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Abstract

With the help of the q-deformed bosonic and fermionic oscillation operators, which can be
constructed from the ordinary ones, the quantum enveloping algebras of the classical Lie
algebras. B, C and D are written down explicitly. Under these representations the highest

roots are given.

1. Introduction

. During recent years, the quantum groups or the g-deformation of the universal envelop-
ing algebras!?=3] cause more and more interest from both physical and mathematical point
of views. More recently, a new realization has been proposed[‘l for the simplest example
Uq[su(z)), in which the generators Jo and Jy are expressed as the bilinear form of the g-
deformed boson operators &; and ﬁ!(i = 1,2) similar to the Schwinger form of the angular

momentum operators in su(2) algebra. It has been shown that the g-oscillator operators &;
1

and & can be constructed from the ordinary ones a; and q; 81, The similar consideration
has also been applied to some concrete examples for other quantum algebras or quantum
superalgebras/®l, Here we give the systematic results about quantum algebras B, C and D as
well as the way to specify the highest root for each algebra, which is important in constructing
the quantum parametrized R-matrix!”l for quantum Yang-Baxter equation. This procedure

can be generalized to obtain the oscillator form of the Lie supera.lgebraslsl.

II. Oscillator Representation of Classical Lie Algebras and Clifford
Algebra '

It is well known that su(n) ~ A, algebra can be realized by introducing n-independent
bosonic or fermionic oscillators

Eij=cle;, (1)
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where for bosonic case ¢;=b;, [b;, J] = §;; with other brackets vanishing; and for fermionic -
case ¢;=ay, {a;,a } = 6;; with other anti-commutation brackets vanishing. For both of these
identifications one always has

[Esj Bri] = 851 Bt — 634 By : (2)

which defines the su(n) algebra. An important feature of Eq. (1) is that the total “particle
number” is always conserved for A,_; algebra.

It is also known that!®] sp(2n) ~ C, algebra can also be described by n pairs of bosonic
operators b; and b.t. The generators of C,, in Chevalley bases can be identified as follows:

ho=blb— by b, e=blbiy,  fi=blb  fori=lton—1, (3)
and '1 1
hn =blb, + 3 en = —553,51, , f.= Ebnb,, . (4)
This yields the commutation rules
[hc’s e;] = aijey , [hs, f ] —ai;f IR (5)
[3!" f_f]=‘s€jhiv [hn :']=0: L,J=12--,n,
where a;; is the Cartan matrix corresponding to sp(2n) algebra, a;; = 2, a; =—-1( =
714,47 <n—-1), 6p-1n = —2, apn-1 = —1 and zero elsewhere. Another important

property is that, the set of operators {b{, b;, -+, b}, by, -+, b1} forms the 2n-dimensional vector

“1Un,

representation of C,, i.e.,

[As, 5t] = b16;; — bl Bign s, [k, b= 8,5+ bit18i41,5 5

[es, bY] = 555-‘+1._,f , less bj] = —6; i, (6)
[fir B3] = 8L4a61s [fir bs) = —Bi,55

[hn, B} = bL6n;,  [en, b 5= (£ B3] = Bnbn; o
[hns b5] = bnbns,  [en, bs] = 535@ » fw bs]=0

For Cy, case, the “particle number” is conserved only modulo two. So b; and bt are in the
same irreducible representation.

The orthogonal algebras o(N] can be realized through the Clifford algebra, which is a set
of matrices satisfying the anticommutation relations

{Ta, T} =264p, A B=12-.-,N. (8)
Then the generators of o(N) can be constructed as
1
Map = =[T4, Ts]. ()

It is easy to shoﬁr that _
' [Map, Tc] =1i(64cTs ~ 8pcTa), (10)
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and
[Mas, Mcp) =i(6acMpp — 6pcMap) +i(6apMcs — 68D Mca) - (11)
This means that {M4p} is the standard form for rotation generators and I's are a set of

tensors transforming according to the N-dimensional vector representation of o(N)..

