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Abstract  
 
     Protein-Protein interaction is essential to cellular 
functions. In this work, we describe a simple, novel 
approach to improve the accuracy of predicting 
protein-protein interaction by incorporating the 
binding site information. First, we assess the 
importance of the seven attributes that are used by 
Bradford et. al (2005) for predicting protein binding 
sites. The leave-one-out cross validation experiments 
and principal component analysis indicate that some 
attributes such as residue propensity and 
hydrophobicity are more important than other 
attributes such as curvedness and shape index in 
differentiating a binding patch from nonbinding patch.  
Second, we incorporate those attributes to predict 
protein-protein interaction by simple concatenation of 
the attribute vectors of candidate interacting partners. 
A support vector machine is trained to predict the 
interacting partners. This is combined with using the 
attributes directly derived from the primary sequence 
at the binding sites. The results from the leave-one-out 
cross validation experiments show significant 
improvement in prediction accuracy by incorporating 
the structural information at the binding sites.  
 
 
1. Introduction 
 
     Research in biology and biochemistry has lead to 
the discovery of various proteins with unknown 
function that seem to play an important role in 
biological processes. The accurate annotation of these 
proteins is often time consuming but can be aided by 
knowing the precise location of the protein’s binding 
sites and/or its interacting partners. Since almost all 
proteins carry out their diverse functions by specific 
protein-protein interactions, the identification of these 
interacting partners is a wealth of knowledge towards 
understanding the biochemistry of a particular protein.  
                                                 
  * Corresponding author. 

Currently the high throughput approach to identifying 
protein-protein interaction (PPI) is the yeast two-hybrid 
assay [4,5]. However, a typical proteomic project can 
take over a year to complete and often yields noisy or 
ambiguous data.  This has motivated bioinformatics 
research in developing computational methods for 
predicting protein-protein interaction, which can then 
be quickly tested by coimmunoprecipitation or other 
related experiments.     
     In [2,3], methods were developed for predicting the 
binding sites by exploiting characteristics of the surface 
residues, whereas some methods focus on deriving 
sequence signatures from PPI and use these signatures 
for predicting other PPI [10, 11]. In a work by Ben-Hur 
and Noble [9], kernel methods were developed to 
predict protein-protein interaction using various 
sources of data.  
     In this work, we propose to extend the idea put forth 
by Bradford & Westhead (2005) [1] to predict 
interacting partners of a specific protein. Previously it 
has been shown that binding sites of proteins have 
specific properties that distinguish them from the rest 
of the protein. These properties (seven total) were used 
by Bradford & Westhead (2005) to predict possible 
binding sites on a protein using a support vector 
machine.   
     We now discuss some improvements on their 
method, namely, assessing the importance of the 
various attributes used by Bradford & Westhead and 
using a concatenation approach to predict the binding 
partners of a given protein.   
 
2. Method 
 
     In this section, we first describe the data used in 
this work, and the schemes for preparing training and 
testing subsets for cross validation experiments. Then 
we describe the methods for analyzing the utility of the 
various structural attributes used in Bradford & 
Westhead in discriminating binding patches versus 
nonbinding patches. We end this section by describing 
a novel method to predict the interacting partners based 
on the primary sequence and the structural attributes.  



 

