
 

Use of Extended Phylogenetic Profiles with E-Values and Support Vector Machines 
for Protein Family Classification 

 
Kishore Narra and Li Liao* 

University of Delaware, U.S.A. 
 
Abstract 

 
     Protein family classification is an important means to 
assign functions to proteins, and use of phylogenetic 
profiles, which encode evolutionary history of proteins 
along with putative homologs, has proved to facilitate 
protein family classification. We proposed a new 
approach to compare phylogenetic profiles by 
incorporating the phylogenetic tree, from which the 
profiles are derived. Specifically, the profile is extended 
with new bits corresponding to the internal nodes of the 
tree, which encode the correlations among the bits in the 
original profiles. Such extension allows for direct use of 
E-Values, instead of imposing an ad hoc cut-off to derive 
binary profiles, which are commonly used in previous 
methods. A scoring scheme is adopted for measuring the 
similarity among these extended profiles, and the scores 
thus obtained are then provided to a classifier -- a support 
vector machine using a polynomial kernel function -- for 
classification. The method has been tested on the 
proteome of Saccharomyces cerevisiae, the budding yeast 
and outperformed a similar method that uses phylogenetic 
tree information as a tree kernel. 
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1. Introduction     
 
     Predicting protein functions remains a central task in 
computational biology. A vast number of computational 
tools [1,2,18] rely on sequence similarity to infer protein 
homology, which in turn leads to functional prediction: 
two homologous proteins evolved from a common 
ancestral protein are more likely to play the same 
functional role. Proteins that are remotely homologous to 
one another and therefore share less (below 30%) 
sequence similarity pose as a major challenge to many 
functional prediction methods, which solely rely on 
sequence information for making prediction. To detect 
remote protein homologues, various techniques have been 
developed, for example, iterative search with refined 
profiles [1], sophisticated probabilistic models, powerful 
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statistical learning [10], and some hybrid approaches [7], 
to name only a few.  
 
     Some recent developments have attempted to utilize 
non-sequential information, either alone or in 
combination with sequence information, for protein 
functional prediction. For example, structural information 
was incorporated in profile hidden Markov models [6]. 
Some methods in comparative genomics went beyond 
homology for identifying proteins that are related to one 
another by participating in a common structural complex 
or metabolic pathways, or they are related because they 
fuse into a single gene in some genomes [4].  An 
important work along this line is the use of phylogenetic 
profiles for assigning gene functions based on 
evolutionary and/or co-evolutionary patterns across 
species [12, 14, 17]. The phylogenetic profile of a protein 
is represented as a vector, where each component 
corresponds to a specific genome and takes a value of 
either one or zero: with one (zero) indicating the presence 
(absence) of a significant homology of that protein in the 
corresponding genome.  Similar hierarchical profiles have 
also been constructed from whole genome metabolic 
pathways, and utilized for comparing genomes based on 
their physiological characteristics and for clustering 
pathways [9, 21]. The simplistic approach to compare two 
profiles, which are often in binary format, is simply to 
count the number of matches and mismatches between the 
two profiles. Such approaches, although proved to be 
useful for prediction, apparently miss the information that 
is embedded in the profile, namely the hierarchical 
structure -- because of the correlations implied by the 
hierarchical structure not all matches (mismatches) are 
equal in telling how two genes are related. In [9], a 
methodology was suggested for incorporating the 
hierarchical structure in comparing profiles. A Bayesian 
based approach was developed recently in [20] to utilize 
the phylogenetic tree for constructing kernel function of 
support vector machines that are used for predicting 
functions of proteins based on their phylogenetic profiles.  
 
     In this paper, we proposed a novel approach to 
extracting information embedded in hierarchical, 
specifically phylogenetic, profiles, and demonstrated that 
the extracted information, in concatenation with the 
original profiles, enabled more efficient learning for 
support vector machines. The scheme of extending the 
original profiles works as well, and actually even better, 
when the profiles use real value numbers, such as E-
values. The method shows a significant improvement for 
functional predictions of proteins than just by using the 



 

plain phylogenetic profiles, and it also outperforms the 
Bayesian based tree kernel method in [20]. 
 
