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Abstract: We proposed a novel method for protein classification based on 
phylogenetic profiles. Each protein’s profile was extended with extra bits 
encoding the phylogenetic tree structure and the likelihood, in the form of 
weights on profile indices, of the protein’s functional family membership in 
each of the reference genomes. The extended profiles were then integrated as 
part of a kernel of a support vector machine, which was trained in a 
transductive learning scheme using the EM algorithm to update the weights. 
Classification accuracy was greatly increased when tested on the proteome of 
Saccharomyces cerevisiae using the MIPS classification as a benchmark. 
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1 Introduction 

Protein functional annotation remains a central task in genomics, and the computational 
efforts for this task have undergone several stages of development. Historically, most 
computational tools, such as BLAST (Altschul et al., 1990; Smith and Waterman, 1981; 
Narra and Liao, 2005), were developed to compare sequence similarity for protein 
homology detection. The basis for this type of method is that homologous proteins, 
evolved from a common ancestral protein via mutations, are likely to remain similar in 
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sequence composition, while still playing the same functional role. However, the 
effectiveness of the methods that solely rely on sequence similarity can be seriously 
compromised when applied to proteins in the so-called twilight zone, namely, those 
proteins that are distantly homologous to one another and therefore share less  
(below 30%) identity. Over the past decade or so, various techniques have been 
developed for detecting distant protein homologues, for example, iterative search  
with refined profiles (Altschul et al., 1997), sophisticated probabilistic models,  
powerful statistical learning (Liao and Noble, 2003) and some hybrid approaches 
(Jaakola et al., 1999), to name a few. 

The development of computational methods for predicting protein functions has 
witnessed changes with new trends. On the one hand, there are efforts to make use of the 
non-sequential information such as gene expression data, protein–protein interaction data 
or data of other types. On the other hand, some methods in comparative genomics have 
gone beyond homology detection by identifying proteins that are related to one another 
because they are associated in a common structural complex, participate in common 
metabolic pathways or fuse into a single gene in some genomes (Enright et al., 1999). An 
important work in this line is the use of phylogenetic profiles for assigning gene functions 
based on evolutionary and/or coevolutionary patterns across species (Liberles et al., 
2002; Marcotte et al., 1999; Pavlidis et al., 2001 and Pellegrini et al., 1999). 

The phylogenetic profile of a protein is represented as a vector, where each 
component corresponds to a specific genome and takes a value of either one or zero, with 
one (zero) indicating the presence (absence) of a significant homology of that protein in 
the corresponding genome. As functionally linked proteins, e.g., in a structural complex 
or a metabolic pathway, tend to evolve in a correlated way, therefore their phylogenetic 
profiles consequently show similarity. For example, proteins P1 and P2 are two enzymes, 
respectively, for two consecutive reactions in a pathway, for this pathway to exist in a 
genome G, both P1 and P2 have to be present (under an assumption that no alternative 
enzymes are available for the same reactions). As a result, if we align the phylogenetic 
profiles (vectors) of protein P1 and P2 on top of each other, they both have ones  
(or zeros) in the column corresponding to genome G. Furthermore, that pathway, of 
which the proteins P1 and P2 are two component enzymes, essential for certain  
cellular functions may necessitate its existence (therefore the presence of both P1 and P2) 
in a group of evolutionary-related genomes. That is, such functional linkages exert  
some evolutionary pressure, which is reflected as correlations among the aligned 
phylogenetic vectors, not only within columns (the vertical direction) but also, perhaps 
more importantly, across different columns (the horizontal direction). To utilise the 
phylogenetic profiles for classifying proteins, similarity measures between the 
phylogenetic profiles have to be defined. Among the first proposed are edit distance and 
Euclidean distance (Marcotte et al., 1999). Although these simple measures generated 
useful classification and prediction, an important piece of information is missed out that 
is these reference genomes are not totally unrelated, rather they are correlated during 
evolution as represented in a phylogenetic tree. The recent focus has been given to 
incorporating the evolutionary relations that are represented in the phylogenetic tree of 
the genomes into profile similarity (Liberles et al., 2002; Vert, 2002). 

