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ABSTRACT

Deep learning methods are proven to be state-of-the-
art in addressing many challenges in machine learning
domains. However, it comes at the cost of high com-
putational requirements and energy consumption. The
emergence of Processing In Memory (PIM) with die-
stacking technology presents an opportunity to speed
up deep learning computation and reduce energy con-
sumption by providing low-cost high-bandwidth mem-
ory accesses. PIM uses 3D die stacking to move com-
putations closer to memory and therefore reduce data
movement overheads. In this paper, we study the par-
allelization of deep learning methods on a system with
multiple PIM devices. We select three typical layers: the
convolutional, pooling, and fully connected layers from
common deep learning models and parallelize them using
different schemes. Preliminary results show we are able
to reach competitive or even better performance using
multiple PIM devices when comparing with traditional
GPU parallelization.

1. INTRODUCTION

Deep learning has shown promising success in domains
such as speech recognition, image classification, and nat-
ural language processing [1]. However, state-of-the-art
deep learning models often contain a large number of
neurons, resulting in millions or even billions of free pa-
rameters [2]. To train such complex models, tremendous
computational resources, energy, and time are required.
Recently, a significant amount of effort has been put into
speeding up deep learning by taking advantage of high-
performance systems. Despite that, AlexNet [3] takes
more than five days to train on two GPUs; DistBelief [4]
uses 16,000 cores to train a neural network in a few days;
COTS HPC system [2] scales to neuron networks with
over 11 billion parameters using a cluster of 16 GPU
servers. While these prior works have successfully accel-
erated the computation by mapping the application to
existing architectures, relatively little research has been
done to evaluate the potential of emerging architecture
designs, such as in-memory computing, to improve the
performance and energy efficiency of deep learning.

This paper explores the potential of Processing In Mem-
ory (PIM)\'|implemented via 3D die stacking to improve
the performance of deep learning. While PIM research
has been active from time to time for a few decades,
it has not been commercially viable due to manufactur-
ing and economic challenges. However, recent advances

!This paper uses PIM as an abbreviation interchangeably for
processing in memory and processor in memory depending
on the context.

in 3D die stacking technology make it possible to stack
a logic die with one or more memory dies enabling a
new class of PIM solutions. These solutions build on
the same underlying 3D stacking technology used by re-
cent memory technologies such as Hybrid Memory Cube
(HMC) [5] and High Bandwidth Memory (HBM) [6].
It has been demonstrated that a broad range of appli-
cations can achieve competitive performance and much
greater energy efficiency on viable 3D-stacked PIM con-
figurations compared with a representative mainstream
GPU [7].

In this study, we evaluate the performance of scaling
deep learning models on a system with multiple PIM
devices. In this system, the host is a high-performance,
mainstream APU. This host is attached to several mem-
ory modules, each with PIM capabilities consisting of a
small APU.

From the two most popular deep learning models, Con-
volutional Neural Network (CNN) and Deep Belief Net-
work (DBN), we select three frequently used and repre-
sentative layers: the convolutional layer, pooling layer,
and fully connected layer. Across the multiple PIM de-
vices, we parallelize these layers individually. Two par-
allelization schemes are evaluated, which are data paral-
lelism and model parallelism. The data parallelism ap-
proach keeps a copy of the full neural network model
on each device but partitions the input data into mini
batches across them. We evaluate data parallelism on all
three layers. The model parallelism approach partitions
the neural network model and distributes one model par-
tition to each device. We apply model parallelism to the
fully connected layer, as the number of parameters of the
neural network in this layer increases drastically as the
network grows. Memory capacity can often be a limit-
ing factor for fully connected layers. When the model is
too large to fit into a PIM’s memory, it is essential to
partition the model across multiple PIMs using model
parallelism.

Preliminary experiments show that by scaling deep
learning models to multiple PIMs available in a system,
we are able to achieve better or competitive performance
compared with a high-performance host GPU in many
cases across the different layers studied. We show that
model parallelism consumes much less memory than data
parallelism on fully connected layers, and it also reaches
better performance when the number of input images
per batch is small. However, as the batch size increases,
data parallelism scales better due to the absence of syn-
chronization and outperforms model parallelism.