 
2. Methods 
 
2.1. Tree encoded profiles 
 
     The phylogenetic profile of a protein is represented as 
a vector, where each component corresponds to a 
specified genome and takes a value of either one or zero: 
with one (zero) indicating the presence (absence) of a 
significant homology of that protein in the corresponding 
genome.  The similarity of these profiles can be used to 
detect protein homology; since proteins that tend to 
evolve in a coordinated way and thus have similar 
phylogenetic profiles.  In this study, a group of 24 
complete genomes is used to construct phylogenetic 
profiles for all proteins in Yeast [15].   
 
     The Hamming distance between a pair of phylogenetic 
profiles is perhaps the most straightforward way to 
measure the similarity. Yet, when correlation exists 
among the components in a vector, the Hamming distance 
becomes inadequate. For example, shown in Figure 1 are 
a phylogenetic tree of five species and three derived 
profiles x = (0, 1, 1, 1, 1), y = (1, 1, 1, 1, 1), z = (1, 1, 1, 1, 
0). The Hamming distance d(x, y) = -1+1+1+1+1 = 3, 
where the minus one is contributed from the mismatch 
between x and y at the first position. Similarly, the 
Hamming distance d(y, z) = 1+1+1+1-1 = 3.  However, 
using biological intuition, one would suspect that y and z 
should be farther apart since they mismatch at the fifth 
position, which corresponds to an attribute directly 
descendent from the root and consequently should be 
weighted more. 
 

 
Figure 1. A phylogenetic tree of five species and three phylogenetic 
profiles derived from this tree. 

 
     In this work, we propose a novel method to compare 
hierarchical profiles, which addresses both knowledge 
representation and efficient learning. To capture the 
information encoded in the hierarchical structure (a 
phylogenetic tree in this case) of a profile, a two-step 

procedure is adopted: 1) a score is assigned at each 
internal tree node; 2) the score labeled tree is then flatten 
into an extended vector. For an internal tree node in a 
phylogenetic tree, as it is interpreted as ancestor of the 
nodes underneath it, one way to assign a score for it is to 
take the average of the scores from its children nodes. 
This scoring scheme works top-down recursively until the 
leaves are reached: the score at a leaf is just the value of 
the corresponding component in the hierarchical profile. 
The same scoring scheme was first suggested in [9] to 
compare two phylogenetic trees by the thus obtained 
scores at the root of each tree. Unlike [9], where only the 
score at the root node was used, naturally suffering from 
certain information loss, here we instead retain the scores 
at all internal nodes: mapping them into a vector via a 
post-order tree traversal and concatenating this vector 
with the original profile vector to form an extended vector, 
which we call tree-encoded profile. For example, given a 
two-component vector <a, b>, where a and b correspond 
to two genomes and have a parent node c, our two-step 
procedure will first assign a score (a+b)/2 for node c, and 
then generate as extended vector as <a, b, (a+b)/2>. The 
newly added component will help enhance the similarity 
among the two-component vectors where (a+b)/2 is equal. 
For example, when profiles <0.3, 0.7>, <0.4, 0.6> and 
<0.2, 0.8> are extended, they become <0.3, 0.7, 0.5>, 
<0.4, 0.6, 0.5> and <0.2, 0.8, 0.5> respectively. Note that 
the values for the expanded components are real number 
in the range [0, 1].    
      
     As the extended profiles include real-value numbers, 
we can also use real-value numbers in the original profiles, 
whose binary values are derived by imposing a cutoff on 
E-values from BLAST search (see Section 2.3 for details). 
Obviously, by using E-values directly, we could avoid the 
loss of information this is incurred when converting to 
binary values.  However, since E-values can not generally 
be considered as metric distance, in next section, we 
devise an ad hoc scoring scheme based on the E-value 
distribution. 
 