The importance of the phylogenetic tree in the study of phylogenetic profiles has  
been recognised in early work, e.g., Liberles et al. (2002), where a method was  
proposed to utilise the historical evolutions of two proteins to account for their similarity 
(or dissimilarity). Evolutionary relationships among organisms can be represented as a 
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phylogenetic tree where leaves correspond to the current organisms and interior nodes 
correspond to hypothetical ancient organisms. So, rather than simply counting the 
presence and absence of the proteins in the current genomes like what is done for edit 
distance, a quantity called differential parsimony is calculated that minimises the number 
of times when changes have to be made at tree branches to reconcile the two profiles; the 
smaller the differential parsimony, the more similar the two profiles are. 

The concept of minimising the differences at the tree branches as a way to incorporate 
the evolutionary histories in comparing two phylogenetic profiles was generalised to 
include all evolutionary patterns and endowed with probabilistic formulation and 
interpretation (Vert, 2002). An evolutionary pattern corresponds to a series of 
assignments of the gene’s retention or loss at the branches of the phylogenetic tree such 
that the assignments match at the tree leaves with the profile of that gene. Due to the 
stochastic nature of the events where genes can be regained/added/lost during speciation, 
a probability is given to each such event, and the probability of an evolutionary pattern is 
therefore the product of probabilities of individual events at all tree branches, with an 
assumption that these events are independent of each other. The higher probability an 
evolutionary pattern has, the more likely it explains the profile, in a probabilistic sense 
why the protein (or rather its gene) is present or absent in the current genomes as the 
result of evolution. Moreover, two profiles are considered similar to each other if they 
share many highly probable evolutionary patterns. Thus, the joint probabilities of all 
possible evolutionary patterns were summed to give a kernel function called tree kernel, 
which plays a role of dot product of profile vectors in some higher dimensional space 
called feature space. As a test, this tree kernel was then used in a SVM to classify  
2465 yeast proteins whose functions and classifications were known in the MIPS 
database (http://mips.gsf.de/genre/proj/yeast/). The method used some preset parameters: 
the probability that an existing gene is retained at a tree branch (i.e., speciation) is set at  
0.9 and the probability that a new gene is created at a branch is set at 0.1. It was further 
assumed that such a distribution remains the same at all branches for all genes. Even with 
these crude assumptions, in the threefold cross validation experiments on those  
2465 yeast genes, the tree kernel’s classification accuracy already significantly exceeds 
that of a naïve kernel using just the ordinary dot product. 

In this paper we propose a novel, simple approach that incorporates both the 
phylogenetic tree (to account for correlations along the horizontal direction of  
aligned profiles) and the likelihood of a protein’s presence in the current genomes  
(to account for correlations along the vertical direction of aligned profiles) into training a 
SVM. Particularly, our method does not require preset probabilities for gene retention 
and creation during speciation. Not only it is difficult to justify any a priori values for 
these probabilities and the associated assumptions as used in the tree kernel, but it also 
turns out that their actual values do not seem to bear any influence to the classification 
accuracy of the tree kernel method – we tested with different settings varied from 0.9 to 
0.1 for gene retention (and 0.1–0.9 for gene creation, correspondingly) at 0.1 intervals 
and did not notice any significant changes in classification accuracy – this phenomenon is 
quite contrary to the intuition and worth further investigation for its own sake. Here we 
take a simple approach to incorporate the evolutionary history by encoding the 
phylogenetic tree as extra bits into the profiles (Narra and Liao, 2005). In doing so, we 
label the interior nodes of the phylogenetic tree with scores. These scores ought to reflect, 
on the one hand, the tree topology, e.g., the number of branches at an interior node, 
representing its chances of developing divergence in descendants. On the other hand, 
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these scores also ought to reflect the specific evolutionary history of the individual 
proteins (genes). Taking these into consideration, we computed the scores at tree 
branches (i.e., interior nodes) by averaging the scores at children nodes – in a recursive 
procedure that terminates when it reaches the leaf nodes – whose scores are simply the 
profile values of 1 or 0 when binary profiles are used, or real values as well, as shown 
later. To compare two profiles for similarity, we extend each profile with extra bits that 
correspond to the interior nodes of the individually labelled phylogenetic tree and take 
values of the scores at these interior nodes (see Figure 2). We then input these extended 
phylogenetic profiles into a polynomial kernel SVM for classification, hoping that these 
extra bits encoding the evolutionary history of individual genes embodied in the 
phylogenetic tree can help classify functionally linked genes. 

