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Abstract. By employing the non-commutative differential cslculus an the quantum 
orthogonal planes, we investigate the deformed version of the Schriidinger equation for 
the attractive Coulomb potential V ( r ) =  -e2/ , .  The solutions show the quantum group 
symmetry, and the calculated energy eigenvalues seem to he proportional to [n].', which 
is in  agreement with the energy levels of the hydrogen atom in the limit of q +  1. 

1. Introduction 

Recently, much attention has been paid to the so-called quantum groups, or the 
quantum universal enveloping algebras [l], which originated from the research of 
trigonometric or hyperbolic solutions of the quantum Yang-Baxter equations [2]. It 
has been shown that they are closely related to various physically interesting models 
and theories, such as the exactly soluble statistical models [2], inverse scattering method 
for nonlinear evolution equation [3], factorizable S matrix and integrable field theory 
[4], conformal field theory and topological Chern-Simons theory [5]. 

The mathematical structure of the quantum enveloping algebras has been systemati- 
cally carried out by Drinfeld [l], Jimbo [l] and Reshetikhin et al [6]. On the other 
hand, Woronowicz [l] and Manin [7] use another way to approach the subject, which 
in a sense is more intriguing to physicists. Woronowicz defines a consistent differential 
calculus on the non-commutative space of a quantum group and therefore makes 
quantum groups a concrete example of non-commutative differential geometry [8]. 
Manin considers a quantum group as effecting linear transformations upon a quantum 
plane, whose coordinates belong to a non-commutative associative algebra. 

More recently, Wess and Zumino [9], by applying Woronowicz's differential 
geometry method to the quantum plane and interpreting Manin's dual space of the 
quantum plane as differentials of the coordinates, give a simpler example of non- 
commutative differential geometry. As stressed by Wess and Zumino, the differential 
calculus is covariant with respect to the action of the quantum group GL,(n), and the 
nilpotent condition d 2  = 0 does not contradict other consistency requirements. In this 

*This work is supported in part by the National Natural Science Foundation of China and the Doctoral 
Programme Foundation of Institution of High Education. 
11 Communication address. 

0305-4470/92/030623+ 12$04.50 @ 1992 IOP Publishing Ltd 623 



624 

paper, we will first present Wess-Zumino’s differential calculus on the quantum plane, 
with the emphasis that some of the consistency conditions have ’gauge’ freedom, which 
is very useful in the following discussion. We also point out that the condition d 2  = 0 
is not only consistent with other requirements but also a direct consequence of the 
construction method adopted here. Furthermore Wess-Zumino’s solution to the con- 
sistency conditions is generalized to include much more general cases, e.g., the case 
of the R-matrix satisfying BE type solutions of the Yang-Baxter equation. This kind 
of solution has already been considered in [lo, 111. We give a concrete example for 
the three-dimensional case in section 3. In an attempt to find the possible connection 
of this q-space to our real physical space, we consider the Schrodinger-like equation, 
concretely the one with the attractive Coulomb potential. The results of the calculation 
demonstrate that the system has a close relation to the hydrogen atom, about which 
a brief discussion is given at the end of the paper. 

Xing-Chang Song and Li Liao 

2. Non-commutative differential calculus on the quantum plane 

Manin’s quantum plane is defined as follows [7]: Variables x’, i = 1 , 2 , .  . . , n, belonging 
to a non-commutative associative algebra, satisfy the commutation relations 

Using the standard tensor product notation, the relations (2.1) read as 

( & -  B I ~ X I X ~ =  0 (2.1’) 

d = t i J i  (2.2) 

where E is the unit matrix. We introduce the exterior differential d as follows 

where 6’ differential and derivatives satisfying 
J,,J = SJ I .  (2.3) 

As usual, the exterior differential d is required to obey the following conditions 
(i) nilpotent 

d 2 = 0  (2.4) 