     A further refinement is attained by introducing weights 
in calculating the average score for an internal tree node. 
The weights are collected as the frequency of presence 
and absence occurring in different tree leaves.  For 
example in Figure 2, the frequency for a presence is 67% 
at the left most position, and is 100% at the next position.  
Apparently, this only works when the original profiles are 
binary. In order to combine the benefits of using E-values 
in the original profiles and using weights for calculating 
the extended part, a threshold (of value 1) is used only for 
the purpose of collecting the weights. Once the weights at 
the tree leaves are counted, the E-values will be used to 
populate the internal nodes. In the result section, it is 
shown that such extended profiles, referred to as 
“TEEWP” in Figure 3, achieve the best performance. 
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2.2. Kernel function 
 
     With the tree-encoded profiles as input, a support 
vector machine using a polynomial kernel is utilized to 
classify proteins for different functional categories or 
families.  
     As a powerful statistical learning method, support 
vector machines (SVMs) [19] have recently been applied 
broadly to many problems in computational biology [13], 
including remote protein homology detection, microarrray 
gene expression analysis, protein secondary structure 
prediction, and problems in other domains [3] such as 
face detection and text categorization.  The power of 
SVMs comes partly from the data representation, where 
an entity (e.g., a protein) is represented by a set of 
attributes instead of a single score. As those attributes 
may not be equally representative in distinguishing a true 
positive from a true negative, the boundary line between 
the two classes, if depicted in a vector space, can be 
highly nonlinear.  The SVMs method will find a nonlinear 
mapping embodied as a kernel function such that the data 
can then be linearly separable in a higher dimensional 
space called feature space. The actual learning power of 
SVMs lies in the kernel function, which defines how to 
measure the “distance”  in the feature space between two 
points by using their values in the original space called 
input space. 
 
     The polynomial kernel used in this work is defined for 
vectors x and y as 
 

K(x, y) = [1+ s D(x, y)]d 
 
where s and d are two adjustable parameters. Unlike 
ordinary polynomial kernels, D(x, y) is not the dot 
product of vectors x and y, but rather, a generalized 
Hamming distance for real value vectors:  
 

D(x, y) = Σi=1 to n (S(|xi-yi|) 
 
where the ad hoc function S has value 7 for a match , 5 
for a mismatch by a difference less then 0.1, 3 for a 
mismatch by a difference less than 0.3,  and 1 for a 
mismatch by a difference less than 0.5.  As mentioned 
before, the values for function S are assigned based on the 
E-value distribution of the protein dataset.  So, if another 
dataset is used, these score values may be slightly 
different, depending on the E-value distribution. Thus 
customized kernel function is allowed for and actually can 
be conveniently implemented in the software package 
SVM Light [8] used in this work. 
 
     To test our method, we compiled three variations: 1) 
TEAHP, that encodes the tree, uses ad hoc function S, and 
polynomial kernel; 2) TEWP, that encodes the tree by 
using weights, and uses polynomial kernel; and 3) 

TEEWP, that encodes the tree with weights, takes the E-
values directly, and uses polynomial kernel. We 
compared these variations of our method with a linear 
kernel and a tree kernel reported in [20]. As a baseline for 
evaluating the utility of the tree encoding, we also extend 
the original profile simply by adding randomly assigned 
values, in the range of [0, 1] into each extended bit. 
Classification based on such randomly extended profiles 
is referred as “rand14_teahp”  in Figure 4. 
 
2.3. Data 
 
     The data set used in this work is the same data set as in 
[14, 17]. Proteins (or the genes encoding these proteins) 
with accurate functional classifications were selected 
from the budding yeast Saccharomyces cerevisiae 
genome. To ensure adequate training and testing 
examples, only the functional classes that contain at least 
10 genes were extracted from the several hundred classes 
in the Munich Information Center for Protein Sequences 
Comprehensive Yeast Genome Databases [15]. The 
resulting dataset contains 2465 genes in 133 classes. The 
binary profiles of these genes were built by BLAST 
search against each of the 24 genomes. Each bit in the 
profile for a gene was set to 0 or 1 if the E-value of the 
BLAST search for the gene against the corresponding 
organism was larger or smaller than 1 respectively. The 
phylogenetic tree of these 24 genomes is the same as in 
[20], and is used to obtain tree-encoded profiles, which 
are 38 bit vectors, with the last 14 bits corresponding to 
the internal nodes.  
 