The extension of phylogenetic profiles also allows for incorporating correlations of 
proteins along the vertical direction of the aligned profiles into training the classifier. 
This is achieved by augmenting the scoring scheme with weighted averaging at the tree 
leaves, with the weighting factors reflecting the probability of a presence (or absence) for 
any protein (not just the protein whose profile is being extended) at specific current 
genomes. Such probabilities of proteins presence are collected using Maximum 
Likelihood (ML) methods from the training data, separately for the positive and negative 
examples. Therefore, the extended profile now carries not only the information about 
each individual protein’s correlated presence at different genomes but also some 
collective information about the specific proteome (i.e., a column in the aligned profiles). 
In order for this refined scoring scheme to work with the testing examples as well, the 
weighting factors have to be known for the positive and negative testing examples before 
generating the extended profiles. Because whether a testing example is positive or 
negative is not known beforehand, we propose to solve this circular problem in a way of 
transductive learning – weighting factors are collected using Expectation Maximisation 
(EM) method from the predicted results of the testing data (Craig and Liao, 2005).  
The profiles are thus updated with the predicted results, iteratively, and the iteration will 
stop when a preset criterion is met, in our case, when a Kullback-Leibler (KL) distance of 
weighting factors (treated as probability distribution) between two iterations is smaller 
than a preset threshold. When tested with the same dataset and cross-validation scheme as 
the tree kernel method in Vert (2002), our method, particularly when refined with the 
iterative weighting, has shown significantly superior performance. 

2 Overall approach 

2.1 Data set 

The data set used in this work is the same data set as in Pavlidis et al. (2001) and Vert 
(2002), hence the performance improvement of our method over these existing methods 
can be conveniently assessed. Genes with accurate functional classifications were 
selected from the budding yeast Saccharomyces cerevisiae genome. To ensure adequate 
training and testing examples, only the functional classes that contain at least ten genes 
were extracted from the several hundred classes in the Munich Information Center for 
Protein Sequences Comprehensive Yeast Genome Databases (Mewes et al., 2002).  
The resulting dataset contains 2465 genes in 133 functional classes. The binary profiles 
of these genes were built by BLAST search against each of the 24 genomes. Each bit in 
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the profile for a gene was set to 0 if the E-value of the BLAST search for the gene  
against the corresponding organism was larger than 1 and was set to 1 if otherwise.  
The threshold value 1 was empirically set, and the resulting profiles yielded best 
classification performance in the tree kernel method. The profiles can also be directly  
E-value based, without converting to 0/1 with any threshold. The phylogenetic tree of 
these 24 genomes, shown in Figure 1, is the same as in Vert (2002). 

Figure 1 The 24 genomes and a phylogenetic tree of these genomes 

 

A three-fold cross validation was adopted for the experiments. For each functional class, 
two-third of its members is randomly selected as positive training examples, and the 
remaining third as positive testing examples. Genes not belonging in that class were 
randomly split into two-thirds as negative training and one-third as negative testing 
examples. This process is repeated ten times for each functional class, and the 
classification accuracy, measured as Receiver Operating Characteristic (ROC) score in 
this paper, is the average over these ten runs. 

2.2 Tree encoding and profile extension 

As we argued above, the information encoded in the phylogenetic tree shall be 
incorporated into the profiles, and a two-step procedure is adopted as the following.  
In the first step a score is assigned to each interior node in the phylogenetic tree.  
Because each interior tree node is interpreted as an ancestral genome of the genomes  
at the descending nodes, a score therefore should reflect the degree of divergence  
(both biologically and pattern-wise) at these descendants. If these descendants are already 
assigned with scores, the average score will be assigned to the parent node. All interior 
nodes can be scored as such in a recursive procedure, such as a post-order tree traversal, 
as long as the leaf nodes are scored. The leaf nodes are scored according to the profile, 
namely score 0 when the protein is absent and score 1 when the protein is present.  
Once all interior nodes are assigned with scores, the second step is to flatten the  



      

 

   

 

   

   342 R.A. Craig and L. Liao    
 

    
 
 

   

 

 

       
 

score-clad tree into a vector mapping of the interior nodes into a vector is determined by 
a post-order tree traversal. The vector is then concatenated with the original profile vector 
to form an extended vector, which was called Tree-Encoded Profile (TEP), which are  
38 bit vectors, with the last 14 bits corresponding to the interior nodes of the phylogenetic 
tree in Figure 1. A schematic illustration of how a phylogenetic profile is extended is 
given in Figure 2. Actually, as shown in the results section, direct use of the E-value 
based profiles gives better classification performance than converting into binary profiles 
with an arbitrary threshold, which inevitably incurs some loss of information. 