2. DEEP LEARNING MODELS



Deep Belief Networks (DBN) are constructed by chain-
ing a set of Restricted Boltzmann Machines (RBM) [g].
We explain the details of RBM in Section [2.3] Here we
show an example of a DBN trained for speech recogni-
tion in Fig. The model takes as an input a spectral
representation of a sound wave. The input is then pro-
cessed by several RBMs where each RBM may contain
a different number of hidden units. Finally, the DBN
translates the input sound wave to text output.
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Figure 1: DBN on speech recognition

Unlike DBN, CNN may consist of multiple different
layers. The most basic ones are convolutional, pooling,
and fully connected layers. The fully connected layer has
effectively the same characteristics as the RBM. The de-
tails of each layer are discussed in the following subsec-
tions. Here we show an example of a CNN model trained
for digit recognition in Fig.[2l The input to this model is
an image containing one hand-written digit. The input
is first processed by the convolutional layer where each
filter outputs one feature map. The feature maps are
downsampled by the max pooling layer. Outputs from
the pooling layer are then processed by the fully con-
nected layer. The final output layer contains 10 neurons
where each neuron represents one digit. The neuron with
the highest probability is the prediction result of the in-
put.
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Figure 2: CNN on digit recognition

Traditionally, deep learning applications consist of two
phases: training and prediction. The training phase con-
tains forward propagation and backward propagation for
weight updates @ . In forward propagation, input
images are processed through all layers in the deep learn-
ing model with initial weights. In backward propagation,
error is computed based on the model output. The error
is then propagated back through all layers and used to
update the weights for each layer. The prediction phase
contains only the forward propagation using the weights
learned in the training phase. This paper focuses on the
three common layers in the forward propagation: con-
volutional, pooling, and fully connected, as they are key
to both the training and prediction phases.

2.1 Convolutional Layer

The Convolutional (conv) layer is the core building
block of CNN. The input of this layer is a batch of im-
ages and each image has 3 dimensions including width,
height, and depth (or channels). The conv layer ap-
plies one or several convolutional filters (or kernels) to
each 3D input volume. The filters are spatially small
along the width and height dimensions, but they have
the same depth as the input volume. Although it is not
required, practitioners usually set the filter to have the
same size along width and height dimensions in practice
and call this hyperparameter filter size. During the
forward propagation, each 3D filter is applied by sliding
it across the width and height dimensions of each input
volume, producing a 2D feature map of that filter. Each
time we slide the filter across the input, we compute
the dot product between the entries of the filter and the
3D sliding window. The hyperparameter stride defines
how far we slide the filter. Assuming stride as 1, we slide
the filter by only 1 spatial unit for the next convolution.
Also, a technique called zero-padding can be applied to
add zeros surrounding the input volume, so the filter can
be applied to the border elements of the input.

Fig.|3|shows an example of 2D convolution. The input
is 4 x 4 with zero padding. The filter size is 3, and the
output is also 4 x 4 because we set stride size to be 1.
The red window slides along the width and height of
the input. Dot products between entries in the input
red window and filter are performed and output to the
resulting feature map.
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Figure 3: 2D Convolution example.

2.2 Pooling Layer

Input to pooling layer is usually the output from conv
layer after an element-wise non-linear transformation.
The pooling layer is used to reduce the spatial size of the
input through downsampling. By doing so, the amount
of parameters and computation can be greatly reduced
and can also help alleviate overfitting. The most com-
mon pooling operation in CNN is max pooling. It slides
a 2D window along the width and height of the input on
every channel. Each window outputs a max value of the
elements within the window. Therefore, the output of
the pooling layer is spatially downsampled on width and
height but remains the same depth as the input. Similar
to the conv layer, the output size depends on the choices
of kernel size and stride. Fig. 4] shows an example of
performing max pooling on a 4 x 4 input with a filter
size of 2 and stride size of 2. The maximum value of
each window in the input is the output in the resulting
feature map.

