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Abstract—Malicious applications have become increasingly
numerous. This demands adaptive, learning-based techniques for
constructing malware detection engines, instead of the traditional
manual-based strategies. Prior work in learning-based malware
detection engines primarily focuses on dynamic trace analysis
and byte-level n-grams. Our approach in this paper differs in
that we use compiler intermediate representations, i.e., the call-
graph representation of binaries. Using graph-based program
representations for learning provides structure of the program,
which can be used to learn more advanced patterns.

We use the Shortest Path Graph Kernel (SPGK) to identify
similarities between call graphs extracted from binaries. The
output similarity matrix is fed into a Support Vector Machine
(SVM) algorithm to construct highly-accurate models to pre-
dict whether a binary is malicious or not. However, SPGK is
computationally expensive due to the size of the input graphs.
Therefore, we evaluate different parallelization methods for CPUs
and GPUs to speed up this kernel, allowing us to continuously
construct up-to-date models in a timely manner. Our hybrid
implementation, which leverages both CPU and GPU, yields the
best performance, achieving up to a 14.2x improvement over our
already optimized OpenMP version. We compared our generated
graph-based models to previously state-of-the-art feature vector
2-gram and 3-gram models on a dataset consisting of over 22,000
binaries. We show that our classification accuracy using graphs
is over 19% higher than either n-gram model and gives a false
positive rate (FPR) of less than 0.1%. We are also able to consider
large call graphs and dataset sizes because of the reduced
execution time of our parallelized SPGK implementation.

I. INTRODUCTION

If one attends any cybersecurity conference or security
vendor showcase, it seems as if the industry is in agreement
that data breaches cannot be stopped. They say it is not a
matter of “if” a company will be breached, but “when” it will
be breached. One major reason for the seemingly unstoppable
data breaches is that security companies have failed to deliver
products that detect and block all malware. Data breaches
have become prevalent because bad actors have embraced
automation to construct malware. Automation enables bad
actors to create so much malware that it is estimated that tens
of thousands of new malware variants are being created every
hour [1]. In contrast, most security companies that develop
products to detect malware still construct them manually [20].
This antiquated method of constructing malware detection

systems cannot keep up with the massive amounts of new
malware variants created every day.

The work presented in this paper aims to fundamentally
change the way in which malware detection engines are
constructed. This paper proposes to replace traditional hand-
crafted malware detection rules with a self-tuning malware
detection engine that adapts its detection rules automatically
to match the characteristics of the latest targeted attacks.
This will dramatically shorten the cycle from malware dis-
covery to malware rules construction and deployment. Our
system involves using graph-based compiler representations
of binaries and analyzing these graphs with machine learning
algorithms called graph kernels that take as input graphs.
These graphs can be extremely large and complex as shown
in Figure 1. Thus, while graph kernel algorithms can be
effective at learning the subtle differences between goodware
and malware, they are computationally expensive because the
size of the graphs that we are evaluating. Therefore, we need
to parallelize these algorithms in order to make them viable.

The first step of our automatic-tuning malware detection
engine consists of using Radare2 1 to extract assembly code
from decompiled binaries. We then use this assembly code to
build function call graphs for each application, and we use our
parallelized graph kernels to examine the similarities between
these call graphs. Specifically, we propose a hybrid parallel
implementation of the Shortest Path Graph Kernel (SPGK)
that makes use of both the CPU and Graphics Processing
Unit (GPU) to efficiently perform these comparisons. The
output of the SPGK is a similarity matrix that can be used as
input to a Support Vector Machine (SVM) algorithm, which
builds the classifier. This classifier is used to identify whether
a given application is malicious, and if it is malicious, it
identifies the family of malicious software it is a variant
of. This classifier can be retrained regularly in order to
ensure the classifier utilizes the latest known malware. Our
implementation can achieve a classification accuracy of 92%
and performance that is up to 14x faster than the optimized
OpenMP implementation. We evaluate our framework by

1RADARE2: http://www.radare.org/r/



Fig. 1: The graph above corresponds to the call graph of the malware
SmsAgent, which is a Java program that targets Android mobile
devices. This malware has 20K functions, but we only show the
7K connected functions.

examining both the classification accuracy on different sized
datasets and the performance of various different CPU and
GPU parallel implementations of SPGK. We show that using
a hybrid implementation that takes advantage of parallelism
on both the CPU and GPU leads to the best performing
implementation. Our hybrid implementation of SPGK allows
us to examine large datasets and call graphs, yielding high
classification accuracy and very low false positive rates. The
main contributions of this paper are the following:

1) We present a highly-accurate and adaptive malware
detection engine that leverages a support vector machine
to classify binaries based on call graphs constructed
from the reverse-engineered assembly code.