2.1 Data 
 
     The dataset, adopted from Bradford et al (2005), 
contains 180 known interacting protein pairs, including 
36 enzyme-inhibitor interaction types, 27 hetero-
obligate, 87 homo-obligate and 30 non-enzyme-
inhibitor transient (NEIT) interactions. A solvent 
exclude surface was generated for each protein and 
divided into multiple patches, with a size of about 
6~8% of the protein surface. For a patch, each of its 
vertices was then labeled with seven surface properties.  
These properties are: shape index and curvedness, 
conservation, electrostatic potential, hydrophobicity, 
residue interface propensity and solvent assessable 
surface area. Each of the seven properties is measured 
in some way to yield a numerical value, which is then 
normalized to be in the range [0, 1]. The patch is then 
represented by a 14 dimension vector, which is formed 
by the mean and standard deviation for each attribute 
of the seven properties calculated across the patch. 
These 14-vectors are then used to train a support vector 
machine. The data was provided by Bradford which 
includes a binding patch and a non-binding patch 
attributes for the 180 proteins (for a total of 360 data 
points). 
     Support vector machines [7, 13] are a supervised 
learning method, which requires training with a set of 
known examples before being used to predict on data 
whose classes are unknown. In this study we used 
SVMlight v. 6.01 with a radial kernel function [8]. The 
performance was evaluated by leave-one-out cross 
validation. That is, out of the 360 data points (each is a 
14-dimension vector), one data point is held for testing 
while the other 359 data points are used to train the 
support vector machine. This process is repeated by 
using different data point for testing. The results are 
averaged over these leave-one-out experiments. 
 
2.2. Analysis of the binding site attributes 
 
     From the original dataset which contains fourteen 
attributes for binding and non-binding patches for 180 
proteins, we generate a training set that discards one 
particular attribute at a time. We then analyze the effect 
of removing this particular attribute in classifying a 
known patch as either binding or non-binding by using 
a leave-one-out cross validation method.  This was 
repeated one hundred times for each attribute removed.  
The whole procedure was then performed four more 
times to obtain an average accuracy which we then plot 
in Figure 1. 
     The independent contribution of each attribute in 
classifying a patch was also measured. To do this, only 
one of the seven attributes is retained in the vector, 
used to train the SVM. Similar to the procedure 
describe above, we follow a leave-one out cross 

validation method to assess the accuracy of the newly 
trained SVM.  Again, we repeat this process multiple 
times and record the mean value of the observations.  
The results for this part are shown in Figure 2.  
     Aside from the importance of each attribute, we 
also assessed the significance of using only the mean or 
only the standard deviation of the seven attributes.  
Results for this experiment are shown in Figure 3.   
     In addition to the ad hoc assessment as described 
above, the dataset was more rigorously analyzed using 
a multivariate statistical method, namely principal 
component and factor analysis (PCA and FA). First, we 
plot pairs of attributes to graphically infer possible 
relationships among the fourteen attributes – the figure 
is not shown in the paper for the sake of space. The 
diagonal plots show the distribution of a particular 
attribute in the dataset.  Off-diagonal plots show the 
co-variation/relationships between pairs of different 
attributes.  From the plots we can readily infer that 
some attributes are highly dependent on others and 
may contribute very little to the distinction of binding 
patch from nonbinding patch.  Such attributes are 
redundant and can be removed from our dataset 
without loss of accuracy. Next, in order to obtain a 
quantitative measure of the importance of each 
attribute, PCA analysis was performed.  To expedite 
the PCA analysis, the data are first standardized, i.e. to 
have the values normalized into range [0, 1]. It is noted 
that the attributes 13 and 14 (the mean and standard 
deviation of conservation) were removed due to a value 
of -1.0, which was assigned for these attributes because 
too few homologues were found to compute a score.   
     The variance and total percentage of variability 
explained by each component is given in Table 2. 
 
2. 3. Prediction of interacting partners  
 
     The main contribution of this work is to incorporate 
the binding site properties to predict protein-protein 
interaction. Since it had been shown by Bradford & 
Westhead (2005) that binding sites of a protein have 
distinguishing properties from non-binding sites, it is 
reasonable to believe that these properties should be 
useful to predict the interacting partners of a particular 
binding patch.   
     We approach the protein-protein interaction 
prediction by two steps: 1) predict the binding patches, 
2) identify the binding partners.  That is, given two 
proteins A and B, we first apply Bradford & 
Westhead’s method to identify the binding patches in 
these two proteins. Then, for each binding patch from 
protein A, we pair it up with a binding patch from 
protein B, and calculate a score that measures the 
likelihood for these two patches to be true binding 
partners. If there are multiple binding patches in 
proteins, all possible bipartite pairings will be scored, 