(ii) Leibniz rule 

d(fg) = (df )g+ C-)’fCdg) (2.5) 
where f is the degree of the ‘form’$ Functions of the variables x’ are defined as formal 
power series while forms power series of both variables x and differentials 5. Relations 
(2.1) are sufficient to order in some standard way an arbitrary monomial of L But one 
also needs the commutation relations between 6 and x and between two 5‘s in ordering 
variables and differentials within a form. In general they are not commuting with each 
other and the relations can be written as 

.Is f<J = (-!)’C*O’,f (2.5) 

with 0: an operator acting upon f: The derivatives do not satisfy the simple Leibniz 
rule of commutative algebra. Indeed we have 
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NOW for the quantum plane the operator 0: is linear. Suppose 

OiXi = CfIX' for f = x' ( 2 . 8 ~ ~ )  

OiC = Df,r' for f = 5' (2 .8b)  

with C and D being numerical matrices to be specified later. This gives 

or x152= G2rlx2 (2.9) x ' t~  = c & t k X l  

and 

t'tJ=-Dfltkf' or (E,,+ D12)t162=0 (2.10) 

akx' = s i+  cflx'aj (2.11) 

akf = Dflt'aj (2.12) 

from (2.6) and 

from (2.7). To complete the exterior algebra, we still need the commutation relations 
among derivatives 

aiaj - Fjfaa,a, = a  or J2al - J2dl F12= 0 (2.13) 

The consistency conditions of the differential calculus, first proposed by Wess and 

(E12-B12)(&2+ C12) = O  (2.14) 

where F is yet another matrix to be determined. 

Zumino, can he summed up  as 

(2.15) 

(2.16) 

and 

D z ~ C B ~ C Z ~ =  C12CnDiz (2.17) 

together with another two equations similar to (2.141, (2.151, i.e. 

b 5 1 2 - ' 7 2 ) ( G 2 +  C12) = o  (2.18) 

and 

(E23 - 6 3 )  C12C23 = Ci,Cx( E , ,  - F12). (2.19) 

Equations (2.14)-(2.19) complete all the consistency requirements for a consistent 
definition of differential calculus on a quantum plane. In establishing these consistency 
conditions the only essential assumptions are the Leibniz rule (2.5) and the nilpotent 
acting upon the single x, d2x = 0. 

Now we give some remarks about the properties of the matrices B. C, D and F. 
Firstly consider relation (2.1). It is obvious that E', E',  . . . , E", . . .should give out 
the same commutation relation for X'S as E does. More generally, any function $ ( E )  
of B with 

$ ( E ) =  E 
can be used in place of E. In fact, we have 

E - $ ( B ) =  $i(E)(E-E).  (2.20) 
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Considering the fact that ( E  - B )  always appears as a whole in the consistency 
conditions, one sees that, if BO is an appropriate candidate for B matrix in (2,1), +(Bo)  
is another equally qualified choice. All the choices with different function + give the 
same relation among variables XIS. We call this a 'gauge' freedom for B. In the case 
where E - Bo is a projection operator, as is widely used later, the +, factor in (2.20) 
is just a numerical coefficient. The same argument is also true for matrix F. As a matter 
of fact, we can choose F identifying to B, since in all the consistency conditions F 
appears just as same as B does. 

Similarly for D matrix in (2.10), -0, D2, - D 3 , .  . . , (-D)", . , . should give the 
same commutation relations for cs. A similar 'gauge' freedom exists for D matrix, 
i.e. + ( D )  with 

+ ( - E ) = - E  
..- L ..... > :-.&--A - 0  r. call "C "SCU I l l b l G d U  "1 U 

E + + ( D ) = $ i ( D ) ( E + D ) .  (2.21) 

A special choice + , ( D )  = D-' = C yields E + + ( D )  = E + C which is compatible with 
the result by applying the differential d acting upon (2.9). Notice that C appears in 
the consistency conditions sometimes by itself and sometimes in the combination E + C. 