2) We show that using graph-based representations and
machine learning algorithms that take graphs as input
achieves over 19% higher accuracy in detecting malware
than traditional methods that focus primarily on flat
feature vectors.

3) We accelerate the creation and use of the SVM’s clas-
sification model using a hybrid (CPU + GPU) parallel
implementation of the Shortest Path Graph Kernel.

The rest of this paper is outlined as follows: Section II de-
scribes our proposed platform which uses a machine learning
algorithm to classify applications, and Section III discusses the
call graph representation we use to analyze the decompiled
code extracted from binaries. Section IV describes various
parallel CPU and GPU implementations of the Shortest Path
Graph Kernel (SPGK) used to construct the kernel matrix that
the SVM uses to construct a model. Section V describes our
experimental framework and presents our results. Section VI
discusses related work, and we conclude in Section VII.

II. MALWARE ANALYSIS OF GRAPHS INVOLVING CALLS

In this section, we present the Malware Analysis of Graphs
Involving Calls (MAGIC) model. We discuss how a dataset
of binaries are decompiled and represented as call graphs,
how we use our Shortest Path Graph Kernel (SPGK) to
detect similarities in these call graphs, and how the resulting
kernel matrix plays a role in generating our machine learning
classification model. The model produced during training,
as shown in Figure 2a, allows us to classify a program as
malicious or benign. An extension of this model allows us to
classify the family of malware.
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Fig. 2: Figure 2a shows the workflow toward construction of a
machine learning model generated during MAGIC’s training phase.
Figure 2b shows a flow diagram demonstrating the classification of
an unseen binary application used during MAGIC’s evaluation phase.

A. Feature Extraction and Representation

When monitoring a system for malicious activity in real
time, source codes of running applications are generally not
available. In most cases, applications are simply downloaded
and run as binary executables. Therefore, there is a need to
decompile binaries for further analysis. In this paper, we use
Radare2, a cross-platform reverse engineering framework that
is capable of disassembling binaries that run on many different
architectures. As shown in Figure 2, Radare2 produces a
call graph of the application’s functions, and it extracts the
assembly code for each of these functions. This allows us to
examine structural qualities of an application, i.e., the caller-
callee relationship of the application’s functions, as well as
the types of instructions used in each function. One major
difference between conventional call graphs and the way we
present call graphs is the way nodes are labeled. Each function
is represented by a feature vector corresponding to a histogram
of all the instructions in the function. These feature vectors
allow us to represent the total number of instructions in a
given function call.



Combining the feature vectors and call graphs gives us a
very expressive representation of an application, as well as
its content. We then use machine learning algorithms, called
graph kernels, to construct similarity scores between pairs
of call graphs. Specifically, we use the Shortest Path Graph
Kernel to compare our call graphs.

B. Shortest Path Graph Kernel

A key component in our framework is the SPGK algorithm
shown in Figure 2. The Shortest Path Graph Kernel (SPGK)
algorithm is straight-forward. It takes as input a collection of
graphs and determines how similar they are to each other. The
output of this algorithms is a kernel matrix, which corresponds
to the pairwise similarity values of each pair of graphs in the
dataset. In order to run SPGK on a graph, we must first use
the Floyd-Warshall algorithm to convert the graph into a fully
connected, all-pairs shortest path graph. Since the computation
of the similarity of each pair of graphs are not data dependent,
we can greatly accelerate this algorithm using parallelism, as
discussed in Section IV. Since the output of this graph kernel
will be used as the input to an SVM algrithm, parallelism will
be integral in enabling us to regularly train on the latest known
malware [8]. This will keep the model current.

III. COMPILER REPRESENTATION

Our framework differs from traditional malware detection
systems because it leverages structured representations of
binaries that are obtained through disassembly. More precisely,
our framework utilizes an open-source disassembler, Radare2,
to create an high-level representation of the code contained in
the binary. Based on this representation, MAGIC constructs a
call graph (CG) of the binary which is then labeled based on
a histogram of instructions in each function.

