that can best exploit the benefits of PIM are
those with large data sets that do not effectively fit into
caches. Furthermore, the design space of PIM systems is
larger than traditional designs, as both PIM and host config-
urations must be explored. Slow microarchitectural simula-
tors hinder the ability to execute the necessary applications
in a reasonable amount of time, which limits the state space
that can be studied. As a result, a fast simulation method-
ology is crucial for exploring a sufficiently broad spectrum
of applications and relevant design points. In order to ad-
dress this challenge, we propose a methodology that first
gathers hardware performance and power statistics during
execution on current hardware. This data is then fed into a
machine learning (ML) model that predicts the performance
and power on future PIM and host hardware configurations.

This paper makes the following primary contributions:

• We explore the viability of GPU-accelerated architec-
tures as in-memory processors and explore their sys-
tem design space in near-future technology nodes. To
our knowledge, this is the first study of using GPUs
for in-memory computing in order to accelerate a non-
stacked host processor.

• In order to enable rapid design space exploration, we
present a simulation methodology that automatically
scales performance and power values from existing hard-
ware to future design points and quantify its accuracy.

• We evaluate the energy and performance impact of
PIM in near-future technology nodes across a broad
range of GPGPU workloads and identify characteris-
tics that make a workload amenable to offload to a
throughput-oriented, in-memory accelerator.

The remainder of the paper is organized as follows. Sec-
tion 2 provides relevant background information. Section
3 describes our proposed system organization with GPU-
accelerated in-memory processors. Section 4 describes and
characterizes the benchmarks used for our evaluations. Sec-
tions 5 and 6 present the performance and power models
we have developed for exploring PIM organizations. Section
7 presents and discusses evaluation results. Sections 8 and
9 discuss future directions and related prior work. Finally,
Section 10 summarizes our findings and concludes.

2. BACKGROUND AND MOTIVATION

2.1 3D Die Stacking
Vertical stacking of logic and memory dies has been widely

discussed in the research literature [12, 28, 31, 32]. We fo-
cus on two primary high-level architectural implications of
3D stacking. First, 3D stacking allows multiple implemen-
tation technologies to be integrated within a stack, allow-
ing DRAM and logic dies to be coupled together. This is
fundamental to our in-memory architecture, in contrast to
previous works that try to implement both computation and
storage in the same design process. Second, interconnections
within a die stack, in the form of through silicon vias (TSV),
enable higher bandwidth, lower latency and lower energy
communication among the dies within a stack, relative to
2D organizations. The improved bandwidth arises primar-
ily from higher TSV density and the ability to clock these
“on-chip” links at higher frequencies than off-chip links with
reasonable complexity and energy overheads. TSV pitches
of 10-50µm were reported as of 2011 across a variety of ven-
dors, and ITRS roadmaps predict 4-8µm global TSV pitches
in the 2015-2018 time frame [7]. Latency and energy benefits
arise from the shorter, on-chip vertical distances traversed,
and the reduced capacitance compared to off-chip connec-
tions and longer wires on 2D organizations. Prior work has
estimated that traversal latency of even an extreme case of
20 dies stacked vertically to be on the order of 12ps [32].

2.2 Memory Power
The energy impact of off-chip memory is amplified by the

characteristics of today’s mainstream DRAM interfaces. De-
lay/Phase Locked Loops (DLL/PLL) and clocks in high-
performance DRAM interfaces such as DDR3 and GDDR5
consume significant energy even when no data is being trans-
ferred resulting in high idle power consumption and poor
energy proportionality. Prior studies have shown that the
effective energy per bit for DDR3 increases by integer factors
at low utilization due to interface overheads [33]. Some es-
timates suggest that 70% or more of the energy per DRAM
access is consumed in the DDR3 interface [27, 29]. While
mobile DRAM standards (e.g., LPDDR2, LPDDR3) pro-
vide lower idle power consumption, they do so at the cost



of reduced bandwidth. Emerging memory standards based
on high-speed serial links, such as Hybrid Memory Cube
(HMC) [37], introduce other interface overheads, including
those due to the energy and latency of serialization and de-
serialization. The “short reach” SERDES physical interface
(PHY) of HMC is expected to consume 5-10 pJ/b out of
an expected memory energy budget of 13-20 pJ/b [10, 37].
On the other hand, traversal of a 3D TSV is expected to
consume on the order of 30-110 fJ/b [4]. Therefore, there
is significant potential to reduce effective memory energy
consumption by incorporating die-stacked, in-memory pro-
cessors and reducing the overheads associated with high-
bandwidth, off-chip interfaces.

2.3 GPU Architecture
At a high level, GPU architectures consist of collections

of simple execution units (ALUs) operating under a single-
instruction, multiple-thread execution model. We base the
discussion in this paper on AMD’s Graphics Core Next (GCN)
GPU core architecture [8]. A simplified overview of a GCN-
like GPU is shown in Figure 2. The computing resources
are grouped into Compute Units (CU). From a GPGPU
perspective, each CU is composed of four 16-wide SIMD
units (along with associated register resources), a scalar
unit, L1 cache and a shared scratchpad. The off-chip mem-
ory (DRAM) is organized as a set of memory channels, each
with an associated slice of the L2 cache. The physical ad-
dress space is striped among the memory channels and the
CUs access L2 and DRAM via an on-chip network.
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Figure 2: Simplified GPGPU architecture overview

GPUs are highly multi-threaded, with each CU simulta-
neously running hundreds of threads. This helps them tol-
erate high-latency operations, such as memory delays; when
a thread is stalled due to a long-latency operation, other
threads can utilize the available hardware resources. This,
in turn, maximizes the computational and memory through-
put of GPUs without requiring complex, power-hungry hard-
ware such as out-of-order execution. As such, GPUs can
effectively utilize vast amounts of memory bandwidth (con-
sumer GPUs often have 10× or more bandwidth than con-
sumer CPUs). This ability motivates our desire to put GPUs
in high-bandwidth in-memory configurations.