2.3 Fully Connected Layer

The fully connected layer in CNN can be treated as
the RBM used in DBN. An RBM is an energy-based
generative model that consists of two layers: a layer of
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Figure 4: Max pooling example.
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Figure 5: An example of RBM.

visible units v, and a layer of hidden units A. The units in
different layers are fully connected with no connections
among units in the same layer. Figure [§] shows a very
small RBM with 4 units in the visible layer and 3 units
in hidden layer for illustration purpose. In total, there
are 4 x 3 edges in the network. Weights associated with
these edges are represented as a 4 x 3 weight matrix. In
CNN, input of fully connected layer is usually the output
of pooling layer. Each 3D volume from the pooling layer
can be unrolled to a large 1D vector. The dimension of
the 1D vector equals the visible layer size of the RBM.
By unrolling all 3D volumes from the pooling layer, we
are then able to represent them as a 2D matrix, which
we then multiply with the weight matrix to derive the
output of the fully connected layer.

3. PIM ARCHITECTURE

Fig. [6] shows our system organization consisting of
one host and four PIM stacks. Each PIM stack has a
logic die containing the in-memory processor and mem-
ory (DRAM) dies on top of it.

Both the host and in-memory processors are Accel-
erated Processing Units (APU). Each APU consists of
CPU and GPU cores on the same silicon die which en-
ables the execution of both CPU- and GPU-oriented
general-purpose code on either the host or PIM. Select-
ing an APU as the in-memory processor lowers the bar-
rier to adoption and allows the use of existing rich sets
of development tools for CPUs and GPUs. For this eval-
uation, we focus on the GPU execution units of the host
and the PIM APUs.

The in-memory processor in each memory stack has
high-bandwidth access to the memory stacked on it at
a peak of 320 GB/s. The capacity of each memory
stack is 4 GB. The host also has direct access to the
memory stacked atop the PIM devices but at a reduced
bandwidth, as those accesses must be over a board-level
memory interface. We model the host memory interface
on Hybrid Memory Cube (HMC) [5] at 160 GB/s peak
bandwidth per memory stack (i.e., 1/2 the internal band-
width), which results in aggregate host bandwidth of 640
GB/s across the four memory stacks. In order to model
more mainstream hosts with lower memory bandwidth,
we also evaluate designs where the host has 1/4 and 1/8
the internal bandwidth per memory stack.

We model a unified address space among the host and

PIM devices that allows direct access from any PIM de-
vice to any memory within the system. Access to remote
memory (i.e., memory in other PIM stacks) by PIM de-
vices is modeled at 1/s the intra-stack bandwidth per
stack.
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Figure 6: A node with four PIM stacks.

4. PIM PERFORMANCE MODEL

A key challenge for memory systems research is the
need for evaluating realistic applications with large data
sets that can be prohibitive to run on cycle-level sim-
ulators. This issue is exacerbated as PIM expands the
design space that must be explored. Therefore we per-
form our evaluations using a model that analyzes perfor-
mance on existing hardware and uses machine learning
techniques to predict the performance on future system
organizations [11].

The model is constructed by executing a sufficiently
large number of diverse kernels (the training set) on na-
tive GPU hardware and characterizing their execution
through performance counters. Each hardware parame-
ter that we are interested in scaling for future systems
is varied to identify the performance sensitivity of each
kernel to that hardware parameter. We then use a clus-
tering algorithm to identify groups of kernels with similar
scaling characteristics. Once the model is constructed,
we are able to run a new kernel at a single hardware
configuration, and use its performance counters as a sig-
nature to map it to one of the clusters formed during
model construction. The cluster identifies the scaling
characteristics of the kernel, which is used to predict the
performance for future machine configurations of inter-
est, including PIM. The accuracy of this approach has
been shown to be comparable to cycle-level models for
exploring the design space of key architectural param-
eters such as compute throughput and memory band-
width [11].

