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Absract  
      
     Designing antisense oligonucleotides with high 
efficacy is of great interest both for its usefulness to 
the study of gene regulation and for its potential 
therapeutic effects. The high cost associated with 
experimental approaches has motivated the 
development of computational methods to assist in 
their design. Essentially, these computational methods 
rely on various sequential and structural features to 
differentiate the high efficacy antisense 
oligonucleotides from the low efficacy. By far, 
however, most of the features used are either local 
motifs present in primary sequences or in secondary 
structures. We proposed a novel approach to profiling 
antisense oligonucleotides and the target RNA to 
reflect some of the global structural features such as 
hairpin structures. Such profiles are then utilized for 
classification and prediction of high efficacy 
oligonucleotides using support vector machines. The 
method was tested on a set of 348 antisense 
oligonucleotides of 19 RNA targets with known 
activity. The performance was evaluated by cross 
validation and ROC scores. It was shown that the 
prediction accuracy was significantly enhanced. 
 
 
1. Introduction 
 
     Antisense oligonucleotides (AO) are typically 15-
30 bases long, can bind to mRNA sequences at 
specific locations determined by Watson-Crick base 
pairing rules, and as a result, can inhibit gene 
expression. Designing high efficacy antisense 
oligonucleotides has drawn a lot of attention because 
of the usefulness to the study of gene regulation, and 
also because of potential therapeutic applications [1]. 
However, it is reported that only about 20% of the 
corresponding AOs are actually effective gene 
inhibitors in vivo, if the target site on the mRNA is 
randomly selected [2]. Experimental approaches to AO 
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selection, in which a number of candidate target sites 
on the mRNA are chosen for testing their efficacy, are 
time consuming and costly. 
     Several computational methods have thus been 
developed to this end [3, 4, 5, 6]. Essentially, these 
methods rely on various sequential and structural 
features to differentiate antisense oligonucleotides with 
high efficacy from those with low efficacy. For 
example, in a paper by Matveeva et al, the occurrence 
of some motifs of 3 or 4 bases long, such as CCAC 
(GGGG), are reported to be correlated with high (low) 
activity efficacy. In the work by Giddings et al, 2002, 
an artificial neural network was developed to scan the 
AO sequences of all 256 tetranucleotide motifs, and 
achieved an accuracy of 53% for high efficacy AOs.  
In [5] by Camps-Valls et al, 2004, a support vector 
regressor was developed to select among a variety of 
features the most discriminating ones in identifying 
high efficacy AOs, and a success rate of 83.3% was 
reported for predicting AOs with activity efficacy 
higher than 0.75. By far, however, most of the features 
used in these methods are local to very short segments, 
such as sequence motifs or secondary structural 
signatures or combination of both. Features pertaining 
to the global properties of oligonucleotide and mRNAs 
are often either not included at all, or included but with 
significant information loss. For example, in Camps-
Valls et al’s work [5], hairpin quality, a kind of global 
feature that reflects base paring across a distance, is 
considered, but only encapsulated as a single value to 
input to the classifier. The information loss suffered 
from such situations is much like that the number of 
base ‘C’ in the oligonucleotide sequence does not tell 
how these bases are actually distributed. 
     In this paper, we proposed a new method that 
incorporates both local and global information from 
the sequences and secondary structure of the antisense 
oligonucleotides and the target mRNA. The sequences 
and secondary structures of AOs are profiled into 
features (Nmers) that are believed to be differentiating 
and are input to support vector machines for 
classification. Similar profiling on mRNAs at the 
binding site is also implemented.  In addition to 
profiling on the occurrences of Nmers, which are 
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considered local due to typically small N, we devised 
another profiling method that can capture some global 
features, for example, the base pairings across a long 
distance, and then retain adequate information to input 
to the classifier. By testing on a widely adopted 
dataset, it is shown that our method provides superior 
performance with a ROC score 0.973.  
 
2. Method 
 
     In order to classify antisense oligonucleotides by 
their activity efficacy and further to predict high 
efficacy oligonucleotides, we first need to identify and 
extract features/attributes of the corresponding AOs 
and the target mRNAs that are believed to be 
correlated to the activity efficacy. Then we input those 
attributes to a classifier for classification and/or 
prediction. In this work, we adopted a powerful and 
increasing popular classifier − support vector machines 
[12, 13]. 
 