Figure 2 Schematic illustration of extending a phylogenetic profile (unshaded boxes) with extra 
bits (shaded boxes) encoding interior nodes of the phylogenetic tree 

 

The rationale for extending phylogenetic profiles to aid the learning and classification is 
strikingly similar to that of using a kernel function to map the input vectors into higher 
dimension feature space. Unlike the use of kernels where the mapping is implicit, here 
the mapping is given explicitly, 

( )Tx xφ→  (1) 

as prescribed above, with x standing for an 24-vector, φT(x) for the extended 38-vector 
and T stands for the phylogenetic tree. Such explicit mapping has the advantage of 
allowing for incorporation of domain-specific knowledge – the phylogenetic tree. 

2.3 Iterative weighting in transduction 

A further refinement is attained by introducing weights in calculating the score S(k) for 
any interior tree node k whose children nodes contain tree leaves: 

( )( ) (1/ | |) ( ) ( )s i
i C

S k C S i W i
∈

= ∑  (2) 

where, C is the set of children nodes for node k, and |C| is the size of the set C.  
For binary profiles, the scores S(i) for leaf nodes i ∈ C are 1 or –1. Note that the score 
zeros, in the original profile as indication of gene absence, are changed to –1 in order to 
make the effect of weighting non-zero, because a zero multiplied by any weighting factor 
is still zero. The weights W±1(i) at a leaf i are collected as the frequency of absence (–1) 
and presence (+1) of proteins in genome i in the training data. As the weights can be 
interpreted as probability distribution of proteins presence in a genome, the frequency 
from counting gives the ML estimation of the probability distribution. The weight is 
always set to 1 if a node in C is not a leaf node. The weighting scheme may still be 
applicable even when the phylogenetic profiles are E-value based, namely S(i) for leaf 
nodes in equation (2) are real value numbers. To do this, we first use a threshold E0 on  
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E-value as if for converting the profiles into binary, so as to collect the frequency  
based on sign(E0 – S(i)), which will then be used as weighting factors Wsign(E0–s(i))(i).  
The equation (2) is thus modified as the following. 

sign( 0 ( ))( ) (1/ ) ( ) ( ).E s i
i L

S k L S i W i−
∈

= ∑  (2′) 

The E-value based profiles using the weighted-tree encoding scheme is shown to  
improve classification accuracy and is referred to as TEEWP later in the results section.  
The procedure for weighted extension, schematically illustrated in Figure 3, infuses into 
the mapping given in equation (1), some extra domain-specific information – W’s, the 
probability distribution of presence and absence of proteins over genomes, 

, ( ).T wx xφ→  (3) 

Since the weighting factor W’s reflect how likely proteins may be absent or present at a 
leaf position in the phylogenetic tree, and such collective information about the proteome 
(as sampled in the training data) helps distinguish proteins from different families, it 
therefore makes intuitive sense to collect family-specific weighting factors for the 
positive training examples (family members) and for the negative training examples 
(non-family members) separately. That is, when using equation (2) or (2′) to extend a 
profile in the positive training set, W±1(i) at a leaf i is collected from positive training 
examples only, whereas when using equation (2) or (2′) to extend a profile in the negative 
training set, W±1(i) at a leaf i is collected from negative training examples only.  
The difficulty with such a scheme of separate weighting is how should the profiles of the 
testing examples be weighted, since we do not know beforehand if a test example is 
positive or negative? 

Figure 3 Schematic illustration of weighted extension of phylogenetic profiles. Black squares 
indicate 1 and empty squares indicate 0. The weighting factors W+ are represented by 
vertical bars. The height of the vertical bars indicates the frequency of having a black 
square in a given column. The extended bits are grey-shaded indicating real number 
values 
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Before introducing our solution to overcome this difficulty, it is worthwhile to examine 
the effectiveness of using the family-specific W’s in the mapping equation (3). For that, 
let us assume that we can cheat for a while, namely, the W’s for the family members are 
collected from all positive examples (both training and testing) and then are used to map 
the profiles of the family members into 38-vectors. Similarly, the W’s for non-family 
members are collected from all negative examples (both training and testing) and then are 
used to map the profiles of these non-family members into 38-vectors. Such extended  
38 vectors are then input for classification, using the same SVM (Section 2.5) and cross-
validation scheme (Sections 2.1 and 3) as used for other cases in this study, and are 
shown to produce the best classification accuracy (the top curve in Figure 5, with details 
explained in Section 3). Now that we have demonstrated the very significant role of the 
family-specific W’s in data representation, let us address the difficulty we face in using 
them for the testing examples where we do not know a priori their labels as needed for 
collecting W’s and then applying them in turn for the mapping to the extended profiles.  
In other words, the simple ML estimation for W’s cannot be applied, because of the latent 
information, i.e., the labels of these testing examples. 