2.4 Power and Thermal Considerations
PIM designs raise a number of power-related questions.

Like other die-stacked designs [12], PIM can run into ther-
mal constraints because in-memory processor and memory
share the same path to the heatsink. Heat from the in-
memory processor can raise the temperature of the DRAM,

which places tight bounds on the amount of power PIM can
use. The normal operating temperature range for DRAM is
considered to be under 85 ◦C. Any increase in temperature
beyond that requires refresh rates to be increased (typically
doubled). As such, power estimation is an important aspect
of studying PIM and we will factor this consideration into
our architecture choices as described in Section 3.2.

3. THROUGHPUT-ORIENTED PIM
In this section, we qualitatively discuss stacked memory

organization options and present our architecture with GPU-
accelerated in-memory processors.

3.1 Stacked Memory Organization
Anticipated usage scenarios of Wide I/O and HBM, as

well as academic studies of 3D stacked memory, predomi-
nantly assume one of two organizations: (1) direct 3D stack-
ing of memory on a processor or (2) “2.5D” stacking where
processor die(s) and memory stack(s) are mounted side-by-
side on a silicon interposer. The first organization provides
the benefit of tight coupling between processor and mem-
ory but raises thermal challenges. As a result, the thermal
envelope of the processor must be constrained to avoid ex-
cessively degrading retention time of the stacked DRAM, re-
ducing peak compute performance. The refresh rate of the
DRAM may also need to be increased due to heat from the
processor, further reducing performance. These constraints
can offset a significant fraction of the performance potential
of die-stacked memories, especially in high-performance sys-
tems. Further, the memory capacity that can be stacked in
this organization is limited by the footprint of the processor.

The second organization (2.5D) reduces thermal concerns
but incurs the additional cost of an interposer and introduces
energy and latency overheads due to all DRAM accesses
traversing the interposer. Bandwidth through the interposer
may also be lower than that of 3D stacking because it is
difficult to have as many wires in the interposer as there are
TSVs in the 3D stack, necessitating a reduction in parallel
communication channels and bandwidth.

A third alternative, adopted in HMC, is to integrate only
the memory controller(s) and other memory support logic on
the base dies of the memory stacks. The main processor is
not stacked with memory and communicates with memory
stacks via board-level or in-package links. This approach
avoids thermal and capacity limitations but falls short of
the performance and energy benefits of 3D or 2.5D stacking
for bandwidth-intensive applications.

The approach we consider, shown in Figure 1, combines
desirable aspects of the above three organizations. In-memory
processors incorporated on the base logic dies of memory
stacks provide the full bandwidth and energy efficiency of
true 3D stacking for executing memory-intensive applica-
tion segments. This alleviates the bandwidth demands on
the links between host and memory, enabling board- and
package-level interconnects for those links, unlike the more
expensive interposer-based solutions required for 2.5D orga-
nizations. The host processor does not have stacked mem-
ory, thereby avoiding stringent thermal constraints, and can
support high performance for compute-intensive code. A
similar approach was proposed by Balaprakash et al. in an
application-centric study [9]. In this work, we further in-
corporate realistic hardware area and power constraints. In
addition, we analyze a specific processor microarchitecture



(GPU) to determine practical SoC design points and analyze
other system bottlenecks beyond memory bandwidth.

3.2 Processor Architecture
Both the host and in-memory processors in our system

organization are accelerated processing units (APU). Each
APU consists of CPU and GPU cores on the same silicon die.
We believe the choice of an APU as the in-memory processor
has several benefits. First, the CPU and GPU components
support familiar programming models and lower the barrier
of using in-memory processors. Second, the programma-
bility allows a broad range of applications to exploit PIM.
Third, the use of existing GPU and CPU designs lowers the
investment and risk inherent in developing PIM. Finally, the
architectural uniformity of the host and in-memory proces-
sors ease porting of code to exploit PIM. Porting a subset
of an application’s routines (e.g., the memory-intensive ker-
nels) to PIM does not require a fundamental rewrite as the
same languages, run-time systems and abstractions are sup-
ported on both host and in-memory processors. Syntacti-
cally, simply annotating the routines that are to be executed
using PIM is sufficient. Due to these reasons, we adopt an
existing GPU core microarchitecture for PIM. However, to
our knowledge, this is the first study to consider a system or-
ganization incorporating GPU-accelerated architectures for
in-memory computing.

The key programmability challenge in porting applica-
tions to our system organization is the distribution of data
among multiple memory stacks and ensuring the locality of
PIM computation with the associated data. For the pur-
poses of this study, we designed a low-level API that allows
programmer control over what data is allocated in a given
stack and the ability to dispatch the associated computation
to that stack. Further, we study throughput-oriented com-
putations that are natural candidates for effectively utiliz-
ing the increased memory bandwidth available to in-memory
processors. Consequently, we primarily focus on the GPU
execution engines here.

We consider two potential PIM design points geared to-
wards high-performance applications, one in 22nm technol-
ogy and another in 16nm technology. The relevant hardware
configuration parameters are listed in Table 1. The charac-
teristics of these design points were determined based on
past GPU architecture scaling trends and publicly available
projections of future implementation technologies [7, 14]. As
we focus this evaluation on GPU compute aspects, we omit
the CPU configuration parameters. We do not include ap-
plication code execution on the CPU cores of either host or
PIM APUs in our evaluations.

