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The formulae of the Faddeev—Reshetikhin-Takhtajan {FRT) method in supersymmetric
case are presented transparently and consistently. With the help of these formulae, the
simplest “non-standard” solution of braid group representation (BGR) is re-examined. The
result shidiws that the hidden symmetry associated with this “non-standard” BGR is indeed the
g-deformed Lie superalgebra U (gl(111)).

1. Introduction

Recently, much attention has been paid to the so-called quantum groups, or the
quantum universal enveloping algebras,' which were originated from the research of
trigconometric/hyperbolic solutions of the quantum Yang-Baxter equations (YBE).2
And it has been shown that they are closely related to various physically interesting
models and theories, such as the exactly soluble statistical models,” inverse scattering
method for nonlinear evolution equation,’ factorizable s matrix and integrable field
theory,* conformal field theory and topological Chern-Simons theory.*

The mathematical structure of the quantum groups has been systematically
carried out by Drinfeld,' Jimbo' and Reshetikhin er al.’ More recently, efforts have
been made in generalizing this structure to include supersymmetric case.’

By now it is well-known that the braid group representations (BGR) are usually
obtained from the trigonometric/hyperbolic solutions of YBE by setting the spectral
parameter to infinity 8 — #eo. The standard method in obtaining BGR from the
universal R-matrix® for the standard g-deformation of usual Lie algebras gives a
series of BGRs referred to as “standard” ones. which approach to the permutation
matrix when the deformation parameter ¢ — 1. and whose first order terms satisfy
the classical YBE. The simplest example appears in the six vertex model
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where d = g - g'. However, a lot of “non-standard” BGRs have also been found
recently.® These representations havé, among other different properties, the limit
behavior different from that of the “standard” ones. For the simplest two-state
model, the “non-standard” fundamental R-matrix takes the form
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with 7,, a phase factor being diagonal (1,1, 1,-1). Itis not difficult to recognize that
2, in Eq. '(1.2) is not the usual permutation matrix but the super (or graded)
permutation matrix acting upon a superspace whose first basis is bosonic and the
second one fermionic. This implies that the “non-standard” 13(,") may be closely re-
lated to a Lie superalgebra. We show in this paper that it is indeed the case. Our
result is different from that reported in a recent paper.'® By employing the usual
Faddeev-Reshetikhin-Takhtajan (FRT) constructive method, these authors claim
that they obtain a peculiar new quantum group whose classical limit is not a Lie
superalgebra despite that some of its relations appear as fermion-like. The essential
point of our analysis is, to deal with a would-be super BGR one must start from
formulae appropriate for the super case at the very beginning. and must take care of
the consistency throughout the whole procedure of analysis.

So we begin with the supersymmetric formulae for FRT’s method in Sec. 2 and
then turn to discuss the concrete example Eq. (1.2) in Sec. 3. In Sec. 4 brief results for
other “non-standard” BGRs are reported and a short discussion is given.

2. FRT’s Method in Supersymmetric Case

According to Ref. 8, algebra A(R) is defined in terms of unity 1 and generators :f _
constituting a matrix T formally associated with a linear space V and satisfying the
commutation relations written most naturally in the matrix form

R,T\T, =T, T\R,, , (2.1)
where R is a numerical matrix associated with V ® V, supposed to be non-singular,
whereas T, and T, are operator-valued matrices

T1:T®],T2:!®T=PDTIPD, (22)
where I is the unit matrix in V and P,, is the permutation matrix in V ® V as men-
tioned in Sec. 1. Then the Yang-Baxter relation
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Ry R;3Ryy = RyyR 3Ry, (23)

can be considered (sufficiently) as the compatibility condition for the main relation
(2.1). This comes from the associativity of the triple product 7,7, T; in V® in different
order, where

T,=T®I®I, T,=I1®T®I=P,T,P,, _
T,=I®I®T=PyT,P, . (2.4)

The dual algebra B(R) is generated by 1 and a set of generators !/ comprising two
matrices L® and satisfying the relations

R, LPLY =LY LPR,, , _ (2.5)

with (g, £) = (+, +), (+, =) or (-, -). Further restriction is introduced by the duality
condition

( L(f)st y= Rfj‘ , (2.6)
where (, ) means pairing between A(R) and B(R), and
o R® =R, =P,R,P,, R = R-! @7
~ 12 21 12522512 *42 12 ° -