To overcome this difficulty, we adopted the transductive learning paradigm 
(Joachims, 1999b; Vapnik, 1998) and combined it with EM procedure. That is, we are 
allowed to look into the predictions made on the testing examples (E-step) and collect 
weighting factors from the Predicted Positives (PP) and negatives, respectively (M-step). 
In E-step, we first rank the testing examples by their scores returned from the classifier  
as confidence score for the prediction. In SVMs, these scores termed as discriminant  
are values ranged [–1, 1], with 1 indicating a certain prediction for positive and –1 a 
certain prediction for negative. Like in other transductive learning applications 
(Joachims, 1999b), one piece of extra information allowed for use is the ratio ρ of true 
positives vs. true negatives in the testing examples. This is feasible under the assumption 
that the class bias (i.e., ratio ρ) in the test set is the same as in the training set, although in 
reality this may not be exactly the case. We experimented with variations on ρ and found 
that the classification accuracy of the method is not sensitive to ρ; the results are not 
reported in this paper for the sake of space. So, with the ranked list of n testing examples 
and ratio ρ, we simply take the top nρ as PPs and collect weighting factors W’s. The rest 
are taken as Predicted Negatives (PNs), and the corresponding W’s are calculated in a 
similar way. Then, the profiles of the testing examples are updated, depending on 
whether they are PP or negative, with the respective weighting factors. The updated 
profiles are fed to the classifier for classification. Once new predictions are made,  
we can update the weighting factors and reweight these profiles again. We do this 
iteratively, till some stopping criterion is met, which will be discussed in the next 
subsection. The iterative procedure is shown schematically in Figure 4. Although the 
weighting procedure only affects the last 14 bits in the profiles, the classification 
accuracy is greatly increased with this iterative weighting scheme, as shown in the results 
section. The EM procedure presented here is quite similar to the Baum-Welch algorithm 
used in hidden Markov models when training data are unlabelled, but they differ in a 
significant way: Baum-Welch algorithm is applied during the model training, whereas the 
EM procedure here is applied in a transductive learning paradigm. 
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Figure 4 Schematic illustration of the EM procedure to obtain the weighting factors W for 
Predicted Positive examples (PP) and Predicted Negative (PN) examples. The profile 
extension step is detailed in Figure 3. The rectangle in the middle is shaded uniformly 
to indicate that the labels of the testing examples are assumed to be unknown until 
predicted by the SVM 

 

2.4 Stopping criterion 

In order to put this method into practical use, a criterion must be established to stop the 
iterative reweighting procedure. Since the weighting factor W±1(i) at a leaf i can be 
interpreted as probability distribution over two possible outcomes, we use relative 
entropy, a.k.a., and KL distance to measure the change brought about on W’s between 
two consecutive iterations. For the jth bit (i.e., leaf j) of the 24 bits, calculate the KL 
distance as 

1, 1
{ ( ) log[ ( ) / ( )]},j a a a

a
d W j W j W j

=− +

′= ∑  (4) 

where, Wa(j) is the weighting factor at leaf j, with a = ‘+1’ or ‘–1’, and W’a(j) is the 
weighting factor at leaf j calculated from the previous iteration. We monitor the average 
KL distance over the 24 original bits 

1, to 24
/ 24,j

j
d d

=

 
=  
 
∑  (5) 

for each iteration to see if it converges and at least shows a trend of convergence. We also 
monitor the classification accuracy at each iteration. We hope to see that, over iterations, 
while the classification accuracy increases the average KL distance decreases. Then, an 
empirical threshold can be set on the average KL distance to stop the reweighting 
procedure, in order to achieve some desired classification accuracy. The result is reported 
in Figure 6. 