As has been the recent trend, we assume host GPU ar-
chitecture scaling occurs primarily through increasing the
number of CUs and not through higher frequencies. We ap-
proximate this by holding the CU frequency roughly com-
parable to today’s high-end discrete GPUs over the tech-
nology generations studied. The number of host CUs were
selected to provide reasonable approximations of possible
high-performance APU design points in future technologies.
We made no effort to normalize host CU resources across
the two configurations (e.g., the host of the 16nm configu-
ration incurs a 33% increase in area and a 34% increase in
thermal design power (TDP) attributable to CUs over the
22nm configuration due to doubling of the number of CUs).

Table 1. Host and PIM configurations

Config. 1 Config. 2
Technology node (nm) 22 16

Host
Number of CU 32 64

Freq (MHz) 1000 1000
DRAM BW (GB/s) 320 640

DRAM BW/stack (GB/s) 160 160
DRAM capacity per stack (GB) 2 4

Number of DRAM stacks 2 4

Per-stack PIM
Number of CU 8 12

Freq (MHz) 650 650
DRAM BW per stack (GB/s) 640 640

In-memory processor organizations of the two configura-
tions were selected to fit within the constraints of a DRAM
stack. Historically, DRAM die sizes have hovered in the
range of 40-80 mm2 [44]. We assume a logic base die size near
the upper end of that range and the CU count of each config-
uration is selected to not exceed 50% of the logic die’s area
(including CU support hardware structures, shared caches
etc.). The configurations of the in-memory processors were
also constrained to not exceed 10W TDP attributable to
CUs, caches and support hardware. According to our ther-
mal models, this power level leaves sufficient headroom for
other components within the stack while not exceeding 85 ◦C
(and thereby avoiding the need to increase DRAM refresh
rates) with commercially viable air-cooling solutions for high-
performance systems. Note that these assumptions are more
conservative, and result in lower power density, than some
previous studies incorporating stacked DRAM [25]. We have
also selected conservative operating frequencies for the in-
memory processors to reduce dynamic and static power con-
sumption.

We assume the internal CU microarchitecture (including
cache hierarchy) does not change significantly from today’s
high-end GPUs over the period studied as well as between
host and PIM implementations. Naturally, this is an un-
realistic assumption from a microarchitectural perspective
as CU implementations will continue to be refined and im-
proved and variations in cache hierarchy may be desired be-
tween host and in-memory processors. However, our focus
here is to understand the high-order performance and en-
ergy effects of in-memory computation relative to traditional
organizations. Therefore, we assume that improvements in-
ternal to the processor are likely to benefit both PIM and
host implementations in corresponding degrees and defer the
evaluation of the impact of microarchitectural evolution to
future work.

3.3 Memory Organization
In keeping with recent trends, we assume a memory band-

width to compute ratio slightly greater than today’s high-
end GPUs at the 22nm node. While we double the raw
bandwidth at the 16nm point, we hold the ratio of band-
width to compute constant. We loosely model the memory
interfaces from host to memory stacks on publicly available
data on HMC [3, 37]. Each memory stack provides 160GB/s
of bandwidth to the host processor. For PIM configurations,
we assume intra-stack memory bandwidth four times greater



than externally available bandwidth. We explore the sensi-
tivity to this factor in Section 7.

Figure 1 also identifies the key memory interfaces in our
organization. As requests from both the host and PIM must
be serviced by the DRAM, the DRAM controllers reside on
the logic dies in the memory stacks. Therefore, the interface
subject to DRAM timing constraints is the vertical interface
between the logic die and the memory dies within each stack.
The interface from the host to each memory stack is an
abstract, split-transaction, load/store-oriented one.

4. APPLICATIONS
We used 70 kernels from the sources described below for

training and validating our ML-based performance predic-
tion model. However, our energy model relies on average
power measurements from GPU hardware which is currently
only feasible in our framework for kernels with a run time
of 1ms or longer. Therefore, we focus our application char-
acterizations (and results discussion in Section 7) on kernels
with a run time of 1ms or longer on our AMD Radeon HD
7970 native execution platform.

To provide an overall characterization of the application
kernels, we use the following two metrics: sustained band-
width usage and the number of vector ALU instructions ex-
ecuted per second. Figure 3 shows the kernels discussed in
Section 7 in the two-dimensional space of the aforementioned
metrics. For applications with multiple kernels, the kernel
name is prepended with the application identifiers specified
later in this section.
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Figure 3: Characteristics of the application kernels

4.1 Graph Applications
We implemented a number of graph applications for this

study. Random walk (RW) is a GPU implementation based
on prior work by Gartner et al. [22]. Given a pair of graphs,
it first performs random walks on both, then determines
and counts the number of matching walks. Shortest path
(SP) is a GPU implementation based on the prior work by
Borgwardt et al. [13]. We first convert the input graphs
into all pairs of shortest path graphs and compare them by
applying a Gaussian kernel on the vertices and edges. Un-
ordered neighboring (UN) determines similarities between
nodes of two graphs by computing pair-wise similarities be-
tween nodes in their neighbor sets. PageRank is an algo-
rithm proposed to prioritize web search results. Our imple-
mentation is based on recent work by Che et al. [17].

4.2 HPC Applications
The Mantevo Project [24] provides a collection of appli-

cations designed to mimic the characteristics of widely used
high-performance computing algorithms. We study two of
these. MiniFE represents the characteristics of larger ap-
plications modeling fluid and structural dynamics. Sparse
matrix-vector multiplications dominate the execution time
of the core computation of this benchmark and was chosen
due to the importance of sparse matrix operations in HPC
workloads. Codesigned Molecular Dynamics (CoMD) is a
simplified molecular dynamics workflow. CoMD implements
both Lennard-Jones and Embedded Atom Method (EAM)
potential calculations. We use the EAM approach for its
relevance for real HPC workloads.