(2.17) and (2.19). 
The simplest solutions to the consistency conditions (2.14)-(2.19) have been 

obtained by Wess and Zumino [9]. These solutions are closely related to A,-type 
R-matrices satisfying the Yang-Baxter equation in the braid form 

P" - " ~  "... ", ,.I.""--" GrnA ""..nP ,,. ..."La /- .......I" -*I.-- ^^ :.. I ,  ,<\ 
U" "1.C . I .Y IL  CLl""DC a llnr" 6Y"&C L" III(LIC c lllcicilJ " L L L S I  1~.+""""CL1L" (La 1.1 \'.'J,, 

(2.22) 

and having two different eigenvalues 

( R - A J ( R - A J  = O  (2.23) 

with A2 = q corresponding to the symmetric combination and A ,  = -q-' the antisym- 
metric in the q +  1 limit. Correspondingly, there are two projection operators, 

(2.24) 

satisfying 

Q l " ) Q ( P ' =  8"PQ'P' Q"'+ QI2 '  = E, (2.25) 

Condi!ion Q!4) !e!!s ns that two cnmhinations ( E  - B )  and ( E  + C) are nrthogonal, 
so we can choose 

(2.26) E - B = 6Q"' E + C = c Q ' ~ ' .  

We can further choose the constant 6 to give a simpler form of B 

B = q - ' R  (2.27) 

whereas c must be determined by the requirement of C satisfying the vs-type relation 
(2.15). (2.17) and (2.19). There are two possible choices: 

c = l + q '  c=qR ( 2 . 2 8 ~ )  

c=1+q-2  c = 4- 'R- ' .  (2.286) 
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Together with the identification F = E and D = C', all the consistency conditions 
(2.14)-(2.19) are fulfilled. 

The other choice 

E - B ~ ~ Q ' ~ )  E +  CZQ(') 

will give fermionic relations among x's and bosonic relations among b's. 
Another important relation directly results from the above construction and (2.12) 

d2 = ~ ' J & J ~  = ~ ' ( D { ? ~ ' J , ) J ,  

=fi&D12J,Ji =&f2(q2Q'1?-  Q',:))JiJi = O  (2.29) 

where the D-matrix is decomposed as a sum of two projection terms and use has been 
made of the relations (2.10) and (2.13) with the identification given in (2.24). Equation 
(2.29) means that the nilpotent rule holds not only when of acting on x itself, but also 
in the general sense. 

The same method can be used to construct new solutions to the consistency 
conditions. We first recall that the R matrices satisfying the braid Yang-Baxter equation 
have three different eigenvalues for E., C,, and D. type solutions [l ,  121 

( R  - A ~ ) ( R  - A , ) ( R  -A,,) =o. (2.30) 

For E,-type, we have 

A z = q  A ,  = -4- A,, = q-2n (2.31) 

which correspond to the quintet, the triplet and the singlet respectively in the B, case. 
Three projection operators can be constructed as follows 

1 

(2.32) 

(01- ( R - A r ) ( R - A d  
- ( A n - A i ) ( A o - A 2 )  

with the properties 

QC-~QCP)  = ~ ~ Q ( B )  Q ( o ) + Q ( 1 ) + Q ( 2 ) =  E, (2.33) 

All the matrices comprising R can be re-expressed in terms of projection operators, 
e.g., 

(2.34) 

As mentioned above, (E - E )  are orthogonal to (E  + C ) .  We can choose (E  - E )  as 
one of the projection operators, say Q"'. Then (E + C )  must be the linear combination 
of the other two projection operators, i.e. 

E -k C = coQ("+ c2Q"'. (2.35) 
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Now since each of Q's is quadratic in we must choose the coefficients eo, c2 
appropriately to eliminate these quadratic terms in order to ensure C satisfying the 
Yang-Baxter type conditions (2.15), (2.17) and (2.19). This is achieved by taking 

Xing-Chang Song and Li Liao 

- 1 -A= 1+q-' 1 + 92. (2.36) 
A2 c -I--= 
A I  

A 
,- 

A ,  
0- 

Then 

C = - A - ' R  I = qd D=-A,d - '=q- 'R- ' .  (2.37) 

Alternatively we can choose 

C = - A , R - '  = q-'R-' D = - A - ' R  I = qR 

corresponding to co = 1 - A ,  f A. = 1 + q, c2 = 1 - A ,  f A, = 1 + q-2. It is not difficult to see 
from the Yang-Baxter equation (2.22) that 