A. Disassembly with Radare2

Given a executable file, Radare2 produces a list of routines,
where each routine is a list of blocks and each block contains
a list of instruction. In addition to the offset, opcode, and
operands, Radare2 associates to each instruction one of 53
categories, listed in Table I.

switch case call ucall jmp ujmp cjmp ucjmp
uccall ccall ret cret
mov cmov swi length cmp acmp add sub
abs mul div shr shl cpl sal sar
or and xor crypto nor not
lea xchg ror rol mod cast
leave store load upush pop push new io
null nop unk trap ill

TABLE I: This table shows the 53 different categories of instructions
extracted by Radare2. There are four major categories that the
extracted instructions correspond to. In ascending order they are
grouped by control flow, arithmetic, memory, and miscellaneous.

B. Construction of the Call Graph

Formally, a call graph (CG) can be represented as G =
〈V,E〉, where V is a set of nodes and each node v ∈ V
represents one of the functions. E ⊆ V × V denotes the
directed edges, where an edge ei,j = (vi, vj) represents a call

from the caller function represented by vi to the callee function
represented by vj . In our CG representation, each vertex is
labeled with a feature vector representing a histogram of the
instructions in the function. Figure 3 shows the transformation
flow from binary representation (assembly) to our graph-based
representation with extracted feature vectors for each function.

foo:
    push   %rbp
    mov    %rsp,%rbp
    mov    %edi,-0x4(%rbp)
    cvtsi2sdl -0x4(%rbp),%xmm0
    movsd  0x158(%rip),%xmm1
    addsd  %xmm1,%xmm0
    unpcklpd %xmm0,%xmm0
    leaveq
    retq
main:
    push   %rbp
    mov    %rsp,%rbp
    push   %rbx
    sub    $0x10,%rsp
    movl   $0x0,-0xc(%rbp)
    jmp    400514 <main+0x3e>
    mov    -0xc(%rbp),%ebx
    mov    -0xc(%rbp),%eax
    movsd  0x601020(,%rax,8),%xmm0
    cvttss2si %xmm0,%eax
    mov    %eax,%edi
    callq  4004b4 <foo>
    movslq %ebx,%rax
    movsd  %xmm0,0x601020(,%rax,8)
    addl   $0x1,-0xc(%rbp)
    cmpl   $0x3,-0xc(%rbp)
    jle    4004e8 <main+0x12>
    add    $0x10,%rsp
    pop    %rbx
    leaveq
    retq
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Fig. 3: This figure shows the workflow from binary representation
to the graph-based representation with extracted features. An input
program is processed through Radare2 to generate grouped assembly
instructions. Our analysis parses the Radare2 output to extract his-
tograms of instructions per function, then outputs the feature vectors
and the adjacency matrix of the call graph.

The assembly provided by Radare2 is analyzed to build
a CG. In the call graph, the nodes represents the binary’s
functions, while the directed edges represent the caller-callee
relationship between functions. For each functions in the as-
sembly, we count the number of occurrences of each category
of instruction (see Table I). This form a histogram of 53
elements for each function, this histogram is used to label
the corresponding node.

IV. GRAPH KERNEL PARALLELIZATION

In order to develop an effective malware detection engine,
we contend that using graphs to represent and analyze the
structure of applications is more effective than previous state-
of-the-art methods. Most prior methods of malware detection
only leverage flat feature vectors and do not consider the
graph-based structure of applications [2], [4], [7], [12], [17].
Previous work has shown that using graph-based representa-
tions of data as input to machine learning algorithms yields
more accurate classification results compared to the use of flat
feature vectors [14].

A. Background

In this section, we focus on accelerating the Shortest Path
Graph Kernel (SPGK), as originally proposed by Borgwardt
et al. [6]. Research has shown that it is highly competitive
in terms of accuracy and running time, when compared with
other kernel algorithms [19]. To the best of our knowledge, no
other work has addressed the parallelization of graph kernels
when applied to the problem of malware detection. Note that
the sequential version of this algorithm runs in O(n4), which
makes it practical only for small graphs. Parallelization will
allow us to utilize SPGK to process large graphs, and large
datasets of graphs, in a reasonable amount of time enabling
continuous training on current data.



B. Shortest Path Graph Kernel

The Shortest Path Graph Kernel (SPGK) was proposed by
Borgwardt and Kriegel [6]. This kernel counts the number of
shortest paths of the same length having similar start and end
vertex labels in two input graphs. One of the motivations for
using this kernel is that it avoids the problem of “tottering”
found in graph kernels that use random walks [13]. Tottering
is the act of visiting the same nodes multiple times thereby
artificially creating high similarities between the input graphs.
In shortest path kernels, vertices are not repeated in paths, so
tottering is avoided.