 

and the highest score is used for predicting the 
likelihood of protein A interacting with protein B. One 
advantage of this two-step approach is to allow us to 
focus on only these binding patches to see how the 
properties at these binding sites can impact on the 
protein-protein interaction.  
    Of the 180 proteins in the original dataset, 154 
proteins have their interacting partner inside the 
dataset. These 154 proteins make up 77 interacting 
pairs, which are used as the positive examples. The rest 
pairings (77x76 – 77 = 5775) among these 154 proteins 
provide the negative examples. The leave-one-out cross 
validation experiments are designed as follows. Of the 
77 positive examples, 76 are used for training the 
SVM, and the rest one is reserved for testing. This 76-
to-1 ratio is maintained when preparing the negative 
training and testing data. That is, the 5775 negative 
examples are split into two subsets with a ratio between 
their sizes being about 76 to 1.  In an alternative 
scheme for cross validation, we reduce the sample 
space by considering only those proteins that are in the 
same family. 
     For each example, no matter positive or negative, a 
vector is formed by concatenating the vectors for the 
vectors for the corresponding proteins in the pair. The 
concatenated vectors are then provided as input to the 
SVM for training and testing. The rational for such 
simple concatenation is that the concatenated vector for 
the positive example (i.e., interacting partners) will be 
distinguishable from that for the negative examples. 
     As a baseline, we tested how only the primary 
sequences at the binding sites can differentiate 
interacting pairs from non-interacting pairs. That is, the 
vectors contain information from the primary sequence. 
To this end, the primary sequences at the binding sites 
for these 154 proteins are retrieved from the PDB 
database [6]. To characterize the binding sites using 
primary sequences, we profile the sequence into a 
vector of frequencies for the various amino acid triplets 
to occur at the site. A window of size 3 is slide across 
the site and at each residue the occurrence of the 
possible triplets is updated. Because the small size of 
the binding patches, many of the 20x20x20 = 8000 
possible triplets may never occur, leading to a very 
sparse vector. Those sparse vectors can cause the SVM 
training unreliable. To mitigate the problem, amino 
acids are grouped into 7 classes based on physical-
chemical properties: hydrophobic, hydrophilic, 
positively charged, negatively charged, neutral, able to 
form hydrogen bond, not able to form hydrogen bond. 
This reduces the number of triplets to 7x7x7 = 147. In 
this scheme (A), each example (positive or negative) is 
represented as a concatenated vector of dimension 2 x 
147 = 294. The vector dimension is further reduced by 
using 5 classes: hydrophobic, positively charged, 
negatively charged, able to form hydrogen bond, not 

able to form hydrogen bond. In this scheme (B), each 
example is represented as a concatenated vector of 
dimension 2x5x5x5 = 250. 
     Another baseline is to see how well the prediction 
goes when only the fourteen structural attributes at the 
binding sites are used. In this scheme (C), each 
example is represented as a concatenated vector of 
dimension 2x14 = 28. 
     To see how the structural properties at the binding 
sites can enhance protein-protein interaction prediction, 
we combine the two baseline cases by concatenating 
the vectors from the two cases. That is, in this scheme 
(D), an example is represented by a concatenated 
vector of dimension 28 + 250 = 278, or (E) 28 + 294 = 
322.  
    In one variation (called scheme F), an example is 
represented by a vector by adding (instead of 
concatenating) the two 14-dimension vectors from the 
corresponding patches. The rational is that the 
attributes the require compatibility between the 
interacting partners (such as the curvedness being 
concave in one and being convex in the other) will 
stand out in the resulting vector. 

 
Table 1. Description of the fourteen attributes. 