R;;R2,R,2 = R2,R,2Ri; R;2R23R,2 = R2,R12R;3. (2.38) 

from which one obtains 

Q % ' R 2 3 R 1 2  = RxRnQg' R 12 R 23 Q ( e ) -  12 - Q!;)R12R23. (2.39) 

Now it is straightforward to show that e, ij given in j i . j i j  and ii = F = E - @!) meet 
all the consistency requirements. The commutation rules among x's and Ts now take 
the following forms 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

The nilpotent condition for the differential d follows once again from this construction: 

d 2  = ~ 'J&J ,  = ti( D { : [ ' J ~ ) J ,  

= ( , c ~ D , ~ J ~ J ,  = ~ , ~ 2 ( - ~ 1 ~ , 1 ~ ' 0 ) - ~ l ~ ; ' ~ ' 2 ) -  Q('))~~~,J, 

= - ( ~ , A , ' Q ' O ) + A , A ; ' Q ( ~ ) ) ~ : ~ ~ ~ ~ J ~ J ,  - ~ 8 , $ ~ k ~ j ~ [ ' ) { ~  = o  (2.44) 

where we have inserted D as in (2.37) and (2.34) and taking into account of the 
relations in (2.42) and (2.43). In  fact the nilpotent property of d is ensured when the 
constraints among the variables (or derivatives) are complementary to ones among 
differentials. In this case when D matrix is decomposed as the sum ofseveral projection 
terms, these terms must be divided into two parts: one part will annihilate the differen- 
tials and the other annihilates the derivatives. 

As in the A,,-type case [9], one can see immediately that all relations of the 
differential calculus described above are covariant under the action of a linear transfor- 
mation 

xi+ 5: -3 r;6' (2.45) 
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provided the matrix T = { (1 satisfying 
(2.46) 

The calculus is covariant under the action of quantum group LI,,(A) when R is the A 
type solution to the Yang-Baxter equation. The planes now under consideration may 
be called quantum orthogonal planes (A = B., 0.) or symplectic planes (A  = C,,). 

It is obvious that the method given here in constructing the solutions to the 
consistency conditions is a general one, which can be directly applied to the cases 
with k possessing more than three eigenvalues. For example, in GZ case, R has four 
different eigenvalues. (E -E) is always chosen as a projection operator associated 
with the antisymmetric representation in the q + 1 limit. And the (E + C) has to be 
expressed as linear combination of all the other projection operators. Correctly choosing 
these combination coefficients, one can get a C-matrix proportional to R itself. Together 
with F = B and D = C-' ,  all the consistency conditions are well satisfied. The nilpotent 
of the differential d follows directly from this construction. For quantum orthogonal 
planes the results presented here coincide with those of [IO]. 

T, T ~ R , ~  = R,,T, T ~ .  

3. The three-dimensional case 

In this section, as an example, we give the commutation relations of the differential 
calculus on the three-dimensional orthogonal quantum plane. The R matrix is 

0- -+ -0 _ _  ++ +o +- o+ 00 
++ 
t O  
+- 
Of 

0- 
-+ 
-0 

R =  00 

_ _  

d 1 \ 

where d = q - q-'  and the blank space means corresponding entries are zero. We denote 
the coordinates x+, xo and x-, the differentials 

dx' = 6' dxo = f' dx- = 6- (3.2) 
and the derivatives 

a 
(3.3) _- a a+ _- -do ax--d-.  

a -= 
dX+ 

For the E, case, it is easy to solve the eigenvalue problem of the R and categorize 
the eigenvectors according to their eigenvalue as follows: 

with the eigenvectors 
d&@" = (3.4) 

for singlet ho = q-2  
@ ' J =  m = 1,0, -1 for triplet A ,  = 1 = -4-' (3.5) [ :; p=2,1 ,0 , -1 , -2  for quintet A2 = q. 