Given a graph G = 〈V,E〉, a shortest path graph is a graph
S = 〈V ′, E′〉, where V ′ = V and E′ = {e′1, . . . , e′m} such
that e′i = (ui, vi) if the corresponding vertices ui and vi are
connected by a path in G. Each edge in the shortest path graph
is labeled with the shortest distance between the two nodes in
the original graph.

Once the shortest path graph is computed for each of our
graphs, we can use each shortest path graphs to compute
similarity between two graphs using the Short Path Graph
Kernel (SPGK) algorithm. SPGK for two shortest path graphs
S1 = 〈V1, E1〉 and S2 = 〈V2, E2〉 is computed as follows:

KSPGK(S1, S2) =
∑

e1∈E1

∑
e2∈E2

kwalk(e1, e2) (1)

where kwalk is a kernel for comparing two edge walks. The
edge walk kernel kwalk is the product of kernels on the vertices
and edges along the walk. It can be calculated based on the
start vertex, the end vertex, and the edge connecting both. Let
e1 be the edge connecting nodes u1 and v1 of graph S1, and
e2 be the edge connecting nodes u2 and v2 of graph S2. The
edge walk kernel is defined as follows:

kwalk(e1, e2) = knode(u1, u2) · kedge(e1, e2) · knode(v1, v2)
(2)

where knode and kedge are kernel functions for comparing
vertices and edges, respectively. in the following sections.

Pseudocode for a naive implementation of the Shortest Path
Graph Kernel is presented in Algorithm 1. Given two input
graphs g1 and g2, lines 2-7 loop over the shortest path matrices
to find all pairs of paths. Line 8 calculates the kedge and lines
10-11 calculate knode. Line 12 calculates kwalk and computes
the summation.

C. Fast Computation of the Shortest Path Graph Kernel

An implementation of the Shortest Path Graph Kernel
(Algorithm 1) has three issues that slow down its performance.
First, four for loops and two if statements slow down the
algorithm’s performance. Second, there is potential redundant
computation performed by knode. Third, there is a drawback in
the random memory access pattern in Algorithm 1. Sequential
memory access is preferred on the CPU and, especially for
SIMD architectures like the GPU.

To address the issues of Algorithm 1, we propose a novel
way to calculate the shortest path graph kernel. We refer to
this as the Fast Computation of Shortest Path Graph Kernel

Algorithm 1 Shortest Path Graph Kernel Algorithm
1: K ← 0
2: for i, j = 0→ n node[g1] do
3: w1 ← sp mat[g1][i][j]
4: if i 6= j AND w1 6= INF then
5: for m,n = 0→ n node[g2] do
6: w2 ← sp mat[g2][m][n]
7: if m 6= n AND w2 6= INF then
8: kedge ← EdgeKernel(w1, w2)
9: if kedge > 0 then

10: k1
node ← NodeKernel(g1, g2, i,m)

11: k2
node ← NodeKernel(g1, g2, j, n)

12: K+ = k1
node ∗ kedge ∗ k2

node

13: end if
14: end if
15: end for
16: end if
17: end for
18: return K

(FCSP ). In this method, the calculation of the shortest
path graph kernel is divided into two main components: 1)
calculating all possible instances of knode into a vertex kernel
matrix and 2) calculating all required values for kwalk. Note
that the kernel functions knode and kedge used to calculate the
similarity between a pair of nodes and a pair of edges can be
different from application to application. In our experiments,
we use the Gaussian kernel 4 and the Brownian Bridge
kernel 3, which are positive semidefinite [18].

kbrownian(e1, e2) = max(0, c− |e1 − e2|) (3)

kgaussian(x, y) = exp(−
n∑

i=1

(xi − yi)2

σ
) (4)

For the first component, we call V ertexKernel, we pro-
ceed as follows. Assuming that the order of g1 is m and the
order of g2 is n, we create a matrix Vm×n for storing the knode
values, where every entry is the value of knode(u, u′) for u
being a node of g1 and u′ being a node of g2. By using this
scheme, the redundant computation of knode is eliminated.

The second component, we call WalkKernel, is respon-
sible for calculating kwalk, and takes advantage of a new
representation of the shortest path adjacency matrix. The
new representation is composed of three equally-sized arrays.
The length of these arrays is the number of edges in the
corresponding matrix. The three arrays store the weight of
the edge, the index of the starting vertex, and the index of the
ending vertex. This representation is inspired by the formats
of storing a sparse matrix on GPUs [5], which can solve the
low memory utilization problem for sparse matrices access.
By applying this transformation, the two if statements in
Algorithm 1 can be removed and four for loops are reduced
to two.