     A 3-fold cross validation was adopted for the 
experiments. For each functional class, two third of its 
members are randomly selected as positive training 
examples, and the rest one third as positive testing 
examples. Genes not belonging in that class were 
randomly split into two thirds as negative training and one 
third as negative testing examples.  
 
3. Results 
 
     The results of the experiments are summarized in 
Figures 3, 4, and 5. The function prediction for each class 
is measured by its receiver operating characteristic (ROC) 
score. ROC score is the normalized area under a curve 
that plots the true positives as a function of false positives 
for varying classification thresholds [5]. ROC50 scores 
are ROC scores that are calculated by integrating the area 
up to the first 50 false positives. A curve in Figures 3 and 
4 is a histogram of ROC50 scores for 133 classes, 
averaged over 50 random runs for a function prediction 
method. Each curve shows the number of classes (Y-axis) 
that the respective method performs better than a given 
ROC50 score (X-axis). Therefore, a higher curve 
indicates more accurate prediction performance. As 
demonstrated in Figures 3 and 4, our method using the 



 

tree-encoded E-value based profile and polynomial kernel 
(TEEWP) has the best performance among the various 
methods tested here. In particular, it is worth noting that 
our method outperformed the tree kernel method reported 
in [20], not only with a better prediction accuracy, but 
also significantly faster.  In Figure 5, a class-by-class 
comparison of ROC50 scores from TEEWP and Tree 
Kernel methods is displayed. We hypothesize that the 
superior performance of our method derives mainly from 
our better way of capturing and representing the 
correlations existed among various bits of the original 
profile. To validate this hypothesis, we had just randomly 
extended the original profile by 14 bits, and then trained 
on the same dataset using the generalized polynomial 
kernel SVM. The results were reported in Figure 4 and it 
is easy to notice that the histogram curve of ROC scores 
is much worse than our method’s.  
 
 

 
Figure 2.  The 24 genomes and the phylogenetic tree of these 24 
genomes. 

 
4. Discussion 
 
     A novel approach was proposed in this work for 
extracting information that is embedded in hierarchical, 
specifically phylogenetic, profiles. It was demonstrated 
that the extracted information, in concatenation with the 
original profiles, enabled more efficient learning for 
support vector machines, leading to a significant 

improvement for functional predictions of proteins than 
by just using the plain phylogenetic profiles.  
 
 

 
Figure 3. Histograms of ROC50 scores for various methods on 133 
functional classes. TEAHP kernel refers to the method presented in this 
paper, and Linear kernel and Tree kernel refer to two methods reported 
in [17]. 

 
 

 
Figure 4. Histogram of the ROC50 scores. “rand14_teahp”  refers to 
extending the phylogenetic profiles by 14 random bits.   

 
 
     Our method also performed better than a tree kernel 
method that involved more sophisticated Bayesian 
analysis and probabilistic assumptions, which are ad hoc 
and sometimes causing some type of data unusable. For 
example, while it is intuitive to assign prior probabilities 
for ones and zeros in a binary profile when they are 
interpreted respectively as presence and absence of some 
events, it would be very difficult to do so for real value 
profiles, e.g., profiles that contain e-values directly from 
BLAST search. Our method, without resorting to 
assigning prior probabilities, can be readily applied to real 
value profiles.  
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Figure 5. Class-by-class comparison of ROC50 scores from TEEWP 
and Tree Kernel methods. Each point in the plot corresponds to a single 
MIPS functional class, out of 133 classes used in this study. 
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