 
 
3. Results 
 
     From the analysis conducted using the support 
vector machine approach with different training sets, 
we come to a conclusion that, each of the 7 properties 
has disparate weights in contributing towards 
determining if a patch is a binding patch. For brevity, 
the fourteen attributes derived from these 7 properties 
are numbered and listed in Table 1. As shown in Figure 
1, it was noted that 86% accuracy of prediction using 
all the attributes was reduced to 79% when the residue 
propensity parameter was dropped.  In contrast, the 

Index Attribute Description 
1 Mean Residue propensity 
2 Standard Deviation Residue propensity 
3 Mean Hydrophobicity 
4 Standard Deviation Hydrophobicity 
5 Mean Accessible surface area 
6 Standard deviation Accessible surface area 
7 Mean Shape Index 
8 Standard deviation shape index 
9 Mean Electrostatic potential 

10 Standard deviation electrostatic potential 
11 Mean curvedness 
12 Standard Deviation curvedness 
13 Mean Conservation score 
14 Standard deviation conservation 



 

prediction is affected minimally if the curvedness is 
omitted. 
     These conclusions about the utility of the various 
attributes are validated by another line of experiments 
where only one particular attribute was used. Shown in 
Figure 2 is the prediction accuracy for any one attribute 
used. It is noted that if only the amino acid propensity 
is used, the accuracy is still only 76%. Furthermore, the 
curvedness is the least significant of all. This is in 
agreement with what is shown in Figure 1 where 
omitting the curvedness only decreases the accuracy 
only by 1 percent.  
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Figure 1: Effect of removing a particular attribute 
on the accuracy of prediction.  The first bar 
marked with “14” is a control experiment where we 
used all fourteen attributes. 
 

45

50

55

60

65

70

75

80

85

90

14 1,2 3,4 5,6 7,8 9,10 11,12 13,14

Attributes used

Av
er

ag
e 

A
cc

ur
ac

y 
(%

)

 
Figure 2: Effect of using only one attribute on the 
accuracy of prediction. The bar marked with “14” 
is a control experiment where we used all fourteen 
attributes. 
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Figure 3: Effect of removing the mean or standard 
deviation on accuracy. The bar marked with “14” 
is control experiment where we used all fourteen 
attributes) 
 
The utility of these 14 attributes is further studied by 
using principal component analysis method, as 
described in the Method section. The results are 
presented in Figure 4 and Tables 2 and 3.  
     A plot of percent variability explained by each 
component is given in Figure 4.  The line above the 
Pareto chart shows cumulative percentage.  It can be 
seen from Figure 4 and Table 2 that there a clear break 
in the amount of variance explained by each 
component between the second and third components.  
Components one and two together account for nearly 
80% of the total variability in the standardized ratings 
and may be used to reduce dimensions in order to 
increase efficiency without much loss of accuracy.   
 
 

 
Figure 4: Pareto chart of percent variability 
explained by each component (components 7-12 
were left out for simplicity as they contribute the 
least to variability). 
 



 

 
Table2: Variance explained by each component 
 

Component Variances 
Percent 

Explained 
1 0.0442 46.22 
2 0.0281 29.46 
3 0.0092 9.64 
4 0.0052 5.45 
5 0.0028 2.91 
6 0.0017 1.74 
7 0.0015 1.54 
8 0.0012 1.25 
9 0.0007 0.74 
10 0.0005 0.57 
11 0.0004 0.37 
12 0.0001 0.11 

 
 