The Clifford algebra can be put into the operator form by introducing a set of fermionic
oscillators. Consider n pairs of creation and annihilation operators with the commutation
relations

{as, a}} = bij {ai, a;} =0= {aI: a}} ) (12)

I'4 (A =1 to 2n) identified as

Pl = a1 +CI 3 Pg:i(al_—al),

P3=a2+a;I . P4=£(“’2_a; ) (13)
...... . RN

Top-1= au+“1;; T2n =£(an —an]

can be easily proved to satisfy relation (8). Each pair of operators ax and a.L acts on a two-
dimensional space which is also the representation space of I'2x—1 and 2. It can be easily
shown that '

ng_lrgk = i(—l)”‘d-l ) Mk = alak . (14)

The total space operators I'4 (A = 1 to 2n) acting upon are 2™ dimensional. One can construct
one more operator I';,41 operating on the same space

Tonsr=ao= ()", M=) M (15)
k=1
with the properties .
Tgn41 = ()"Tl2---Tp, a3=1 (16)
and
{ao,'ak} =0,  {ao, “pt;} =0, (17)

which follow from relations
(1-M)ag =axM, Mal=ax(1-M).

By an appropriate diagonalization for {M 45}, the Chevalley generators of o(N) can be written
as follows. The first (n — 1) simple roots and coroots are expressed as

he = alax —al jak41, ex = alaks1, fk= GI,.,.IG_* (18)
for 1 <k < n—1, whereas the last ones are given by
hn = ai_lan—»l + a't‘nﬂ — 1 ) En = BI._IGL 3 f!’l = al’laﬂ—l (19]

for D, ~ o(2n}, and

hp =2ata, -1, en = alag, fn = aoan . (20)
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for. B, ~ o(2n + 1).

For D,, algebra, where only the first (2n) of the I'’s are concerned with, all the generators
in Eqs. (18) and (19) conserve the total “particle number” M modulo two. The last one of the
Is now commutates with all the generators. Thus, as we suspected, the total 2"-dimensional
spinor space is not irreducible, but falls apart into two 2"~ - dimensional representations. For
ao = 1 it is the spinor representation D(™); for ay = —1 it gives D(®~1) the other spinor
representation.

For B,, algebra, all the I''s appear in generators Eqs. (18) and (20). The total “particle
number” M is no longer conserved since e, and f, contain odd number of a (or at)’s. In this
case, the total 2"-dimensional space is irreducible. This is the spinor representation D(*) of
B,.

As stated above, the I'’s used in constructing the generators form the vector representation
D() of the orthogonal algebras. It is (2n) dimensional for D, ~ o(2n), namely

t .t
(01, Gg, " “31—1) a,t,, Qpy Gp—1, ' " ", G2, a'l)

and (2n + 1) dimensional for B, ~ o(2n + 1), i.e.,
ao
(BI, a%: ttty GI., E) —Qn, **y —ag, _al) .
It can be shown that
[ei, a}] = albis1;, ey aj] = =& ja541
[ft‘a a}] = “|!+_15-',f ’ [fi a5] = ~bi41,50: g (21)
[hi, o}l = al6;; —al 1 bisry s by 6] = —aibi; + Giyabisns
fori,j=1ton—1, and
[gm al] =0, lem ﬂk] = ‘snkﬂ,f,_l = 5:1—1,!:“!; ’
[.fn: a'k] =0, [fn’ a;] = an‘sn—l,k - “n—l‘sn,k ) (22)

[hay al] = al_ 601k +atbns, [hns 6] = —ap bk — bpn—1,k0n—1

for D,,, and .
len, af] =0, _ len, ak] = —bn ka0 + 260,xal ,
[far okl =aobnk,  [far ax] = ~260kan, (23)
[y 6] = 2660k, [hn, Gk] = —26n6n |
for B,.

The basis of the vector representation for C,, D, and B,, and their transition under the
action of the simple step generators are represented by the diagrams in Figs. 1, 2 and 3.

These representations are very important in constructing the oscillator formalism of the
Lie superalgebras!®. Notice that under the action of the subalgebra (ex, Bk, f;) all the states
in D) are split into singlets or doublets for C, and D,. Only for B, algebra, we have
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triplet structure in D(1), e.g., (a}, a0/ V2, —a,) being a triplet under the action of subalgebra
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Fig. 1. Vector rep. of C,,.
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Fig. 8. Vector rep. of Bj.