2.1 Data 
 
     The data used in this work is the same as in 
Matveeva et al (2000). The set consists of 348 
oligonucleotide DNA sequences whose activities at 
targeting mRNA were already experimentally 
determined. The activity efficacy is measured as a 
score between 0 (low) and 1 (high). In order to 
evaluate the performance of the classifier, a scheme of 
6 fold cross validation is adopted. That is, the set was 
split randomly into 6 subsets, of which 5 subsets were 
used for training the classifier and one subset was used 
for testing. In each subset, AOs with efficacy higher 
than 0.5 are considered as positive examples and AOs 
with efficacy equal to or lower than 0.5 are considered 
as negative examples. The learning and testing process 
was repeated 6 times, with the test set rotating among 
the 6 subsets. The average results are reported. To 
evaluate the method’s accuracy of predicting high 
efficacy AOs, we follow the same convention as used 
in the work of Gamps-Valls et al [5] by testing on a 
subset of AOs with activity efficacy either higher than 
0.75 or lower than 0.25. Such a dichotomy is 
reasonable, as in practice we are mainly interested in 
predicting AOs that can reduce the expression level of 
target mRNA by 75% or more. 
 
2.2 Profiling 
 
     To be able to classify AOs with different activity 
efficacy, the first step is to identify and extract some 
features/attributes that are correlated with AOs’ 
activity efficacy, and to represent these features in a 
format suitable to be used in support vector machines. 

In general, it is easy to conceive that certain such 
features must be embedded in the sequences and 
structure of oligonucleotides and target mRNAs. For 
example, in Matveeva et al, some motifs of size 4 such 
as CCAC (GGGG) are reported to be correlated with 
high (low) activity efficacy. One systematic way to 
extract such features is to profile the sequence on all 
Nmers for a given N.  Such profiling, which has been 
widely used, for instance to classify proteins in (Leslie 
et al, 2004), will generate for each AO a vector of size 
D, where D is the number of all possible Nmers, and 
each component of the vector gives the occurrence 
frequency for the corresponding Nmer.  
    In this work, we propose to profile both the 
sequences and secondary structure of AOs, as it is 
reported in literature that the secondary structure of 
oligonucleotides and mRNAs may play a very 
important role in the activity efficacy [4]. A similar 
method has been used in the work by Xue et al for  
classifying microRNA precursors [7]. Moreover, in 
this paper, we devised a scheme that also took into 
account some global features of secondary structure of 
AOs and target mRNAs.     
     RNAfold from Vienna RNA package 
(http://www.tbi.univie.ac.at/~ivo/RNA/) was used to 
produce the secondary structure for a given antisense 
oligonucleotide or mRNA. The predicted secondary 
structure is represented as a string of nested 
parentheses for paired nucleotides and dots for 
unpaired nucleotides.  
      In the Triplet profiling, the secondary structure is 
scanned for any of the 8 possible triplets: …, (.., .(., ..(, 
((., (.(, .((,  and (((. Here the orientation of parentheses 
is indiscriminate. To account for the correlation 
between the sequence and the secondary structure, the 
triplet is coupled with the nucleotide in the middle 
base of the triplet, extending the feature set to a size of 
8x4 = 32. The occurrence frequencies of these 32 
features are counted and used to represent the 
corresponding molecule, which can be either an 
antisense oligonucleotide or the target site of mRNA. 
As a straightforward generalization, we also 
concatenate the vectors of the AO and its target mRNA 
into a combined vector of dimension 64. It should be 
noted that we also experimented with using 
parenthesis-orientation sensitive triplets and 
quadruplets in profiling.  With parenthesis orientation 
sensitive triplets, the profile vector dimension 
increases to 3x3x3x4 = 108, as at each position there 
are three possibilities: ., (, or ). Similarly, quadruplets, 
either parenthesis orientation sensitive or not, will 
increase the profile vector dimension significantly. Our 
experiments indicated that such efforts did not pay off, 
instead, the prediction accuracy decreased slightly, see 
Results section for details for an explanation. 