As expected, the condition of pairing effectively reduces the number of non-zero
generators /®/ so that the total number of generators of A(R) and B(R) is equal.
Usually L™ and L© are respectively taken to be upper- and lower-triangular matri-
ces with operator entries. The Yang-Baxter relation (2.3) shows that the pairing is
consistent with the main commutation relations (2.1) and (2.5). [t is well-known that
by introducing a corresponding braid matrix R instead of R in the following way

Ry =R, Py, (2.8)
one can put the Yang-Baxter relation (2.3) into its braid form
Ry Ry Ry =Ry Ry Ry ' (29)
whereas relation (2.5) become
R LYLY =LYLY Ry, (2.10)

Now we turn to discuss the supersymmetric case. In this case, space V' is graded.
Therefore care must be taken in dealing with tensor product. say

(A® B)(C® D)= (-)*84C AC®BD .

Taking into account this property, all the relations given above remain to be true.
Attention must be paid to these relations which are not explicitly in the tensor form,
e.g.. YBE(2.3) or (2.9). Here we give the explicit supersymmetric form. The main
relation (2.1) takes the form
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R T Ty = TRy (2.11)
with
T,=T®I,
Ty =P Ty P, =N ([T, =N T2 Mz » (212)
where B, = Py, (1,))12 = (~1)* s 511 5§12 And the YBE now becomes
MR N3R i3 N3k = MR MsR 3T Rz (213)

which can be obtained by considering the associativity of the triple product 7,7,7;"
in V®, where

T,=T®I®I,
T, =P, T, P, =N, (I @T RN, =1,T, 1, (2.14)
T" = Py T, Pyy = NNy ([ BI®T) N 37 = Ny N3 T3 M3 23 -

The dual algebra B(R) is characterized by the relations

° 9{11-5(:) (M L(;‘)ﬂn):(nu L{:')T]m )L(:).‘&n (2.15)

with (g, £’) = (+;+), (+, =) or (-, -). And the pairing between A(R) and B(R) now
takes the form .

(L9, 7,)=2%, (2.16)
where
ﬁf;} =P R 2P = N2k Thes R-E) =) ‘R,]'; . (2.17)

Still the Yang-Baxter relation (2.13) ensures the consistency between the pairing
(2.16) and the main commutation relations (2.11) and (2.15). Now if we introduce the
braid matrix ® by setting

Ry = 5{-12 P = K11 Patha » (2.18)
we can put the Yang-Baxter relation (2.13) in the form
ilz 17‘('_23 Ry = 5{13 K12 95.;_:, , (2.19)
which is just Eq. (2.9) with ® = R. Meanwhile relations (2.15) now become
Ry ( 7]'12-5(:] Ta )L(:'] =(n,, L(,E') Mo )L(;) }\éu (2.20)

with (g, €") = (+, +), (+,-) or (=, -).

The derivation of Eqs. (2.11)-(2.20) is completely parallel to that of Eqs. (2.1)-
(2.10). We have made use of several important relations which came from the
diagonal property of phase factor 1,

nnb = r,|b¢.l“. nd." n(n‘ = nrd ”uh 1 (2'21)
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and from the “weight conservation” condition on ®-matrix

noc nbc R.ab = ﬂ.ab nac nk = (2‘2‘2)

Note that, in Egs. (2.11)-(2.20) the grading property has been taken into account by
introducing the factor n,,, and all matrices can be considered as the ordinary ones.
But for relations other than these equations one must take care of the grading
property in dealing with the multiplication of graded quantities.

The coincidence of Eq. (2.19) with Eq. (2.9) implies that both the ordinary R-
matrices satisfying YBE (2.3) and the supersymmetric R-matrices satisfying super
YBE (2.13) give the same set of braid group relation. So itis not surprising that some
sets of braid group representations may connect with the g-deformation of ordinary
Lie aigebras and other sets of braid group representations with the g-deformation of
Lie superalgebras.