S. DEEP LEARNING ON MULTIPLE PIMS

The key challenge in implementing deep learning al-
gorithms on a system with multiple PIMs is partition-
ing the data among the memory stacks and dispatch-
ing the scoped compute kernels to the PIMs correspond-
ing to the data partitions to exploit the high memory
bandwidth available from each PIM to its local memory
stack. Due to the high parallelism and throughput re-
quirements of deep learning algorithms, we focus on the
GPU execution units of the host and PIM APUs.

5.1 Data Parallelism and Model Parallelism

We explore two approaches to parallelize deep learn-
ing models on multiple PIM GPUs: data parallelism and
model parallelism. In data parallelism, the input batch
of images is partitioned across PIMs. Each PIM GPU
gets a subset of the data and works on the full model.
In model parallelism, the neural network model is par-
titioned across PIM GPUs. Each GPU works on one
partition of the model using the full input batch.



The advantage of data parallelism is that each PIM
gets a copy of the model, allowing each one to operate
completely independently on its data without any inter-
PIM communication. This is often desirable in cases
where the model fits within the memory capacity of a
single stack and the capacity overhead of replicating the
model on all PIM stacks is acceptable. Further, by in-
creasing batch size, data parallelism can be made arbi-
trarily scalable and efficient. For example, if there are 8
PIMs and the batch size is 256, then each PIM gets 32 in-
put images which may result in low GPU usage. If we in-
crease the batch size to 1024, then each PIM can get 128
input images and higher GPU usage. However, increas-
ing the batch size can increase response time for latency-
critical prediction tasks and adversely affect convergence
rates in model training. Therefore, the batch sizes are
typically set to be hundreds. For example, AlexNet uses
a batch size of 128 and VGG nets [12] use 256. In this
paper, we evaluate batch sizes up to 1024.

The advantage of model parallelism is to enable train-
ing and prediction with much larger deep learning mod-
els. For example, COTS HPC system trains a network
with more than 11 billion parameters which requires
about 82 GB memory. Such a model is too large to
fit into one single node using data parallelism, and thus
needs to be partitioned using model parallelism. How-
ever, inter-PIM communication is inherent in model par-
allelism. As the model is partitioned across PIMs, each
PIM can only compute a subset of neuron activities.
They need synchronization to get the full neuron ac-
tivities. In Fig. [7} we show how to partition the RBM
example from Fig. 5| across two PIMs. PIM1 gets visible
unit vl and v2 while PIM2 gets visible unit v3 and v4.
When computing the neuron activities of h1l, h2, and h3,
PIM1 only computes the contributions from v1 and v2
and PIM2 only computes the contributions from v3 and
v4. However, the full activities come from all units in
the visible layer; therefore the contributions from PIM1
and PIM2 are summed together to generate the correct
result.
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Figure 7: Model Partitioning of the RBM exam-
ple shown in Fig. [5] across two PIMs.
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5.2 Convolutional Layer Parallelization

In deep learning models, conv layers cumulatively con-
tain most of the computation, e.g., 90% to 95%, but only
a small fraction of the parameters, e.g., 5% [13]. As we
focus only on the prediction phase of deep learning in
this study (i.e., there is no backward propagation and
no weights update) the two parallelization schemes re-
sult in the same amount of computation for conv lay-
ers. Suppose there are I input images, F' filters, and
the image size is S by S. With a stride of 1, the to-

tal number of convolutions is I x F' x S x S. For data
parallelism across N PIMs, each PIM is responsible for
(I/N) x F x 8 x S convolutions because input data is
partitioned. For model parallelism, each PIM is assigned
I x (F/N) x S x S convolutions because the set of fil-
ters is partitioned. Therefore, the amount of computa-
tion is the same for each PIM GPU no matter which
parallelization scheme is applied. Further, due to the
small size of the model parameter set, memory capacity
pressure is not a factor in conv layers. Therefore, for
simplicity, this paper only evaluate data parallelism on
conv layer. Given N PIM devices, the input batch of
images is evenly partitioned to N mini batches. Each
mini batch is assigned to one PIM and then propagates
forward independently.