The pseudo-code of our new method is presented in
Algorithm 2. Given input graphs g1 and g2, function
V ertex Kernel calculates all possible instances of knode



sequentially and stores them in a matrix V for later access.
Function Walk Kernel takes advantage of the three 1D
arrays converted from shortest path matrix, which creates
more sequential memory access and less branch divergence.
It calculates all kwalk computation and sums them up as the
final similarity between two input graphs.

Algorithm 2 Fast Computation of Shortest Path Graph Kernel
1: function VERTEX KERNEL
2: for i = 0→ n node[g1] do
3: for j = 0→ n node[g2] do
4: V [i][j]← NodeKernel(g1, g2, i, j)
5: end for
6: end for
7: end function
8: function WALK KERNEL
9: K ← 0

10: for i = 0→ n node[g1] do
11: (x1, y1, w1)← edge g1[i]
12: for j = 0→ n node[g2] do
13: (x2, y2, w2)← edge g2[j]
14: kedge ← EdgeKernel(w1, w2)
15: if kedge > 0 then
16: k1

node ← V [x1][x2]
17: k2

node ← V [y1][y2]
18: K+ = k1

node ∗ kedge ∗ k2
node

19: end if
20: end for
21: end for
22: return K
23: end function

D. FCSP running on Multi-Core CPU

In our experiments we evaluate the calculation of a kernel
matrix from a given input dataset of n graphs. Here, we present
two different schemes of FCSP parallelization on multicore
CPUs. Both schemes are implemented using OpenMP. In the
first scheme, OpenMP Graph, we parallelize the FCSP
computation for a single pair of graphs. The second scheme,
OpenMP Matrix parallelized the kernel matrix calculation.

E. FCSP running on the GPU

FCSP is a suitable application for parallelization. In FCSP,
branches are removed, no load balancing issue exists between
GPU threads, and the coalesced memory access is satisfied.
We are therefore able to achieve significant speedups with this
approach.

In our GPU implementation, the FCSP is divided into
three GPU kernels. The first one is V ertex Kernel. It calcu-
lates all possible instances of knode and stores them in a matrix
for later access. The second kernel is Walk Kernel, which
calculates all the required values for kwalk and stores them in
a matrix or array. The last component is Reduction Kernel,
which sums up all kwalk values into a small array which is
copied to CPU memory and summed up as the final similarity.

For the first component, named V ertex Kernel, we pro-
ceed as follows. Assuming that g1 has m vertices and g2
contains n, we allocate a buffer Vm×n on the GPU memory
for storing the knode value. A GPU thread grid is created,

where each thread calculates an entry of V . Since we remove
the divergence, all threads in this component are running in
parallel.

The second component, named Walk Kernel, is respon-
sible for calculating kwalk. Given two input graphs, suppose
the number of paths in g1 is a and g2 has b paths. We assume
g1 has more paths than g2 without a loss of generality. For
the graph with n nodes, the paths can vary from 0 to n2.
Therefore, the domain decomposition for GPU threads can be
challenging. In our implementation, we assign a GPU thread
to one path in g1. This thread will loop through all the b
paths in g2, calculate the corresponding kwalk values, and sum
them up. An array of a elements will be returned at the end.
The calculation of kwalk requires knode, that has already been
calculated and cached.

The third GPU kernel is Reduction Kernel. A reduction
is performed on a elements generated by the Walk Kernel.
Upon completion, a small resulting array is copied back to the
CPU. Finally, the similarity between the graphs is calculated
by adding up all the values in the array.

The biggest advantage of parallelizing FCSP on the
GPU is efficiency. There is no execution divergence between
threads because of the shortest path matrix conversion in
V ertex Kernel and Walk Kernel. The sequential coa-
lesced memory access is satisfied in all three kernels.

In our GPU implementation, the last kernel is the
Reduction Kernel. A small array is copied to the CPU and
summed up for calculating the final similarity. This memory
copy from GPU to CPU and computation on CPU may not
require much time. However, given n input graphs, the GPU
method needs to be called n2 times. As a result, there may
be considerable time spent on memory transfers and CPU
computation. Our experiments show that the portion of time
spent on the reduction memory transfer can vary from 6%
to 50% of the total computation, as illustrated in Figure 4.
Fortunately, this part can be hidden by overlapping it with
GPU computation. When the reduction kernel completes,
we initiate a non-blocking memory transfer. We then assign
another pair of graphs to the V ertex Kernel. As the memory
transfer is asynchronous it can be overlapped with the next
V ertex Kernel execution. When V ertex Kernel com-
pletes we initiate a non-blocking execution of Walk Kernel
and the CPU accumulates the reduction result array to obtain
the similarity result while the GPU is executing. Our experi-
ments show this scheme can hide most of the time spent due
to memory transfers.