3. Quantum Superalgebra U (gl(1l1)) Corresponding to the Simplest
“Non-Standard” BGR

As mentioned in Sec. 1, the simplest “non-standard” BGR (1.2) has the limit
behavior (as ¢ — 1) as the graded permutation matrix. So it may concern a
supersymmeétry. If it does, one must use the formulae presented in the second half of
Sec. 2 to analyze,it. Consider Eq. (2.20) with R given by (1.2),i.e.,

Rii=q, R} =-q7, R; =R} =1,
w - L4 il -
R3=q-q7', R}, =0, otherwise . (3.1)

L™ are respectively taken to be upper- and lower-triangular 2 x 2 matrices with
operator entries ‘
@i _ 92 _ -
L$" =0, L =0 . (3.2)

By straightforward calculation it can easily be seen that Eq. (2.20) lead to the
following relations

(L9%,L®8]1=0, g,e'=%, (3.3)
LOILS} =g LWT LW, (3.4a)
LOILOT =g~ LT L9 | (3.4b)
LN, =g~ L)L, (3.5a)
LOTLO, =g LOYLOS (3.5b)

(L9 =0, (3.6a)

(L) =0, (3.6b)

LONLDY =qL 5L - (3.7a)
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LM‘-; 1O = q LY L3 . (3.7b)
LNLST =qLOT LY, (3.82)
LOTL®] =qLWTLOT (3.8b)
(LOILOY ) =(g-q WLOFLWDT - LOILOT). (3.9)

It is easy to verify that L®}LO) = LOIL®} and LWL} = LO3L™] belong to
the center of the algebra. So they can be chosen as unit 1. Writing

k' (g-q7')x ' k 0
L® = , L) = 3.10
[ 0 l (g-q7)y I” (310)
then we have the following relations
[k,1]=0, (3.11)
kxk™ =qx, IxlI™* =q7'x, (3.12)
. kyk? =q'y, yl™* =qy, (3.13)
x?=y?=0, (3.14)
1
{x,y}= . (kl=k'11). (3.15)
q-9
Setting
k=q",1=q" ' (3.16)
then we have the alternative form of the (anti)-commutation relations
[N,x]=x, [M,x]=-x (3.12)
[N,y]l=-y,[M,y]l=y (3.13)
and
N+M _ o =N-M
ey} =[N +M], =1 — :_1 (.15

The algebra generated by 1, &%, I*, x and y given in Eqgs. (3.11)—(3.15) is nothing but
the quantum universal enveloping algebra of super Lie algebra gl(1i1), which
reduces to gl(1/1) in the limit g — 1. The co-product of this algebra can be taken as

CAKT ) =kT @KkT, A )= 1T @1, (3.17)
AX)=x®k+1" ®@x,A(y)=y®l+k"' ®y. (3.18)
And the co-unit £ and anti-pode § are defined as

e(x)=¢(y)=0,e(k)=¢€(l)=1. (3.19)
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S(k)=k™, s(D)=1", 5(x)=-Ixk™,$(y)=—kyl™ . (3.20)

One can easily verify that A and € are algebra homomorphism and § an anti-
morphism. Therefore U (gl(111)) is a Hopf algebra.

The quantum super algebra U (gl(111)) can be realized by introducing a bosonic
oscillator b, b' and a fermionic oscillator a, a' satisfying

(b.b']1=1, {a,a'}=1, (3.21)
bb' =N, aa' =M. (3:22)
Then setting"'
b =b ][N_]' Bt [N]bf - J[M] \I{M] t . (23)
\'N
and identifying
x=b'a, y=a'b, (3.24)

we can reproduce the commutation relations as in Egs. (3.12')-(3.15").

The fundamental representation of this algebra is 2-dimensional, which can be
read off immediately from (2.16), or from oscillator representation."! The carried
space consist$ of two states, the bosonic & and the fermionic .

&:{é]leﬂ,M:m,ﬁ:{?)=1N=0,M=1), (3.25)

q 0 10 0 1 00
k= I= , y= 5 3.26
[0 1] (0 q] (0 o] 4 [1 OJ (3.26)
Instead of the gI(2) case in which2 ® 2 =3, @ 1,, we have

2®%:z; @_2_5' 1 (3‘2?)

simply because the product of two fermionic states is antisymmetric, B’ = ~f'8. in
contrast with the product of two bosonic state being symmetric. In this way we can
show that all the irreducible representations are 2-dimensional, which can be cor-
roborated by the nilpotency of operators x and y, i.e., x* = y* = 0. Equation (3.27) is
closely related to the fact that the characteristic polynomial of the “non-standard”
BGR takes the form

(R-q)*(R+q™)* =0 (3.28)

comparing to that of the Jones polynomial

(R-q)*(R+q™)=0. (3.29)

All the results presented here are similar to those obtained in Ref. 10. The only
difference occurs in the signs on the right-hand side of Egs. (3.4b), (3.5b), (3.6b), and
(3.7b) and the anticommutation or commutation bracket in Eq. (3.9). These differ-
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ences come from the n factors in Eq. (2.20), which is the character of the
supersymmetry.