4.3 Adapted Rodinia Benchmarks
Rodinia is a widely used GPGPU benchmark suite in-

tended to be a representative sample covering a wide range
of workload characteristics [18]. We use it here to augment
the application space covered by the other benchmarks de-
scribed above. While all Rodinia benchmarks are used in
training our performance model, only the benchmarks with
at least one kernel with execution time longer than 1 ms that
can be obtained by increasing the input data size without
algorithmic modifications are presented in our results discus-
sions. The benchmarks that fit this criterion are Breadth-
first search (BFS), Heartwall, Kmeans, Leukocyte (LE), par-
ticle filter (PF), and LavaMD.

5. PIM PERFORMANCE MODEL
AND VALIDATION

Two broad categories of performance models – structural
and analytical – are commonly studied in the literature [38].
The former uses simulation techniques to model systems
while the latter abstracts design factors of interest into an
analytical expression to predict performance. Cycle-accurate
simulation is commonly used to evaluate design proposals
because it allows researchers to directly model how architec-
tural changes interact with the system. However, these sim-
ulators typically run many orders of magnitude slower than
native execution and quickly become intractable for long-
running workloads. This is especially true for workloads
with large data sets and irregular memory access patterns,
which are of particular interest for PIM evaluations. There-
fore, in this study, we develop an analytical performance
modeling framework to study how throughput-oriented PIM
systems would perform.

5.1 Performance Model
At a high-level, our simulation framework relies on analyz-

ing an application’s behavior on existing GPU hardware to
predict the performance of that application on future GPU
configurations, including in-memory implementations. The
application under test is executed on a real GPU operating
at a known configuration (e.g., number of CUs, processor fre-
quency, memory bandwidth). For each GPU kernel invoked,
hardware performance counter statistics are gathered, char-
acterizing the application as it runs. This yields both the
current performance of the application as well as statistics
that indicate how the kernels ran. The statistics gathered
from the native execution for each kernel are then fed to an
ML-based performance scaling model that predicts the per-
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formance at other machine configuration points of interest.
The overall approach of this methodology is illustrated in
Figure 4.

In essence, training kernels are analyzed under different
machine configurations to ascertain their sensitivity to met-
rics such as parallelism, frequency, and memory bandwidth.
Hardware performance counters are used to “fingerprint”
these training runs. Later, the performance counters from
a kernel under analysis will be used to find which training
kernel it is most like. This, in turn, enables the model to
predict the execution time on a GPU with a different mix
of resources. For example, the real GPU used for native ex-
ecution may be a 1GHz core with 32 CUs and 264GB/s of
bandwidth to DRAM. Using the runtime and hardware per-
formance information of an application on this device, our
model could, for example, estimate the performance of the
same application on a GPU with 8 CUs running at 700MHz
with 400GB/s of memory bandwidth.

We use an AMD Radeon HD 7970 GPU for native exe-
cution and AMD’s CodeXL profiler to collect performance
counter metrics from hardware. The specific statistics gath-
ered using performance counters include the number of vec-
tor and scalar instructions executed, the number of memory
access instructions, the number of local data share accesses,
utilization factors of various execution units, cache hit rates
and the amount of data accessed from DRAM.

Scaling Assumptions
The key component of the above performance prediction
methodology is the model that consumes the data from the
native execution and scales the execution time to other hard-
ware configurations. With Tnative as the measured execution
time of an arbitrary kernel on a known, native hardware con-
figuration HWnative, the goal of the model is to implement
the scaling function m such that:

Tpredict = m(Tnative, HWnative, HWpredict, Pnative)

where Pnative is the set of performance counters gathered
during native execution, HWpredict is the future hardware
configuration for which performance is to be predicted, and
Tpredict is the predicted execution time of the same kernel
invocation on that future hardware.

In our framework, this model is built on the following as-
sumptions: (1) the detailed microarchitecture of the CUs
of HWpredict is similar to that of HWnative and, therefore,
kernel performance is correlated to coarse configuration pa-
rameters such as the number of CUs, processor frequency
and memory bandwidth; (2) kernels with similar statistics
across a broad range of performance counter readings have
similar sensitivity to hardware parameters; and (3) the per-
formance impact of varying multiple hardware parameters is
separable and the cumulative impact can be approximated
by scaling first for the variation of one parameter followed
by subsequent scaling for additional parameters.

The rest of this section describes how the ML-based model
is constructed off-line using a large amount of training data
and how it is used online for performance prediction.

Off-line Learning
Our ML-based performance model is trained using 70 ker-
nels over a discretized 3D grid of 162 operating points that
are supported by the native hardware used for our experi-
ments. The dimensions of the grid are the number of CUs
(C), CU frequency (f), and memory bandwidth (B). The
number of CUs is varied among 32, 16 and 8. The CU fre-
quency is varied from 500 to 1000 MHz in steps of 100 MHz.
Memory bandwidth is varied by changing the memory fre-
quency from 500 to 1300 MHz in steps of 100 MHz. Each
kernel from the training set is executed at each point on this
hardware configuration grid and the kernel execution time
and performance counter statistics are obtained. We de-
rive a kernel feature vector based on the collected hardware
counter statistics at each point in the grid. Once feature
vectors are available for all grid points for a given kernel,
they are normalized to account for the varying scales used
in gathering different metrics. Subsequently, we group the
feature vectors of one kernel as a feature array for this kernel.

At each point on the HW configuration grid we also com-
pute a time ratio triplet:

(RTC , RTf , RTB) = (
TC1

TC0
,
Tf1

Tf0
,
TB1

TB0
)

where each component is a time ratio between neighboring
points on the 3D HW grid with other two parameters held
constant. For example, RTC is a time ratio between two
neighboring points with different numbers of CUs but with
fixed CU frequency and memory bandwidth. Similarly RTf

is a time ratio between two neighboring CU frequency points
with fixed number of CUs and memory frequency. And RTB

is a time ratio between two neighboring memory bandwidth
points with fixed number of CUs and CU frequency. This
results in a 3D time ratio matrix with each element being a
vector consisting of these three time ratio components.