III. Oscillator Representation of Quantum Enveloping Algebra U,(C,)

Now we turn to discuss the oscillator representation of the quantum enveloﬁiné algebras.
The first step has been taken by several authors!4]. In their articles, at first Uy(su(2)) and then
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Uq(su(n)) are realized by introducing g-analogues of quantum harmonic oscillator. Taking over
their g-analogue of bosonic operator, we realize quantum enveloping algebra of type C, in a
minimum way which may be more useful in some cases.

The quantum enveloping algebra Uq(g) corresponding to complex simple Lie algebra ¢
is given by Jimbol®l. Let A = (a;;) be a symmetrizable generalized Cartan matrix and
{ei}icicn, {hi}1<icn the simple roots and coroots such that (hi,@;) = aij. For a nonzero
parameter ¢ we write ¢; = ¢(*:1%:)/2 g5 that 2 = ¢(ailas) = t;*/, where ( | ) denotes the in-
variant inner product in n* = ®Cq;. Thus the quantum envelopmg algebra U,(g) is generated
by the following relations:

k=t kk'=klk=1,  [kk]=0, (24a)

kiejkit =tle;,  kifkit=t7%if,, (24a)
kZ — k72

[‘n f ] uﬁ 3 (24(:)

1—ayj '

E (= 1)"[ ] W Ve =0 (i #7), (24d)

t?

l—ay

Z (-1)¥ [ a"] flmsimvfff =0 (i#7). (24e)

v=0 t? 3 .

Here ¢ is an arbitrary parameter, and the symbol [ i ] = [ i ] is defined by
n —-n
t

(tm - t—m) {tm— = t—m+1) (tm—n+1 —_ t—m+n—1)

[ ] { T R e ey m>n>0},

(n=0,m),

(25)
and [ r: ] = 0 otherwise.
t

For C, algebra, its Cartan matrix A = (a;;) = 2(;|e;)/(ai|a;) has the following form:

( 2 -1 0 ... ... o\
-1 2 -1 :
0 -1 2 - :
A= , (26)
-1 0
-1 2 -2
\ 0 ... ... 0 -1 2)

Le:,
=2, aj=-1 (i=j%1, 4j<n-1),

(27)

Gn-in=-2, Gpn-1= -1, a;; =0  otherwise .
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So we can write Eqs. (24a), (24b) and (24c) in Ug(C,) as follows:

[h,h,-l:() i,j=1,2,"‘,ﬂ,
[hig BJ'] = aijej' . [h’-, fJ.] = _a“jfj "’ J- — 1’ sy n,
ek B w 28
[eir f,]:s.,-rq_—l"‘-E IJ[hl] ;,3:1,...,,‘_1, ( )
h
n—g (2hn]
en Bl
len, ful = == =1 le = 5
with t; =t == tg-1 = qlfﬂ’ t, = g, and Iz] = [z]q. If let g — 1, the above relations

reduce to the usual definition relations of C, in Chevalley basis which, together with the
oscillator form of the generators, have already been given in Eqs. (3)—(5).

To extrapolate to ¢ # 1 case, we simply make the following correspondencel®!:

b_b\/[w] (Ni+1],

N;+1 b

(29)
N:
bt Bt = b} [N:—I:l _ [ﬁ‘] b,

where N; = b:-'b.- is the number operator for i-th oscillator and so

B =[N,  Bdl=[N:+1]. ' (30)
h Then we obtain

h; = N; — Niz1, 1<i1<n-—-1, (31a)
hp, = N, + § y ~ (31b)
G blbiyr, fioblb, 1<i<n-1, (31¢)
A R (314)

Omitting the lengthy derivation, we instead present some relations which are useful in repro-
ducing Eqs. (28):

[N +1] - ¢*[N]=¢7", ; (32)
[N1][N2 + 1] — [N2][Ny + 1] = [N1 — N2 , (33)
[NIIN+1]-[M|[M+1]=[N+M+ 1j|[N - M]. (34)

In this framework, the highest root ¢ can be written out as

€0 = l2ln_l H?_,,g qu‘._'_z (ﬁmlﬂl—l: €n-1 |8u_2, cﬂ—2| e IGl, 81) H . (35)

where

[-‘”Bv )= [[‘4! B]q’: C] (36)
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with the definition
'|A, Bl;s = AB—q¢*BA, (37)

and recurrence convention is understood when C in Eq. (36) has the similar construction, say

C = (A'|B', C") and so on.

