Furniture Image Classification

Lifan Xu
Department of Computer and Information Science
University of Delaware
Outline

• Furniture image dataset
• Graph-based Image Classification
 – Convert Image to graph
 – Compute graph similarities
 – Classification using SVM
• Experiments results
• Conclusion and Future Work
Outline

• Furniture image dataset
Furniture Image Dataset

• 8 classes
 – Bed, Bench, Buffet Hutch, Chair, Chest, Dresser, Sofa, Table
• 200 images per class
Bed
Bench
Buffet Hutch
Chair
Chest
Dresser
Sofa
Table
Outline

• Furniture image dataset
• Graph-based Image Classification
 – Convert Image to graph
Connect Local Feature Points

• Compute SURF feature points
• Convert one point to one node
 – The SURF descriptor is feature vector of the node
• Connect the node using K nearest neighbors
 – Weight of edge is the distance between two nodes
Connect Tiles

• Train visual words
 – Compute dense SIFT feature of some images
 – Cluster the features using K-means
 • Cluster centroids = visual words
• Cut image to 4x4 tiles
• Compute visual words histogram within each tile
• Treat each tile as a node
 – Visual word histogram of the tile is feature vector of the node
• Connect the node using k nearest neighbors
Outline

• Furniture image dataset
• Graph-based Image Classification
 – Convert Image to graph
 – Compute graph similarities
Shortest Path Graph Kernel (SPGK)

\[k_{sp}(G, G') = \sum_{e \in E} \sum_{e' \in E'} k_{walk}(e, e') \]

\[k_{walk}(e, e') = k_{node}(u, u') \cdot k_{edge}(e, e') \cdot k_{node}(v, v') \]
Unordered Neighboring Graph Kernel (UNGK)

• Given a node v, let us define a set $N(v)$ contains all the neighboring nodes of v

$$k(G, G') = \sum_{v \in V} \sum_{v' \in V'} k_{node}(v, v') \ast (\alpha + k_{neb}(v, v'))$$

$$k_{neb}(v, v') = \sum_{n \in N(v)} \sum_{n' \in N(v')} k_{node}(n, n')$$
Outline

• Furniture image dataset
• Graph-based Image Classification
 – Convert Image to graph
 – Compute graph similarities
 – Classification using SVM
• Experiments results
Results on Key-Point-Graph

![Graph showing accuracy vs. C values for different methods.](image)

- UNGK-1-GAUSSIAN-0.1
- SPGK-GAUSSIAN-0.1
- UNGK-1-GAUSSIAN-1
- SPGK-GAUSSIAN-1
- UNGK-1-GAUSSIAN-10
- SPGK-GAUSSIAN-10
- UNGK-0-INTERSECT
- UNGK-1-INTERSECT
- UNGK-10-INTERSECT
- SPGK-INTERSECT

Accuracy vs. C values graph with various markers and line styles representing different methods.
Results on Image-Tiling-Graph
Outline

• Furniture image dataset
• Graph-based Image Classification
 – Convert Image to graph
 – Compute graph similarities
 – Classification using SVM
• Experiments results
• Conclusion and Future Work
Conclusion

• Furniture Image dataset
• Graph-based image classification
 – Two image-graph conversion methods
 – Two graph kernels for similarity computation
• Best accuracy is 92%
Future Work

- More classes
- Cut each class into sub-classes
- More graph kernels
Thanks!

Questions?