It should be pointed out that these eigenvectors are just the CO coefficients and in 
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the eigenvectors of the singlet play the role of metric when we construct particular a 
Euclidean space from the orthogonal plane. For later convenience we write them here 
explicitly: 

(3.6) 

(3.7) 

Xing-Chang Song and Li Liao 

dU)= (U+-, P, U-+) = (q-112, 1, q 112 )/ q J7 + 1 + q  
u ' l " ' = ( u : o , u y ) = ( - q - 1 / 2  l / 2  p--- > q  )/ 4 + 4  

1/2- -112 -1)/J7-- u ~ ' = ( u l - , u ~ , u g + ) = ( l , q  q , 4 + ¶  
-0 - 112 JT- 

U?J? = (U!;, U-,) - ( - q p ,  q )/ q + q 

W : + = l  

( 3 3 )  

w:; = 1 w:; = w:o w:;= w y  

@y@;.= 8: 8;s:. (3.9) 

As usual, the orthonormality of these functions is assumed 

m.L_ ._._.._.. --- L^ > L....:. .: ^.__. -- P.I. ,ne prU,CU,u" uperatura can "e cxp,csseo oy lnelr ClgerlvCL-rurb as l U l l U W S  

Q'o) ' l=uU"kl  Q ( ' ) U  xl-u:u;n - Q( ' )$  = w:wt1, (3.10) 

This coincides with the expressions resulting from (2.32). 

X+XO = qxox+ xox- = qx-x 0 X + X - - x - X + =  ( q - 1 / 2 - q 1 / 2 ) x o x o  (3.11) 

Then we have the commutation relations between the coordinates 

the relations between the differentials 
5'5+= 0 5-5- = 0 5'50 = -q- 'g5- 
105-  = -q-l[-p 5050 = (q-1/2 - q1/ ' )5 -5+ 

(3.12) 5'6- = -5-5' 
and the relations between the derivatives 

d+Jo= q-'dJ+ a+J--J-J+=(q q )JoJo JoJ- = q-lJ-Jo. (3.13) 

We also give the commutation relations between the coordinates and differentials for 

1/2- - l / 2  

c = qd, 

x+<+= q 2 5 + x +  x + p =  q[Ox++(q2- 1 ) 5 + X 0  

x + t -  = (-x++(q-' - q)q'/250xO- (9-1- q ) ( q  - 1) t ' x -  

XOS' = q5+xO x o p =  q5OxQ+(q-'-q)q1/25+x~ 

xoz- = qc-xO+ (42- 1 ) p x -  

x-5+ = 5+x- x - p =  q p x -  x-5- = ¶yX- 
and the relations between the coordinates and the derivatives 

J+X*=  l - ( q - i  - q ) ( q -  l)x-J_+(q'-l)X'Jd,+q'X'J+ 

J+Xo = ( q- ' I2 - q312)~-do+ qXoJ+ 

Joxt = ( q- ' I2 - q'/2)xoJ. 4- qxtJo 

Jox- = qx-Jo J-x = x  J- J-x =qx  J- 

J+x- = x-J+ 

JoxO= I+(q2- l )x-J_+qxoJo 
(3.15) 

J-x- = 1 +q2x-J_ t i  0 0  

(3.14) 
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and those between the derivatives and the differentials 

a,[+ = q-2[+a+ a+['= q-'[Oa+ a,[- = [-J+ 

a&+ = q-'[+ao 

a_fo= q-'[Oa_+ (q1I2- q-3/2)5+~o 

aOto = q-'["a,+ (q-2- I)C+J 

a,[- = 4-l [-'aa+(q1'2- q-'I2)5'J+ a_[+ = [+a- (3.16) 

a&(-= q-2c-J-f(q-2- l)['Jof (q- '  - q)( q-'- l)C'J+. 

As pointed out in the last section, the differential calculus is covariant under the action 
of the linear transformation 

x +  Tx C+ Tc. 

The singlet combination is invariant under the action of the quantum group E,:  
r 2 E g ~ + * x j = q - l / 2  x + x - +x'x'+q"2x-x+ (3.17) 

where 

g , = m v , .  