F. Hybrid Implementation - Combining CPU and GPU

From our experiments, we observed that the implementation
with the best performance varied depending on different
datasets. When the graphs were small, the CPU implemen-
tations beat all the GPU implementations. However, when the
graphs are large, the GPU performed best. The experiments
show that the computation/communication overlapped imple-
mentations always performed better than the ones without
overlapping. Combining a CPU/GPU implementation seemed



Nodes Edges Shortest Path
Min Max Avg Max Avg Max Avg

6K 10 19 13 28 11 60 14
12K 10 44 20 139 16 205 23
21K 10 399 56 2,542 45 25,311 110
22K 10 4,841 81 2,615 86 62,961 371

TABLE II: This table shows the statistics for our four datasets. The
first column gives the approximate data set size. The second and third
columns show statistics for the nodes and edges of the original graphs.
The fourth column shows the statistics for paths in the shortest path
graphs.

to be a good idea. We hypothesize that many real world
datasets have graphs of a variety of different sizes whose
processing can be improved by partitioning the datasets to
take advantage of the heterogeneous environment. So in our
Hybrid implementation, we first set a threshold T1 for aver-
age graph size in the input dataset. If the average graph size is
smaller than T1, then we use OpenMP Matrix to calculate
the full kernel matrix. Otherwise, we set another threshold T2
for graph size to decide graphs that should be run on the CPU
versus the GPU. When the number of shortest paths in both
input graphs are smaller than T2, we use OpenMP Graph to
calculate the similarity. Otherwise, the GPU overlap is used.
Additionally, in our Hybrid implementation we compress
the input graphs using the Compressed Row Storage (CRS)
format because we observe that the labels in our graphs are
usually sparse. By adapting the CRS format, we are able to
significantly reduce the average dimension of vertex labels by
eliminating all zero elements. Consequently, the computation
time is greatly decreased.

V. EVALUATION AND RESULTS

This section discusses the datasets and the computational
performance results and machine learning accuracy of our
different implementations.

A. Binary Sources

We have 37,176 malicious applications classified using
Reversing Labs’ [16] A1000 Cloud Analysis and 14,706
instances of benign applications (goodware). The benign ap-
plications were collected from a Windows 10 system where
the 300 most popular applications available from Choco-
latey [15], a command-line based application installer, were
installed. These binaries are processed by MAGIC’s pipeline
(Section II). MAGIC utilizes Radare2 to extract the call graph
of each application.

Our goal is to perform the construction of machine learning
models in under a few hours. We determined thresholds to
build datasets of call graphs that meet this criteria. SPGK’s
complexity is the product of the number of shortest paths in
each graph. However, the all-pairs shortest path problem is
solved in O(V 3) in the general case, where V is the number
of nodes. Because we want the selection of graph to be fast, we
only consider the number of nodes and the number of edges
for our selection criteria.

In order to evaluate the scalability of our proposed model,
we measured its performance on datasets of varying sizes.

GPU 1D OpenMP HybridOverlap Matrix Graph

6K 1.58 h 40.52 m 1.01 m 3.19 m 4.65 s
0.01x 0.03x 1.0x 0.35x 14.2x

12K 9.36 h 5.61 h 10.96 m 20.48 m 52.57 s
0.02x 0.03x 1.0x 0.53x 12.5x

21K memory
exhausted

4.55 h 5.50 h 50.37 m
1.0x 0.83x 5.42x

22K 6.51 h 12.24 h 2.47 h
1.0x 0.53x 2.63x

TABLE III: Comparing similarity matrix computation time for each
dataset. Runtimes (h: hours, m: minutes, s: seconds) are presented for
each implementation. Below each runtime we give speedup compared
to the best OpenMP (OpenMP Matrix) implementation is shown.
VRAM limitation was exceeded for our larger datasets when only
running on the GPU.

Table II presents statistics about the four datasets we con-
structed. They are labeled based on the approximate number
of call graphs they contain. The dataset was constructed with
the following constraints:
• 6K dataset – nodes ≥ 10 and nodes < 19
• 12K dataset – nodes ≥ 10 and nodes < 45
• 21K dataset – nodes ≥ 10 and nodes < 400
• 22K dataset – nodes ≥ 10 and edges < 3000

For the last dataset we used a limit on the number of edges
instead of the number of nodes because we were reaching the
point at which the average number of shortest-paths (which
our selection method is not aware of) was becoming too large
for our implementation to handle under the time constraint.