5.3 Pooling Layer Parallelization

For the pooling layers, there are no model parameters.
Therefore, we can only apply data parallelism. However,
depending on the parallelization scheme applied on the
previous conv layer, the conv layer may have different
groupings of the same output resulting in different input
groupings to the pooling layer. This does not affect the
correctness of the application. For example, consider an
input to the previous conv layer with eight images and
four filters. In model parallelism across two PIM GPUs,
each PIM outputs eight images where each image has two
feature maps. In data parallelism, each PIM outputs
four images where each image has four feature maps.
Nevertheless, the total amount of computation for each
PIM stays the same for the subsequent pooling layer.

5.4 Fully Connected Layer Parallelization

In contrast to the conv layers, fully connected lay-
ers contain a small part of the computation, e.g., 5%
to 10%, but the majority of the model parameters, e.g.,
95% [13]. Fully connected layers can choose to deploy
whichever parallelization scheme was used in previous
layers. However, if the model is too large to fit into
each PIM’s memory, then model parallelism is required
to train and predict at that large scale. Therefore, we
evaluate both data and model parallelism on fully con-
nected layer. Please note that, by applying model paral-
lelism on fully connected layer, synchronization is needed
at the end. As shown in Fig. [7] hidden layer activities
from PIM1 and PIM2 need to be summed together to
get the correct hidden layer activities. In our implemen-
tation, this reduction across PIMs happens on host. The
host accesses each PIM’s memory, performs the reduc-
tion, and writes the results back to, for example, PIMO.
The other PIMs can then fetch the results from PIMO.

6. RESULTS

To show the potential of scaling deep learning algo-
rithms on multiple PIMs, we evaluate three representa-
tive layers: the convolutional, pooling, and fully con-
nected layers. We first run these layers with varying ap-
plication parameters on an AMD Radeon HD 7970 GPU
with 32 compute units and 3 GB device memory. During
each run, we profile and collect the performance coun-
ters of all kernels. We then scale the performance on the
native hardware to multiple desired host and PIM config-
urations applying the methodology described in Section

6.1 PIM configurations



Table 1: Host and PIM configurations

Host_4.160 Host_4-320 Host_4. 640 Host-8_320 Host_8.640 Host_8.1280 | 4PIM 8PIM
Number of CUs 32 32 32 64 64 64 64 128
Engine Frequency (MHz) 1300 1300 1300 1300 1300 1300 650 650
Total DRAM BW (GB/s) 160 320 640 320 640 1280 1280 2560
DRAM BW/stack (GB/s) 40 80 160 40 80 160 320 320
Number of DRAM stacks 4 4 4 8 8 8 4 8
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Figure 8: Convolutional layer results (normalized to Host_/_160 with filter size 3).

In our experiments, we set the memory bandwidth
to 320 GB/s and peak computation throughput to 650
GFLOPS for each PIM device. Two node organizations
are explored. The first node organization has a host
and four PIM stacks shown in Fig. [f] The second one
has a host and eight PIM stacks. The objective is to
compare the performance of deep learning parallelization
on multiple PIM devices against the performance of the
host GPU. For fair comparison, we set the peak FLOPS
of the host GPU equal to the aggregate peak FLOPS of
all PIM devices. The host accesses the memory stacks
at lower bandwidth than in-stack memory access from
the PIMs. Three host bandwidths are evaluated: 1/2
1/4, and 1/8 of the in-stack PIM bandwidth per memory
stack. However, the host can simultaneously access all
the memory stacks.

Table [1| shows the configurations we used for host and
PIM. In total, there are six host configurations; three
of them have four PIMs and the other three have eight
PIMs. The host configurations are named in the pattern
of Host_N_B where N is the number of PIM stacks and B
is the total memory bandwidth available to the host. For
example, Host_4_640 means this host has 4 PIM stacks
and 640 GB/s memory bandwidth in total. Two PIM
configurations are listed as 4PIM and 8PIM in the table.