Next, we proceed to the key part of the off-line learning
process:
• Time ratio matrices are clustered into a predefined

number of n clusters (in our implementation, n = 4)
using the k-means algorithm.

• The clustering process produces n centroids, each of
which is a time ratio matrix and a corresponding fea-
ture array partition. This maps each kernel feature
array to a “representative” time ratio matrix.

• Using leave-one-out evaluation to guide the refinement
of the clustering, an inner loop is performed:

– For each test feature vector we use the k-nearest
neighbor classification with k = 5 to find the clus-
ter to which that feature vector belongs.

– The representative time ratio matrix of the chosen
cluster centroid is selected. This matrix is used
when performing the prediction because the ap-
plication under test appears similar to the known
applications.

– The prediction calculation is performed subject to
the assumptions described earlier in this section
to provide a predicted processing time at each
point on the HW configuration grid.



– A relative error is calculated at each point of the
grid by comparing predicted time with real mea-
sured execution time at that particular hardware
configuration.

• The mean of the relative errors is calculated over all
feature vectors for the set of time ratio clusters.

To improve the quality of the clustering, this off-line learn-
ing process is conducted a sufficiently large number of times
to repeat the clustering process with a new set of randomly
selected seeds. Each iteration returns one mean relative er-
ror. The iteration yielding the minimum error is selected as
our learned clusters.

In summary, during the training phase, the above de-
scribed model“learns”a classification of kernels into different
types based on their scaling characteristics and the sensitiv-
ity of each type of kernel to individual hardware parameters.
As described in the following subsection, this knowledge is
then used to predict execution times of new kernels at future
design points, resulting in a much more sophisticated model
than linearly scaling performance with hardware parame-
ters. Not only is this model sensitive to the fact that some
kernels are not affected by some parameters (e.g., memory-
bound kernels are insensitive to processor frequency), but it
is also able to infer complex interactions between the scaling
coefficients of different parameters.

Online Prediction
Once the ML-based performance prediction model is built,
performance prediction of new kernels is performed in near-
real-time. For an arbitrary application with arbitrary prob-
lem sizes running on a known baseline hardware configura-
tion, we collect the performance counter statistics for each
kernel invocation and convert the data to a feature vector
to be normalized in the same way as the training set. The
prediction algorithm is very similar to the body of the off-
line inner loop. The normalized feature vector is classified
to find a cluster that the new kernel is closest to. Based on
that, the representative time ratio matrix is selected and a
prediction calculation chain is performed over the selected
time ratio matrix based on the baseline (native) HW con-
figuration, the predicted HW configuration and the native
execution time. The result is a predicted processing time for
the same kernel with the same problem size running on the
predicted HW configuration. It is important to note that
this model allows performance prediction not just at differ-
ent hardware configurations, but also for previously unseen
kernels.

5.2 Performance Model Validation
The leave-one-out process described for training the model

also provides a method for characterizing the prediction ac-
curacy of the model. A kernel that was not used for training
the model is executed at a point p in the grid of hardware
points described in Section 5.1 and the performance model
is used to predict the execution time of that kernel at the
other 161 points of the grid. This process is repeated for
all possible values of p on the grid for that kernel, result-
ing in 26,082 (= 161 ∗ 162) predictions per kernel. Each
of the predicted times are then compared to the measured
execution time at the corresponding hardware configuration
to calculate the prediction errors. While this does not tell
us directly how accurate our estimation is when modeling
hardware settings outside our current GPU’s range, estima-

Figure 5: Prediction error (fraction) averaged over all bench-
marks for nine native configurations. Purple rectangles are
the native configurations and the color scale indicates the
different estimation errors when predicting from that native
point to other points.

tion mechanisms that have high accuracy in these tests are
more likely to be accurate for other design points as well.

Figure 5 shows a subset of the prediction errors of our
model determined using the above approach, averaged over
all of our benchmarks. Each of the nine tiles in the figure
shows the prediction error using a different native execution
point p indicated by the dark block. Figure 6 shows the
average prediction errors for the kernels discussed in detail in
this paper. The dotted line shows the average error (16.1%)
across the full set of 70 kernels used in this work.

While our model is intended for near-real-time execution
time prediction (after the one-time training overhead), the
measured error of our model relative to hardware is competi-
tive with errors observed for detailed simulators that run or-
ders of magnitude slower. For example, Gutierrez et al. find
13% to 17% errors in correlating a custom-configured gem5
simulation framework to corresponding real hardware [23],
while disabling the hardware features that gem5 couldn’t
model accurately. Weaver and McKee find errors of 24.6%
and 67.6% for integer and floating point SPEC CPU bench-
marks between SESC and real hardware [45]. Furthermore,
even Yourst’s evaluation of a highly-tuned, cycle-accurate
simulator, PTLsim, shows 4.3% execution time prediction
errors [48].

6. PIM ENERGY MODEL
Much like our performance model, our energy estimates

are based on measuring power consumption on existing hard-
ware on a per-kernel basis and projecting to future designs
based on technology and system parameters. This power
model is similar to the performance model shown in Figure
4. However, in addition to gathering performance counters,
it also directly gathers power usage from the hardware.

The first step is to gather dynamic power data from our
native execution platform – an AMD Radeon HD 7970 run-
ning at a core clock frequency of 1 GHz. AMD GPUs
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Table 2. Dynamic power and memory energy estimates

Baseline Host PIM
Technology (nm) 28 22 16 22 16

Freq (MHz) 1000 1000 1000 650 650
Capacitance scaling 1.00 0.75 0.56 0.75 0.56

Vdd (V) 1.2 1.09 1.03 0.87 0.83
Dynamic CU power

scaling
1.00 0.61 0.41 0.25 0.17

Memory energy
(pJ/64b)

N/A 522 520 159 155

make chip-wide dynamic and static power available through
memory-mapped registers that can be read by the host CPU.
A host-side application polls these registers as GPU kernels
are executed.