2.5 SVM and kernels 

The classifier used here is a SVM with a polynomial kernel. As a powerful statistical 
learning method, SVMs, originally proposed by Vapnik (1998), have recently been 
applied with remarkable success in bioinformatics problems, including remote protein 
homology detection, microarray gene expression analysis and protein secondary structure 
prediction (Schoelkopf et al., 2004). 
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The basic idea of SVMs is simple; it is to find a hyperplane that separates two classes 
of objects, as represented as points in a vector space, with the maximum margin to the 
boundary lines, such a hyperplane ensures good generalisation – unseen data are then 
classified according to their location with respect to the hyperplane. The power of SVMs 
comes partly from the data representation, where an entity, e.g., a protein, is represented 
by a set of attributes. However, how those attributes contribute to distinguishing a true 
positive (filled dot in Figure 5) from a true negative (empty circle) may be quite complex. 
In other words, the boundary line between the two classes, if depicted in a vector space, 
can be highly non-linear (dashed line in the left panel of Figure 5). The SVMs method 
will find a non-linear mapping that transform the data from the original space, called 
input space, into a higher dimensional space, called feature space, where the data can be 
linearly separable (right panel of Figure 5). 

Figure 5 Schematic illustration of non-linear mapping of data from input space to feature space, 
where a maximum margin hyperplane is found, for a SVM 

 

In general, the mapping can be quite complex and the dimension can be very (infinitely) 
high in order for the mapped data to be linearly separable. The trick of SVMs is the use 
of kernel functions, which define how the dot product between two points in the feature 
space, which is the only quantity needed to solve the quadratic programming problem for 
finding the maximum margin hyperplane in the feature space. The use of kernel functions 
avoids explicit mapping to high-dimensional feature space; high dimensionality often 
poses difficult problems for learning such as over-fitting, thus termed the curse of 
dimensionality. Two commonly used generic kernels are Gaussian Radial Basis Function 
(RBF) and polynomial functions. For vectors x and y, Gaussian RBF is defined as 

2( , ) exp[ (| | / )],K x y x y c= − −  (6) 

and the polynomial kernel is defined as 

Polynomial ( , ) [1 ( )] ,dK x y s x y= + ⋅  (7) 

where, c, s and d are parameters adjustable in the software package SVM Light  
(Joachims, 1999a). Both kernels are experimented with the default values for c, s and d, 
and the polynomial kernel yielded better results that are reported in this paper. 
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It is worth noting that, overall, our method can be viewed either as a hybrid that 
employs both an explicit mapping equation (3) and a generic kernel equation (7) in 
tandem or as a conventional SVM but with a specially engineered kernel that is 
composed of two parts, equations (3) and (7). 

3 Results 

The results of the threefold cross-validation experiments on the dataset of 2465 yeast 
genes are summarised in Figures 6 and 7. The function prediction for each class of the 
133 classes is measured by ROC score. ROC score is the normalised area under a curve 
that plots the true positives as a function of false positives for varying classification 
thresholds (Gribskov and Robinson, 1996). ROC50 scores are ROC scores that are 
calculated by integrating the area up to the 50th false positive. The ROC50 scores are in a 
range of [0, 1], with 1 for a perfect classification. Recall that, for each functional class, 
two-thirds of its members are randomly selected as positive training examples, and the 
remaining third as positive testing examples. Genes not belonging in that class were 
randomly split into two-thirds as negative training and one-third as negative testing 
examples. To ensure the results are robust to the data preparation procedure, we repeat 
the experiments over ten random runs. In each run, the training and testing data are 
independently prepared. ROC50 scores reported in this study are all averaged over ten 
random runs. 

In Figure 6, histograms show the performance over 133 classes, the number of classes 
(Y-axis) that were classified with accuracy better than a given ROC50 score (X-axis). 
Therefore, a higher curve indicates more accurate prediction. For comparison purpose, 
histograms for a linear kernel, the ‘tree’ kernel (Vert, 2002) and Tree-Encoded E-value 
Weighted Profiles (TEEWP) are also shown in Figure 3. It is easily seen that, although 
TEEWP has already outperformed the tree kernel, the iterative weighting scheme 
improved the accuracy greatly and achieved a superior performance. To verify the gained 
performance is indeed due to incorporating phylogenetic tree, we repeat the transductive 
learning but with a randomly permutated tree. As shown in Figure 5, the performance of 
random tree with ten iterations is much worse. In addition, we notice that the overall 
performance gain is very significant with the first several iterations and then tend to 
quickly converge with more iterations. In Figure 6, this trend of convergence is shown 
with the average ROC50 score of 133 classes (the left Y-axis) going up and reaching a 
plateau as the number iteration increases. Also shown in Figure 7 (the right Y-axis)  
is that the average KL distance of weighting factors between iterations is diminishing,  
a sign that the weighting factors stop picking up new information from more  
iterations. Although, at present, the iterative weighting scheme is not yet formulated  
as an optimisation problem with a well-defined objective function, the KL  
distance of weighting factors seems to be a useful pragmatic substitute for that  
purpose. 
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Figure 6 Histogram of ROC50 scores for various experiments on the 133 families 