 
     Since the coefficients in PCA are linear 
combinations of the original data that generate new 
variables, they can be thought of as weight factors and 
provide a quantitative measure of importance of each 
attribute.  The smallest coefficient contributes the least 
amount of information in distinguishing between a 
binding and nonbinding patch and the largest 
contributes the most.  From Table 3, where the 
coefficients for the first two components are given, we 
deduce that the mean amino acid propensity and mean 
hydrophobicity (attributes 1 and 3) are the most 
important while the mean curvedness, standard 
deviation of the curvedness and standard deviation of 
the shape index (attributes 11, 12 and 8) seem to be the 
least important.  It is interesting to note that the two 
attributes related to the geometry of a patch (shape 
index and curvedness) happen to be the two least 
important attributes for distinguishing a binding patch.  
Although the mean shape index is of some value, we 
hypothesize that these four attributes will prove to be 
more valuable when they are used to predict binding 
partners using a concatenation approach discussed 
below.  It is worth noting that based on the PCA result, 
we reduce the dimensionality of our data to 2 (i.e., 
using only the first and second components), and we 
achieve 85% accuracy. This is in good standing with 
the 86% accuracy when all fourteen attributes are used. 
     Furthermore, our experiments on using only the 
mean or only the standard deviation (Figure 3) suggests 
that these two parameters also contribute unequally to 
the binding property  of a patch.    We thus hypothesize  
 
 

 
Table 3: First and second component coefficients 
 

Attributes 

First 
component 
coefficients 

Second 
component 
coefficients 

1 0.6174 -0.1134 
2 0.1329 0.0298 
3 0.6647 -0.1125 
4 0.0767 0.0101 
5 -0.3069 -0.0469 
6 -0.1302 -0.0074 
7 -0.1552 -0.0031 
8 -0.0053 0.0184 
9 -0.1211 -0.9806 
10 -0.0573 -0.0933 
11 -0.0125 -0.0242 
12 0.0083 -0.0073 

 
       
 
 that using other statistical parameter such as median 
would further increase the accuracy. 
 The performance of classification and prediction is 
evaluated using receiver operating characteristic (ROC) 
score [12]. A ROC score is the normalized area under a 
curve that plots the true positives as a function of false 
positives for varying classification thresholds. That is, 
all the testing examples are first ranked in a decreasing 
order based on the output score from the SVM, the 
higher the output score, the more likely the example is 
predicted as a positive example. By scanning the 
ordered rank, at each position if a threshold is imposed, 
check how many predicted positives are true positive, 
and how many predicted positives are false positive. At 
the end of scanning, a curved is generated that plots the 
true positives as a function of false positives. ROC 
scores are in the range of [0, 1], with 1 for a perfect 
classification.  
     The average ROC scores for the various schemes 
are reported in Table 4. It can be seen that the simple 
concatenation of the fourteen attributes from each 
patch in a pair of patches generate the best performance 
with an average ROC score of 0.773. In Figure 5, 
details of the ROC scores over the 154 proteins are 
given as histograms. The x axis is ROC score, and y 
axis is the number of proteins whose predicted partner 
achieves a given ROC score or better. Therefore, the 
higher up a curve is, the better performance the 
corresponding scheme is.  The results in Figure 5 are 
consistent with that in Table 4. 
 
 
 



 

Table 4.  The average ROC score for various 
schemes. 
 

Scheme Average ROC 
A 0.643 
B 0.600 
C 0.773 
D 0.750 
E 0.745 
F 0.704 
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Figure 5. Histogram of ROC scores for predicted 
interacting partners. 
 
 
4. Discussion 
 
     In this work we first used statistical methods to 
assess the relative importance of different properties in 
determining binding site of a protein. We conclude that 
hydrophobicity, electrostatic potential and residue 
propensity are among the more importance attributes 
and surprisingly, attributes describing the geometry of 
a surface patch are among the least important.  We 
further proposed a simple, novel method to predict 
interacting partners using these attributes since most 
proteins bind to their target in a specific “lock and key” 
configuration. The approach developed here has the 
added advantage of not only identifying the interacting 
partners of a protein, but also providing a very specific 
physical region of protein-protein interaction. As a 
future work, we plan to incorporate the secondary 
structure information, which can be obtained by 
running some standard tools, e.g., PHD. We also plan 
to investigate using decision tree on the most 
differentiating attributes, for example, curvedness of 
the corresponding patches may be the first attribute to 
look at for the compatibility as binding partners. 
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