Because dynamic power usage of a chip is influenced by
the operations executed on it (rather than just its tempera-
ture and voltage), it is important to have multiple dynamic
power readings per computational kernel. Since we are able
to scale performance only at the granularity of a kernel, we
study the average power used over each kernel execution.

The dynamic power values read from the hardware encom-
pass the GPU’s die power, but do not include memories on
the graphics card, physical interfaces, or other power drains
at the periphery of the chip. Accounting for memory energy
in our model is described later in this section.

The power values that we gather from existing hardware
must be scaled to estimate the power that similar workloads
would require on future systems. The two key components
of this are scaling to future technologies (and corresponding
operating points) and scaling to account for variations in the
numbers of CUs.

Scaling to future technologies in our model is based on
industry technology scaling projections and the ITRS [14,
7]. Based on those projections, we compute scaling factors
for dynamic energy from current 28nm hardware to future
design points of interest. Where our desired operating fre-
quency f , as specified in Table 1, differs from those indicated
by scaling projections, we adjust Vdd based on the relation
f ∝ (Vdd−Vt)

2/Vdd. Table 2 shows the relevant parameters
and dynamic power scaling factors. We compute memory
energy for future design points directly from access counts
and, therefore, per-access energy from the baseline is not
used in our projections.

Table 3. TDP variation normalized for voltage, frequency
(MHz), and CU count

Design CUs Freq Normalized TDP/CU
Radeon HD 7770 10 800 1.000
Radeon HD 7870 20 900 1.002
Radeon HD 7970 32 900 0.912
Radeon HD 7970 32 950 0.979

Our model scales design dynamic power (excluding mem-
ory and IO) linearly with the number of CUs. This assumes
that other on-die resources outside the CUs scale with the
number of CUs as well. We show TDP across four AMD
GPU implementations from the same generation normalized
for operating voltage, frequency and the number of CUs in
Table 3. This data shows that TDP scales with CU count
to within 10% across these designs and that linear scaling
with CU count, therefore, is a reasonable approximation for
an analytical model.

We base our static power estimates on the aggressiveness
of the target design points for each processor’s implementa-
tion. For host processors at 1GHz, we assume 30% of TDP
as static power. For PIM targeting significantly less aggres-
sive 650MHz operation, we assume 10% of TDP as leakage.
We base these off scaled TDP to account for technology,
operating point and configuration differences. We use this
method instead of scaling the observed static power usage
of application runs because static power readings are influ-
enced by temperature, which is difficult to control between
runs and may be different for future systems.

Finally, after estimating the power needed to run a com-
putational kernel on a future GPU or PIM, the performance
and power estimates are combined to yield energy estimates.

For host memory energy estimation, we assume SERDES
power of 5pJ/b, at the low end of the HMC short reach PHY
estimates [6]. We assume 7pJ per 64 bits of data for TSV
traversal within the stack [4]. For both host and PIM, we
assume 2pJ/b for DRAM access itself [27, 29]. We also in-
corporate factors accounting for wire traversal on the logic
die (host or PIM) proportional to the square roots of the cor-
responding die areas. Table 2 shows the resulting per-access
energy for a 64b word. These per access energy estimates
are multiplied by dynamically observed access counts (from
hardware performance counters) to compute total memory
energy estimates. Even though off-chip memory interfaces
often have high idle power overheads, we do not account for
idle power consumption of host memory interfaces, which
introduces a slight bias against the PIM configurations in
our energy estimates.

As the objective of our study is to evaluate the energy
efficiency of host computation relative to PIM computation,
we assume the host is power-gated during PIM execution.
Similarly, we assume the PIM logic is power-gated during
host execution (aside from the memory access path) and
does not contribute to system energy. We defer evaluating
concurrent use of host and PIM to future work.

7. EVALUATION
We quantitatively evaluate the PIM architecture design

choices described in Section 3 with the set of applications
described in Section 4, using our performance and energy
models.
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Figure 7: Performance change when executing on PIM, nor-
malized to host performance. Positive values mean higher
performance on PIM, while zero implies no performance
change.

As discussed in Section 3.2, the characteristics of the de-
sign points evaluated here were determined based on past
GPU architecture scaling trends and publicly available pro-
jections of future implementation technologies [7, 15]. We
factored in both prevailing design and technology trends as
well as hardware constraints such as area, power, and ther-
mals. We believe this results in a distilled set of realistic
design points for both the host and PIM processor imple-
mentations.

7.1 Performance Impact
Figure 7 shows the performance of each kernel on PIM

normalized to the performance on the corresponding host.
This reflects the performance tradeoff of running each kernel
on PIM or host at a given technology node based on the
configurations described in Table 1. We model each kernel
executing on all in-memory processors (i.e., two at 22nm
and four at 16nm) in parallel except where noted otherwise
later in this section.

As expected, in general, kernels with high compute re-
quirements and low memory demands as characterized by
Figure 3 suffer slowdowns on PIM at 22nm. The band-
width advantages of PIM combined with improved relative
PIM compute performance at 16nm (as a result of more
CUs within the same 10W-per-stack budget) results in some
of these, such as CoMD EAM1, SP vertex gauss and UN,
showing performance improvements over host execution.
While the limited compute capability of PIM at 22nm re-
sults in slowdowns for most kernels, bandwidth-heavy ker-
nels such as CoMD position, CoMD velocity, and RW mem -
init show significant performance gains on PIM at 16nm.

Balanced applications with high compute and bandwidth
demands, such as kmeans c and SP edge mem typically per-
form slower on PIM at 22nm, but gain performance with
improved PIM compute capabilities at 16nm.