4. Further Results and Discussions

The analysis of the two-state “non-standard™ solution to BGR can be generalized
to more general cases. For example, for three-state model, the standard solution to
BGR takes the form

Pl _ P2 _ P33 D2 _ P3N _ p32 _ -
R =RZ =Ry=q, Ry =Rj=R;=q-q Y

21 _ pi2 _ P33 _ P13 _pR_pB
RY =R2 =R} =R¥ =RE =RE =1,

R =0, otherwise ' (4.1)
which can be shown being associated with the quantum universal enveloping algebra
U,(gl(3)), while the “non-standard” solution

DIl _ P22, P3B __ -1 P2 _ 231 _ P32 _ -
R:: =R, =q,R;=-9", R} -R§: =R,=4-9 B
D2 _ P12 _ P3L_ P13 _ p2 _ pB _

Ru _R;l _-R1; - Rsl *Ri _Rsz =1,

e Ivtf’k = 0 otherwise (42)

can be provedto be connected with the quantum universal enveloping algebra
U,(gl(211)) by a tedious but completely similar analysis. Similar results have been
given by Kulish er al. in Ref. 7.

For four-state model, it can be shown that the “standard” solution to BGR

}‘é; =q(i=1,2.3,4), ﬁ?,* =q-q7'(i> k),

féﬁ: = fé;’; =1(i # k), R:;i =0 otherwise 4.3)
determines the quantum universal enveloping algebra U,(gl(4)). These are two
“non-standard” solutions. One of them is given by '

Ri=q(i=12,3), R§ =-q"'(i>k),

R* =q-q7(i>k) (4.4)

Rt = R* =1(i# k), R! =0 otherwise

which can be shown to be related to the quantum universal enveloping algebra
U,(gl(3!1)) in a way completely similar to the last section. The other “non-standard”
solution to BGR takes the form
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Ri=q(i=1,2),R! =—q"'(j=3.4),
R} =q-q7(i> k)
RS = R¥ =1, (45)
RE =R% =1(i # k,i,k # 3.4),

RI =0 otherwise.

Following similar procedure, one can show that this solution yields the quantum
universal enveloping algebra U (gl(212)). Details of these analysis will be given else-
where.? _ :

It is not difficult to realize that all these arguments can be generalized to BGR
solutions corresponding to A,.° Among these solutions. a series of “standard” ones
determines a series of quantum enveloping algebras U (¢l(/)), and the “non-stand- -

.ard” series gives quantum universal enveloping algebras U (gl(mln)), with m+n =1

As for the BGR’s corresponding to B, C, D series, things turn out to be much
complicated. Special discussion is needed to these cases.”” But anyway, it seems to us
that we can draw the conclusion that quantum Lie superalgebras do appear in the
“non-standard” solutions of BGR. On one hand, these “non-standard” solutions are
peculiar since they have behavior different from that of “standard” ones with which
we are familiar. On the other hand, they are not so peculiar since they have Lie
superalgebras as their classical limit with which though we are a little unfamiliar.
Undoubtedly a detailed analysis on classical r-matrices corresponding to these Lie
superalgebras is very important. We must also emphasize here that not all the “non-
standard” BGRs are recognized to be associated with super algebras, especially for
B, C, D series. Further investigation is needed for these would-be non-
supersymmetric “non-standard” solutions to BGR relations.

Note Added

After sending this manuscript, we learned that. for some concrete examples'>'®
the Z, graded Yang-Baxter equations are also discussed by several groups of au-
thors, and the connection of the simplest “non-standard ™ braid group representation
(1.2) to superalgebras are also obtained using approaches different from ours. We
are indebted to the referee for calling our attention to Ref. 13.
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