B. Computational Performance Results

We evaluated our framework on a heterogeneous architec-
ture machine with an Intel i7-5860K CPU, 32GB DDR4 @
2133MHz, and dual NVIDIA GTX 970s. Table III presents
the runtime of different implementations of SPGK for the four
datasets. Figure 4 illustrates GPU utilization while processing
the 6K and 12K datasets. It was not possible to process the
largest datasets (21K and 22K) using the GPU version of
SPGK because of memory exhaustion. Despite these limita-
tions, our hybrid implementation outperforms the OpenMP
implementation by considering the GPU for certain compu-
tations. This hybrid implementation offloads computation to
the GPU if there are more than 125 shortest path edges in
the graphs that are being compared. The GPU implementation
never performs as well as any OpenMP implementation be-
cause of resource underutilization. The GPU is underutilized
for any graph that has a shortest path edge count smaller than
the average number of shortest paths for all graphs. There is
not enough computation to be done for each thread to take
advantage of the massive gains achievable with the increased
throughput of the GPU. The overlap version of the GPU
implementation helps reduce the execution time by up to a
factor of 14.2x.

The OpenMP Graph implementation does not perform
as well as the OpenMP Matrix implementatio. By making
use of both the CPU and the GPU, the hybrid implementation
achieves a speed up of 2.63x on our largest dataset when
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Fig. 4: This figure highlights the execution time comparison for
the GPU executions of the 6K and 12K datasets. The overlap
kernels outperform their corresponding original implementations by
overlapping data transfer with computation. The implementation’s
ability to scale well based on the dataset size is not supported with
the execution results – the 21K and 22K dataset is unable to be run
only on the GPU due to memory exhaustion.

Number of Classes
Features Metric 2 33

SPGK
Accuracy 91.02% 90.80%

FPR 00.15% 00.24%
FNR 20.08% 20.53%

2-grams
Accuracy 70.31% 69.65%

FPR 13.59% 12.96%
FNR 49.94% 54.38%

3-grams
Accuracy 71.99% 70.71%

FPR 10.75% 11.43%
FNR 49.71% 54.16%

TABLE IV: This table gives accuracy, false positive, and false nega-
tive rates for the different characterization types. We consider either
two classes (goodware and malware) or multiple classes (goodware
and types of malware).

compared to the best OpenMP implementation. This efficient
runtime is possible due to the simple heuristic based on the
shortest path size to determine which implementation to use,
and it allows us to train our classifier on larger sets of data
given a fixed time frame, ideally resulting in a more accurate
model. It is worth noting that increased bandwidth is necessary
for comparing larger graphs.

C. Machine Learning Accuracy

After model construction, we feed the resulting graph
similarity matrix into a SVM learning algorithm to generate
a model. We evaluate how our model performs when char-
acterizing executable binaries for the purpose of detecting
and identifying malware. We performed the machine learning
experiments on the 22K dataset.

1) Baseline: We compare our accuracy results against N-
grams of the bytes in the binaries. N-grams are histograms of
all the sequences of N bytes in the binary. We consider 2-
grams and 3-grams of the bytes of each binary. In both cases,
we build a feature vector of the 10,000 most frequent N-grams.
These feature vectors are then used to build an SVM model
(C = 100, Radial Basis Function kernel with gamma = 100).

2) Accuracy: In Table IV, we present the summary of our
machine learning experiments. We evaluated all three set of

features for two classification problems. The first problem uses
the model to classify binaries as either goodware or malware
without distinction between different strains of malware. The
second problem requires the model to classify binaries as
goodware or one of the 32 different strains of malware in
the dataset.

For each type of model we used 5-folds cross-validation
(training on 80% of the dataset and testing on 20% of the
dataset, five times to have each fold used as test). We use three
metrics to evaluate the resulting model: classification accuracy,
number of false positives, and number of false negatives [23].
• Accuracy: Percentage where binaries are correctly iden-

tified as goodware or malware.
• False Positive Rate (FPR): rate where goodware is pre-

dicted as malware
• False Negative Rate (FNR): rate where malware is pre-

dicted as goodware
These three metrics tell us different stories, and models can

be tuned to favor the desired metric. In the case of malware
detection, accuracy is the primary metric, but minimizing the
number of false positives is also important because we if
we flag too many good applications as malicious this can be
disruptive to the user. Additionally, too many false positives
can cause the user to dismiss the detection of real malware.