A number of benchmarks behave counter-intuitively to
the characterization in Figure 3. PF normalize and PageR-
ank are dominated by synchronization and do not scale to
multiple in-memory processors. Therefore, they are con-
strained to running on a single PIM instance, which re-
sults in degraded performance relative to host execution.
LE IMGVF does not have sufficient parallelism at the ap-
plication level to utilize PIM across multiple memory stacks,
and is also constrained to run on a single in-memory pro-

cessor. BFS, while bandwidth-heavy, is bottlenecked by L1
cache bandwidth due to uncoalesced memory accesses and
does not benefit from the improved bandwidth afforded by
PIM. Conversely, LavaMD, while not bandwidth-intensive,
is limited by L2 cache bandwidth and memory latency. As
L2 cache bandwidth of GPU architectures are typically cor-
related to memory system performance (and not proces-
sor performance), our model predicts performance benefits
for LavaMD from the improved memory system of PIM.
PF find index and Heartwall are also L2 bandwidth bound
to a lesser extent and is predicted to benefit from high
memory system performance of PIM, especially at 16nm.
RW vect add and RW vect mul, while bandwidth intensive,
become constrained by the greatly reduced execution re-
sources available on the 22nm PIM configuration but show
speedups over host at the 16nm configuration.

These observations show that while a characterization bas-
ed on application compute and bandwidth requirements can
provide relevant intuitions about computations that may
benefit from PIM, deeper analysis and modeling is neces-
sary to fully understand the application characteristics that
actually do benefit from the multi-dimensional architectural
heterogeneity that exists between PIM and host implemen-
tations of even the same underlying microarchitecture.

7.2 Energy Impact
While in-memory processing can help the performance

of some applications (especially those that can utilize the
added bandwidth), compute-bound applications may see lit-
tle performance benefit, or even slowdowns, when running
their GPGPU computations in memory. Nonetheless, these
applications may see energy efficiency benefits.

PIM in our system offers two avenues for these efficiency
gains. First, accessing the memory system uses less en-
ergy, which directly benefits the energy efficiency of memory-
heavy applications. Just as important, however, is the less
aggressive processor design used for PIM – they can operate
at a much lower frequency and use a less leaky design pro-
cess while still offering good performance due to their added
bandwidth. We found that the in-memory processors in our
system always used less energy during our tests.

To quantify the energy impact of our PIM design, we
present energy-delay product (EDP) and energy-delay2 (ED2)
differences between running our benchmarks in memory ver-
sus running them on the host. Figure 8 presents the EDP
for running the benchmarks on the in-memory processors in
22nm and 16nm designs normalized to the EDP of the host.
Figure 9 details the ED2. In almost all 22nm tests, the PIM’s
reduced energy yields a better EDP, even for applications
that run slower (such as PF find index and SP edge mem).

ED2 more heavily weights performance instead of energy,
and Figure 9 shows that, at 22nm, many of the applica-
tions that lost performance when moved to PIM are also
better run on the host when optimizing ED2. Nonetheless,
at 22nm, PIM is often a more energy-efficient option com-
pared to running on the host.

This trend is further demonstrated at the 16nm design
point. In this case, PIM has the benefit, as demonstrated
in Section 7.1, of being much more performance competitive
with the host. The 16nm node shows that the EDP and ED2

of PIM is always better than the host, except for the ED2

of CoMD EAM3. This benchmark is extremely compute
intensive, and gains little from in-memory execution.
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It’s worth noting that these energy analyses included core
and memory system power, but did not include system power
(such as hard disks). These would decrease the energy effi-
ciency benefit of PIM for programs that show a performance
loss. However, the difference in power between using the
host and PIM was often between 50-70W. As such, the dif-
ference when including the rest of the system (which may
be blades or diskless HPC servers) will still likely benefit
PIM in many cases. Conversely, for applications that run
faster on PIM, the energy efficiency benefits when consid-
ering the full system may be even greater than reflected in
our analyses.

In order to study the sensitivity of the above results to
the relative bandwidth ratio between host and PIM, we an-
alyze the two additional configurations described in Table 4.
Config 3 is identical to Config 2 but with half the bandwidth
for PIM and Config 4 is identical to Config 2 but with half
the bandwidth for the host.

Table 4. Configurations to study bandwidth sensitivity

Config. 3 Config. 4
Technology node (nm) 16 16

Host
DRAM BW (GB/s) 640 320

DRAM BW/stack (GB/s) 160 80

Per-stack PIM
DRAM BW per stack (GB/s) 320 640

7.3 Sensitivity to Bandwidth
Figure 10 shows the relative performance change of PIM

for Configs 2, 3, and 4 normalized to the corresponding
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Figure 10: Performance change when executing on PIM,
normalized to host performance at 16nm
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hosts. Kernels that are heavily compute-limited (e.g., CoMD-
EAM3 ) are insensitive to the bandwidth variations. How-

ever, the reduced bandwidth of Config 3 leads to lower PIM
performance for many of the other kernels. Similarly, de-
creasing the bandwidth of the host in Config 4 results in very
significant slowdowns on the host for bandwidth-sensitive
kernels.

Figures 11 and 12 show the normalized EDP and ED2 for
Configs 2, 3, and 4. These results show that, even if the
in-memory processors were constrained by more pessimistic
bandwidth considerations (as in Config 3), the energy bene-
fits of moving the computation into the memory system still
hold. Energy efficiency is reduced for these applications be-
cause the PIM performance benefits are reduced, but the 3D
stacking and less aggressive designs still yield EDP and ED2

benefits. The more constrained host of Config 4, which re-
duces the host’s performance, again demonstrates this point.