 

Figure 7 The KL distance and average ROC50 scores over ten iterations 

 
In addition, the 15 functional classes where the naïve linear kernel had reported  
best ROC50 scores among that of the 133 classes are examined in details (see Table 1) 
and in all 15 classes, our method outperformed both naïve linear kernel and tree kernel. 
Except two classes (fermentation and ABC transporters), the best ROC50 scores are 
consistently achieved by the transductive learning method, with the highest performance 
improvement over that of naïve linear kernel being 514% (in the class of tRNA 
modification). 
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Table 1 Performance of various methods for the 15 selected families 

Name 
No. of 
ORFs Naïve Tree TEEWP

IR,  
N = 0 

IR, 
N = 1 

IR,  
N = 2 

IR,  
N = 15 

Amino acid transporters 25 0.740 0.810 0.749 0.856 0.969 0.956 0.978 
Fermentation 34 0.680 0.730 0.980 0.755 0.915 0.919 0.979 
ABC transporters 28 0.640 0.870 1.000 0.826 0.958 0.966 0.973 
C-compound, 
carbohydrate transport 

42 0.590 0.680 0.754 0.801 0.865 0.879 0.922 

Amino acid biosynthesis 118 0.370 0.460 0.448 0.511 0.663 0.784 0.827 
Amino acid metabolism 204 0.350 0.320 0.412 0.424 0.479 0.590 0.673 
TCA pathway 25 0.330 0.480 0.396 0.550 0.845 0.941 0.892 
Transport facilitation 310 0.330 0.280 0.344 0.397 0.535 0.720 0.673 
Organisation of plasma 
membrane 

144 0.310 0.300 0.454 0.386 0.577 0.738 0.791 

Amino acid degradation 
(catabolism) 

35 0.300 0.520 0.651 0.444 0.774 0.853 0.831 

Lipid and fatty-acid 
transport 

16 0.290 0.520 0.685 0.408 0.715 0.865 0.848 

Homeostasis of other 
cations 

23 0.260 0.330 0.000 0.488 0.853 0.793 0.921 

Glycolysis and 
gluconeogenesis 

35 0.250 0.660 0.607 0.495 0.799 0.891 0.928 

Metabolism 1062 0.240 0.200 0.250 0.240 0.211 0.735 0.317 
Cellular import 101 0.200 0.270 0.163 0.204 0.234 0.701 0.617 
tRNA modification 17 0.150 0.320 0.913 0.283 0.790 0.921 0.914 
Average – 0.377 0.484 0.550 0.504 0.699 0.828 0.818 

4 Discussion 

We presented a novel approach that extends the phylogenetic profiles with extra bits 
encoding the phylogenetic tree and classifies proteins based on the weighted phylogenetic 
profiles in a transductive manner. The approach gives superior performance as tested  
in classifying the yeast genome, as compared to the previous methods (Vert, 2002).  
The superior performance is believed to come partly from the use of domain-specific 
information about the genome – the frequencies of protein’s absence and presence  
in a given genome as opposed to other genomes (corresponding to leaves in the 
phylogenetic tree). In order to incorporate such domain-specific information into the 
phylogenetic profiles for proteins whose class membership is yet to be predicted, we 
proposed a self-consistent, transductive type learning combined with a EM procedure that 
allows for the use of prediction from the previous iteration. It differs from the standard 
transductive learning (Joachims, 1999b; Vapnik, 1998) in that, the classifier, a SVM in 
this case, is not retrained; only the phylogenetic profiles of testing examples are 
reweighted, although reweighting affects the feature space and thus can also be viewed as 
part of the kernel. One apparent advantage over the standard transductive learning is thus 
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the speed gained from avoiding retraining the classifier. The empirical results show the 
trend of quick convergence. Identifying an objective function and formulating the 
iterative reweighting as an optimisation problem will be pursued as future research. 
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