6.2 Results on Convolutional Layer

We first explore data parallelism on conv layer. The
size of a single input image is 256 by 256 in width and
height. The number of channels per image is 16. The
number of images per input batch is 256. The number of
filters to 16. The depth of each filter is set to be 16 but
different filter sizes including 3, 5, 7, and 11 are evalu-
ated. We select these filter sizes because they were used
in stat-of-the-art deep learning models. For example,
AlexNet uses filter sizes 11, 5, and 3. VGG nets set the
filter size to be 3. The stride size is set to be 1 for all cases
for simplicity. For 4-PIM and 8-PIM configurations, the
input batch is partitioned into mini batches, taking the
data parallelism approach. Each PIM is assigned one
mini batch and compute the convolution independently.
For all host configurations, since there is only one GPU,
no data partition is needed.

Fig. [§| shows the normalized execution time for the
conv layer. Each of the four subfigures shows results

obtained using a particular filter size. In these sub-
figures, the Y-axis shows execution time normalized to
Host_4_160 with a filter size of 3. The X-axis lists the
different configurations: six host design points, 4-PIM
design, and 8-PIM design. When filter size is 3, the exe-
cution times of JPIM and 8PIM are slightly worse than
the Host_4_640 and Host_8_1280 respectively. However,
they do outperform the other host configurations. When
the filter size is increased to 5, 7 or 11, running conv layer
on multiple PIMs is faster than on all the host config-
urations. The observation fits our expectation because
larger filter size means more memory access per convo-
lution. The high memory bandwidth provided by PIM
stacks makes it beneficial to run larger convolutions on
PIM devices.

6.3 Results on Pooling Layer

The pooling layer is also evaluated with data paral-
lelism as it has very localized compute pattern and there
is no neural network model. We again use the single im-
age size of 256 width by 256 height in pixels with 16
channels. Batch size is set to 256. There are various
pooling operations used in deep learning applications.
However, their computational and memory access char-
acteristics are very similar. Hence we pick the commonly
used max pooling for our evaluation. The max pooling
operation is performed using a 2D window at each chan-
nel of the input image. Large filers are typically not used
in pooling because too much information can be lost. For
example, AlexNet uses a filter size of 3 for pooling, VGG
nets use 2 as the filter size, and a filter size of 5 was used
in COTS HPC system. As a result, we evaluate filter
sizes 2, 3, 4, and 5. The latter two are added to evaluate
how the performance changes as the filter size increases.
The stride size is set to the filter size for simplicity.

Fig. [0] shows the normalized execution time of the
pooling layer using different filter sizes on the proposed

configurations. We pick the execution time from Host_4_160

using a filter size of 2 as the baseline for normalization.
When filter size is small (e.g., 2), the performance of mul-
tiple PIM stacks is competitive with the host. As the fil-
ter size increases, more significant performance improve-
ment is observed on the two PIM configurations. This
observation is similar to conv layer results as it also ben-
efits from the high memory bandwidth of the PIMs. As
filter size increases, more memory accesses are needed



filter size: 2 filter size: 3

filter size: 4 filter size: 5

o 1.0 1.0 1.6 2.5
'E 1.4
2.

£ 0.8 0.8 12 0|

2

gos 0.6 1.0 1.5

X 0.8

- 0.4 0.4 0.6 1.0

& 0.4

go.2 0.2 : 0.5

£ 0.2

o

zo'oeee‘heee@ o'oeeo@eee@ o'%eo@eec‘h 0'%00@000@
RO & & 4‘9 R RO 03: Ry RO & P& 4‘? Ry RO & P& s"?’ R
7 %7 D7 B "7 %7 B D B/ S owl s D/ @7 B %/ s D O/

X7 Ko xr 0 s X Ker 4 @/ Y 24

PSS VAN Y
A4 S P-4
GRS GRS

R TR

SIS S o0
2 2 2 -2
CRC R RS

R TR
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for each pooling operation.