This is nothing but the q-sphere condition. So the quantum orthogonal plane is 
fundamentally related to the quantum sphere [ 131. Furthermore, we see from repeatedly 
using (3.11) that 

r2xi &2. (3.18) 

This means that, rz=xgx=xiggxj  is the centre of the algebra generated by the 
coordinates x. 

4. The Schriidinger equation and the q-hydrogen atom 

As an application to the differential calculus presented above, we consider the 
Scbrodinger equation for the attractive Coulomb potential V(r) = -e2/r in the three- 
dimensional quantum Euclidean space. The results apply to higher-dimensional space. 

As stressed in section 3 there exists a metric g for the quantum plane 

g , = m v ,  (4.1) 

where 

Thus we can define the q-deformed Laplace operator which is invariant under the 
S0,(3) transformation: 

A = g,a'a' = gya,a, (4.2) 

where a'= g'la,. The Schrodinger equation in the non-commutative space reads 

(-A+ V)J, = EJ, (4.3) 

where V is the interaction potential concerned the physical system. 
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The commutation relation between J' and x' can be easily written as 

(4.4) = g V + q R - l ~ , x * a l  

which can be derived from equation (2.11) with C = q R  and the following useful 
relations: 

I. 

gijR{k = R - ' y g n m  (4.5) 
Rilgl" - - g'"R-';7, 

(4.6) 

In the previous section we showed that the length square r* = xgx = xig,x', which 
is invariant under the S0,(3) transformation, is the centre of the algebra generated by 
the coordinates x. But this is not true when we consider an extended algebra by 
including the derivatives J and the differential d together with x. In fact, we have 

J'r2= (1  + q-')xi+ q2r2J'. (4.7) 

Nevertheless one can show the action of the derivative is still consistent [lo]. As in 
the classical case, we can introduce the positive square root of r2, denoted by r, by 
requiring it to have adequate commutation relations with all the other elements of the 
algebra. Assuming 

~ 

i 

~ xi a ' =  a-+prJ '  (4.8) r 

we can get 

= 4-1 P = 4  (4.9) 

to reproduce the relation (4.7). In the same way, we have 

(4.10) 
= -q-2-+q-- l r - l J i  Xi 

r3 

l and in general 
J'r" = q-1[[n]]qr"-2~'+qnrnJ'  

where n is an integer and [[n]], is defined as 

Defining the q-exponential function as 

(4.11) 

(4.12) 

(4.13) 

We can get the following relation 

(4.14) X '  

a r  
J' exp,(-r/a) = -4-'  - exp,(-r/a) +exp,(-qr/a)J' 

and 

(4.15) q- '+q-*  1 1 
Aexp,(-r/a)= - - exp,(-r/a) +? exp,(-r/a) a r  U 
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where a is a constant. The Schrodinger equation forthe Coulomb potential V( r )  = - e 2 / r  
is 

( - A - $ ) + ( x ) = E + ( x )  (4.16) 

where + ( x )  is the eigenfunction and E is the eigenvalue. Through a tedious but 
straightforward calculation we find the first three solutions to this equation and list 
them as follows. 

(i) Ground level 

(ii) The first excited level 

(4.18) 

where a2 = a,q[2],  E2 = E1/[2I2. 
(iii) The second excited level 

+3211(x)  = wcx'x' exp,(-r/al) p = *2, * I ,  0 

with 

a3 = alq2C31 E,= E , / [3 ] ' .  

The apparent resemblance of the above solutions to the hydrogen atom leads us 
to christen the corresponding system, the 9-hydrogen atom and to guess that the 
following relations hold in general: 

(4.20) 

It is easily seen that the q-hydrogen atom has the same degeneracy of the energy 
levels with its classical counterpart and therefore may have S0,(4) symmetry corres- 
pondingly. In any case it is worthwhile to study this apsect further. As we know, almost 
only the hydrogen atom and harmonic oscillator system can be solved exactly in 
quantum mechanics. Now it is proven that they all have their q-analogue solutions 
[lo]. Due to this, the q-Schrodinger equation deserves investigation. In principle, we 
can discuss the quantum Lorentz group in the same way and construct the q-Dirac 
equation. This will be reported in a forthcoming paper. 
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