8. FUTURE DIRECTIONS
This work represents a characterization of the tradeoffs

of a specific type of processor (the GPU component of an
APU) which we believe to be a good fit for in-memory com-
putation. A thorough evaluation of the design space for in-
memory processors using 3D die stacking requires a broad
exploration encompassing other forms of programmable pro-
cessors as well as configurable and fixed function processors.
Further, this study evaluates the performance and energy
efficiency of executing on PIM or host. Other usage models,
such as offloading some computations to PIM thereby free-
ing up the host for other forms of computation, may provide
additional benefits and need to be explored.

We have also assumed a generic GPGPU microarchitec-
ture and memory hierarchy for our in-memory processors
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in this initial study. Optimization of the architecture and
microarchitecture specifically for in-memory processing as
well as specialization of communication and synchronization
mechanisms present other rich areas for future research. A
further area is the impact on host processor architecture if
memory-intensive code segments are offloaded to in-memory
processors.

As we adopt GPUs and APUs as the PIM processors, aug-
menting existing programming models (such as OpenCL)
with an API to control data placement and compute dis-
patch suffices for the hardware design space evaluation pre-
sented in this paper. However, programmability for future
systems with PIM components is a key area that requires
further significant research. In particular, more research
is needed on high-level abstractions to express application-
level locality and data-compute affinity that enable efficient
mapping of data and compute to memory stacks without
significant programmer effort.

9. RELATED WORK
PIM attracted significant attention in the research com-

munity for a short period around the beginning of this cen-
tury. Many of those efforts focused on one of two approaches.
Efforts such as IRAM [21] integrated embedded DRAM on
logic chips. However, this approach could not cost-effectively
accommodate sufficient memory capacity for mainstream or
high-performance systems due to the reduced density of em-
bedded DRAM and the increased cost-per-bit of memory
implemented in cutting-edge processor technologies. Efforts
such as ActivePages [34], DIVA [20] and FlexRAM [26] in-
tegrated logic on memory dies. However, due to the re-
duced performance of logic implemented in DRAM processes
(typically multiple process generations behind contemporary
logic processes), such approaches resulted in in-memory pro-
cessors with very low performance or highly specialized ar-
chitectures geared only for select operations. This in turn
limited the applicability and programmability of such PIM
designs which, along with the cost implications of reduced
DRAM density due to the presence of compute logic, limited
the adoption of such approaches.

Integrating processors and memory using 3D die stacking,
as we evaluate in this paper, does not provide as tight a cou-
pling as integration on a single die. However, this approach
enables the in-memory processors to be implemented on sep-
arate dies using logic processes and do not require significant
changes to commodity memory dies geared towards emerg-
ing stacked memory standards. Further, as the in-memory

processors are implemented in logic processes, they can be
variants of existing processor designs which enable them to
easily support familiar programming models while providing
sufficient performance to support a broad range of applica-
tions. A similar approach has been advocated in a recent
FlexRAM retrospective by J. Torrellas [42]. Balaprakash et
al. [9] presented a study on HPC application characteristics
and an analytical evaluation of their ability to exploit the
increased bandwidth available to PIM. While they focused
on extrapolating application characteristics to Exascale lev-
els, we emphasize the hardware aspects of PIM in order to
determine what PIM design points would result in perfor-
mance, power, and thermal benefits. We demonstrate that
a throughput-oriented processor (GPU) in the memory can
effectively utilize the added bandwidth, benefitting a wide
range of applications both in and outside of the HPC do-
main. We demonstrate that, while exascale computing may
benefit from PIM, PIM does not require exascale workloads
to be useful.

Sampson et al. [41] proposes a 3D stacked processor or-
ganization for accelerating 3D ultrasound beamformation.
Pugsley et al. propose specialized processors on the base
logic layer of HMC-like memory stacks to accelerate MapRe-
duce workloads [39]. Our work differs from these recent ef-
forts in focusing on programmable processors that support
well-understood programming models and are broadly ap-
plicable across a variety of application domains instead of
catering to a specific application domain. Another recent ef-
fort, Micron’s Automata Processor, incorporates the ability
to perform parallel automata processing within the memory
arrays on the DRAM dies themselves [19]. However, this
is also geared to a specific class of algorithms and further
requires a specialized language to program.

10. CONCLUSION
Reducing off-chip data movement is becoming increasingly

important for performance and energy efficiency. PIM has
the potential to provide significant reductions in off-chip
traffic. In this paper, we have presented an architecture
for programmable, GPU-accelerated, in-memory processing
implemented using 3D die-stacking and an evaluation of the
viability of such an architecture. The throughput-oriented
nature of GPU architectures is able to efficiently utilize the
high bandwidth made available by vertically stacking in-
memory processors directly under memory dies while pro-
viding the programmability needed to support a broad range
of applications. The design points we evaluated were care-
fully chosen to be within the power and thermal constraints
of 3D memory stacks, further establishing the feasibility of
GPU-based PIM in near-future technology nodes.

We evaluated the chosen PIM design points using ana-
lytical performance and energy models that extrapolate to
future design points using data gathered from hardware per-
formance counters during native execution on existing hard-
ware. Our evaluations show that PIM can provide perfor-
mance and/or energy benefits for a variety of applications
spanning a wide spectrum of compute/bandwidth ratios. On
average, across the benchmarks evaluated, viable PIM con-
figurations are shown to provide significant improvements
in energy efficiency over representative mainstream config-
urations (76% reductions in EDP) with moderate perfor-
mance losses (27% slowdown) at the 22nm technology node.
At 16nm, viable PIM configurations are shown to provide



marginal performance gains (7%) while providing even greater
energy efficiency improvements (85% reductions in EDP) on
average. While many research areas remain to be explored
in the broader context of PIM, our results demonstrate con-
siderable promise in improving overall energy efficiency and
performance of memory-limited applications.
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