6.4 Results on Fully Connected Layer

We evaluate both data and model parallelism on fully
connected layer. We first compute the memory consump-
tion per PIM for these two parallelization schemes. The
results are shown in Fig. In this figure, the solid
lines are for data parallelism and the dashed lines repre-
sent model parallelism. The red lines are for the 4-PIM
configuration and the green lines are for the 8-PIM con-
figuration. Different markers correspond to different in-
put batch sizes. This figure shows that data parallelism
consumes substantially more memory per PIM for one
fully connected layer. Our evaluation shows that varying
the number of PIMs or batch sizes does not change the
memory consumption significantly for data parallelism,
as the large number of model parameters in the fully
connected layer consumes most of the memory and is
replicated on each memory module. However, in model
parallelism, the model parameters are partitioned among
the memory modules, resulting in moderate growth in
memory capacity demand with both model size and in-
put batch size. Further, with model parallelism, adding
more PIMs reduces the memory pressure per PIM. In
theory, if the batch size is large enough, model paral-
lelism can consume similar amount of memory as data
parallelism. However, as batch size is typically small in
reality (e.g., 128 or 256), model parallelism is preferred
in fully connected layer due to lower memory consump-
tion.

We then evaluate the execution time for both data
and model parallelization schemes using 4-PIM and 8-
PIM configurations and compare them with host execu-
tions. Fig. records the obtained results, normalized
to Host_4_160 with a batch size of 128. The four subfig-
ures correspond to four different batch sizes: 128, 256,
512, and 1024. The layer size is fixed to be 4096 which
was used in AlexNet and VGG nets. For each subfigure,
the Y-axis records normalized execution time and the
X-axis lists different configurations. Please note that,
4PIM _data means data parallelism on 4-PIM configu-
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Figure 11: Memory consumption per PIM for
data parallelism and model parallelism on fully
connected layer.

ration. Similarly, 8PIM_model stands for model paral-
lelism on 8-PIM configuration. Because synchronization
is needed in model parallelism, we use different colors
to represent different components of execution time in
4PIM_model and 8PIM_model. Purple represents OpenCL
kernel execution time on PIM GPU, which excludes the
reduction procedure that runs on the host GPU. The
green segment represents the reduction across PIMs per-
formed on host GPU, including memory access to all
PIM stacks and writing the final results back to the first
PIM in the configuration (PIMO). Yellow represents the
time that all the other PIMs copy the reduction result
from PIMO to their local memory stacks. Please note
that for PIM to PIM memory copy, we assume the mem-
ory bandwidth is 1/8 of the local in-stack memory access
bandwidth. Therefore, for remote PIM memory access,
the bandwidth is configured at 40 GB/s. This figure
shows that model parallelism performs better than data
parallelism and is comparable to host execution when
batch size is small, e.g., 128. However, when we increase
the batch size, model parallelism loses its advantage to
data parallelism due to synchronization cost. However,
with large batch sizes, both data and model parallelism
on multiple PIM stacks outperform host execution.



7. CONCLUSION AND FUTURE WORK

In this paper, we evaluate the performance of deep
learning models on PIM devices. We study three types
of layers from CNN and DBN, which are two of the
most popular forms of deep learning models. The fully
connected layer is parallelized across multiple PIM de-
vices using data parallelism, which partitions the input
set, and model parallelism, which partitions the model
parameter set. Our results show that memory capac-
ity requirements of data parallelism increase much more
rapidly than for model parallelism as the model size in-
creases. Further, we show that model parallelism pre-
forms better at small input batch sizes while data paral-
lelism performs better as input batch size increases. We
parallelize convolutional and pooling layers across mul-
tiple PIM devices using data parallelism. We also vary
key parameters for each of the layers over commonly used
ranges of values.

Our results show that PIM achieves competitive or
better performance compared to a high-performance host
GPU across a variety of system and model parameter
ranges. This is an extremely promising result as this al-
lows deep learning models to be ported to PIM with no
loss of performance and yet realize the significant energy
efficiency improvements that have been demonstrated for
PIM in past studies. In the future, we plan to perform
detailed evaluations of energy efficiency of deep learning
on PIM.
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