IV. Spinor Representations of Quantum Enveloping Algebras U,(D,)
and U,(B,) '

As is known, the definition relations of D,, and B, are given by

[hs, Rj] =0, ,7=12-,n, (38a)
(s, €5] = aize; [hs, f;] =—a;;f;, (38b)
[es, f,] = bi;h; ‘ (38¢)
with
(2 -1 o0 ... .. 0\
-1 2 -1
0 -1 2
A= D 0 for D, , (39)
2 -1 -1
-1 2 0
\ o -1 0 2)
and
(2 -1 0 ... ... o)
-1 2 -1
0o -1 2
A= : . for B, . (40)
2 -1 0
-1 2 -1
\ 0 ... ... 0 =2 2J

It is easy to see that the relations (38a)-(38c) are just Eqs. (24a)—(24c) in the ¢ — 1 limit
with a;; specified as above. When g # 1, the relations (24a)-(24c) can be written as:
for D,,,

Ih‘" 'h.!] =0 "! Jl = l-r 2) Tty Ny, (41&)
[hs) e5] = aije; , [, f,] =—a;;f;, (41b)
les, £;]=6i;]hsq : (41¢)



No. 4 Spinor and Oscillator Representations of Quantum --- 447

witht; =tg=---=1ig, =q1;2;
for B,,
[h"lhfl=0 $,7=12-,n, (42&)
[hl': 31’] = Gij€5 ’ lhn fJ] = _a‘ljf: (42b)
ey f;) = &ijlhsle 154, 7<n—1, (42¢)
- _ [hn 1
[eny fal = [h“ld - [T]q / [EL ()
witht; =ty =---=tp_1 = ql,ﬂ' ty = ql,ﬂ. '

To regain these relations, we need to find a g-analogue of fermionic operator. To this end,
we can use the similar prescription given in Ref. [5] with a slight modification.

From the definition of the number operator, we have
ata=M, adl=1-M, (43)

and

aM = (1-M)a, a'(1-M)=Mad'. (44)

Now we define the g-analogue of fermionic operators @ and at as follows:

ﬁi=aqf[$:]=\[[i:g:]an (45a)
SRR CET TR R ()

Then we get
ala; = (M), @&al=[1-M], (46a)
a=(@@})?=o0, - ‘ (46b)

equivalently
(@, a1}, = :al + qalds = g™ (47a)
{6, 81},-n = @] +q7Mala = g7 | (47b)

Then the relations (41) and (42) can be reproduced with the following identifications:
for Dp,

hi = M; — M4, , (48a)
hn=M,1+M,-1, (43]3) ;
e = a‘!&i+l 1 f.‘ e a‘.!...]_&I' ’ - (480)

en=a_18,  fo=Gnbn-1; (484)
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for B,

hi = M; — M4, , (49a)
b Bl 1. (49b)
e = dldiy1, fi=al,,a, (49¢)
en = Glag, [ = a0y , (49d)

where a9 = (—1)™ remains to be the same as before. It is not difficult to check that the
identifications given in Eqs. (48) and (49) do satisfy the definition relations as in Egs. (41)
and (42). In doing so, besides the relations given in Eqs. (32)-(34), we also use

[My][Mz] - [1— My][1 - M| = [M: + Mz - 1], (50)
1 1
) - (1= = o - 3] / [3] 1)
In this framework, the highest root can be written out as follows:
for B,,
eo = (—1)"%(“"("'”(“, €2 €2, €3} ***; €n=3 ) €n=1; €n)q s - (52)
" where
(4, B; C), —~ [[4, B]g, C]q (53)
with [A, B], = AB — qBA4; '
for D,,,.
) eo = ((e1, €25 €2, €3; - *; en—2, €n—1;¢n))q , (54)
‘where
((eis eiva; @))q = [[es, eivalog™+, Qlaq™ M2 (5)

The details of these calculations will be published elsewhere.
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