Table IV shows that comparing binaries using call graphs
and the shortest path graph kernel outperforms 2-gram and
3-gram of the bytes of the binaries. First, we look at the
two classes problem. The accuracy of the SPGK model is
19.03% greater than 3-gram (which outperforms 2-gram by
1.68%). Second, the SPGK model has a FPR more than 2
order of magnitude lower than 2-gram and 3-gram on the same
problem. Third, the accuracy of the 2-gram and 3-gram models
decrease by 0.66% and 1.28% respectively when applied to the
multi-classes problem compare to the two-classes problem. By
comparison, the SPGK model only loses 0.22% accuracy when
working on the multi-classes problem instead of the two-class
model.

VI. RELATED WORK

In this section, we examine previous works on malware
detection strategies that make use of various compiler rep-
resentations and techniques (particularly graphs), and graph
kernel parallelization.

A. Graph-Based Malware Detection

Solving the problem of malware detection by examining
structural and behavior qualities of applications can be seen as
a compiler techniques issue. In most cases, source code is not
available, so some type of decompiler is required. Additionally,
compiler representations and techniques can be used to analyze
an application’s decompiled code.

Yang et al., developed DroidMiner [22] which uses static
analysis to automatically mine malicious program logic from
known Android malware. Behavior graphs are constructed
from malware in DroidMiner, and these graphs are flattened
into feature vectors that are then fed into several machine



learning classifiers including naive Bayes, SVM, decision
trees, and random forests for malware detection. The best
algorithm of DroidMiner can achieve a 95.3% detection rate
on a dataset of 2466 malware. It can also reach 92% for
classifying malware into its proper family.

Anderson et al. [2] and Ak-Bakri et al. [3] proposed
algorithms for malware detection that make use of graph-
based representations of instruction traces of binaries. Each
graph represents a Markov Chain, where the vertices represent
instructions. They use a combination of different graph kernels
to construct a similarity matrix between these graphs. Like us,
they feed this resulting similarity matrix to an SVM to perform
classification. These papers does not address the possibility of
optimizing or parallelizing these algorithms, which exceeds
O(n2).

Gascon et al., proposed a method for malware detection
based on efficient embedding of Function Call Graphs (FCG),
which are high level characteristics of the applications [10].
They extracted function call graphs using the Androguard
framework [9]. The nodes in the graph were labeled accord-
ing to the type of instructions contained in their respective
functions. A neighborhood hash graph kernel was applied to
evaluate the count of identical substructures in two graphs.
Finally, an SVM algorithm was used for classification. In an
evaluation of 12158 malware samples, the proposed method
detected 89% of the malware. We contend that our paper
presents a similar framework that achieves higher accuracy and
yields better performance due to our parallel implementation
of the graph kernel used to construct the similarity matrix that
is fed into the SVM.

B. Parallelization of Graph Kernels

There is a limited amount of research available that focuses
on parallel implementations of graph kernels. Hong et al.
present a method for implementing a parallel version of
breadth-first search (BFS) and present results on both multi-
core CPU and GPU [11]. They also present a hybrid method
which dynamically chooses which of their implementations
will yield the best performance during each BFS iteration.
Although the kernel itself is different, this work shows a
viable hybrid parallel implementation of a graph traversal
algorithm which scales well when operating on large graphs.
The hybrid implementation of SPGK [21] is similar in nature,
but to the best of our knowledge, this paper is the first
to leverage a hybrid implementation of a graph kernel for
malware detection.

VII. CONCLUSION

We use the Shortest Path Graph Kernel (SPGK) to iden-
tify similarities between call graphs extracted from binaries.
However, SPGK is computationally expensive due to the size
of the input graphs. Therefore, in this paper we evaluate
different parallelization methods for CPUs and GPUs to speed
up this kernel. Our hybrid parallel implementation yields the
best performance, achieving up to a 14x improvement over
the baseline OpenMP version. We evaluate our models on

increasing data set sizes to evaluate the scalability of our
different parallel implementations.

For future work, we plan to evaluate further optimizations
to improve the efficiency of our parallel implementations. We
plan to investigate partitioning the largest graphs into tiles so
that the subset of the graph’s nodes can be sent in a staged
fashion to avoid using all device memory. There are additional
optimizations involving the ordering of nodes being compared
that can improve the efficiency of our implementation. Finally,
we plan to investigate different graph kernel algorithms besides
the SPGK which may lead to more efficient parallel implemen-
tations with similar or improved accuracy.
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