 3

       Although the Triplet profiling is useful in 
capturing local features, we are also interested in 
features that may span across the antisense 
oligonucleotides and/or mRNA target sites, for 
example, a hairpin structure (see Figure 1 panel B). 
However, the straightforward generalization of using 
Nmers with larger value of N does not scale up: the 
profile vector dimension increases exponentially with 
N. More importantly, as mentioned above, larger N 
does not lead to the improvement, but to the decrease 
in performance.    
     In this work, we further proposed the GS profiling 
to incorporate some global structural information by 
scoring the secondary structure cumulatively. That is, 
we start with an initial score, say zero, and we scan the 
secondary structure one base at a time. At each base, 
we score the base according to whether it is unpaired, 
paired with a base downstream, or paired with a base 
upstream. The cumulative score, i.e., the score for the 
current base added to the score up to the previous base, 
is recorded for the current position. The cumulative 
scores form a score landscape, which is used to 
characterize the secondary structure somewhat 
globally. Figure 1 illustrates how this works for four 
typical  cases using a scoring scheme as follows: 
 
              S(a) = +1  if a is paired downstream, 
                         - 1   if a is paired upstream, 
                           0   if a is unpaired, 
 
where a ∈{A, C, G, U}. It can be easily seen that the 
cases presented in Panels B and C of Figure 1 may be 
indistinguishable in Triplet profiling, but have very 
different GS profiles. It is worth noting that while the 
secondary structure in Panel C is not possible for AOs, 
it can happen to target sites of the mRNA, which folds 
as a whole. A refined scoring scheme can be devised to 
account for the varied strength of different pairing 
bases, for instance, higher score is assigned to GC pair 
than AU pair. The score landscape thus obtained is 
similar in spirit to what one would get from the 
traceback path of Nussinov Algorithm for RNA 
folding [8], though they differ in an important way: 
unlike the score landscapes produced here, which may 
have show up and down trends as indicated in Figure 1 
Panel B for hairpins, the traceback in Nussinov gives a 
score landscape monotonically increasing from left to 
right, since the dynamic programming algorithm 
maximizes the number of pairings incrementally. 
Because the size of a score landscape vector thus 
obtained is the same as the length of the antisense 
oligonucleotide, which varies for different AOs, we 
need to normalize these vectors into the same size 
before we can input them to the support vector 
machine. The size of the normalized vectors, which we 
refer to as GS profile, is a free parameter in our 

method. In this study, we have used a value 10. In 
addition to the length normalization (into 10 bins), the 
amplitudes of these vectors are also normalized, into 
the range [-1, 1]. The amplitude normalization 
becomes necessary when we later concatenate the GS 
profiles with the Triplet profiles to take the benefits 
from both – the resultant vectors will not be so skewed 
in terms of the amplitudes. We refer to the 
concatenated profiles as GS+Triplet. 
 

 
Figure 1. Schematic score landscape for four 
typical secondary structural features. 

 
 
      The profiles are then used as the input to the 
support vector machine for classification. The support 
vector machine used in this work is the 
implementation from the SVMLight package [9]. 
Three types of kernel functions – linear, polynomial 
and Gaussian with default parameter settings – are 
tested.  The best performance was reported from linear 
kernel function. 
 
3. Results 
 
     The performance of classification and prediction is 
evaluated using receiver operating characteristic 
(ROC) score [10]. A ROC score is the normalized area 
under a curve that plots the true positives as a function 
of false positives for varying classification thresholds. 
ROC scores are in the range of [0, 1], with 1 for a 
perfect classification.  
      The ROC scores for the 6-fold cross validation 
experiments are reported in Table 1. The row labeled 
with Triplet lists the ROC scores for using Triplet 
profiling for three cases: antisense oligonucleotide 
only (Oligo), target mRNA only (mRNA), and 
concatenation of the two (Oligo+mRNA). The row 
labeled with GS lists the ROC scores for the above 
three cases using the GS profiling. And the last row 
lists the ROC scores when Triplet profiling and GS 
profiling are used in conjunction.  
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     It can be seen that for Triplet profiling the best 
performance (ROC = 0.960) was achieved when 
oligonucleotide and mRNA target site are combined. 
Although the sequences of AO and mRNA are reverse 
complementary, therefore do not provide new 
information by concatenation, the secondary structure 
of AO and that of its target mRNA at the binding site 
are almost certain different, and thus supply new 
information. However, such performance gain from 
concatenating oligonucleotide and mRNA does not 
hold for GS and GS+Triplet. If oligonucleotides and 
mRNAs are used alone, we noticed that mRNA give 
better performance for all three profiling methods: 
Triplet, GS, and GS+Triplet. Among all 9 variations 
considered in Table 1, the best performance (ROC = 
0.973) was achieved when the GS and Triplet profiling 
are used in conjunction on mRNA. This performance 
is apparently better than that of the previous methods 
on the same data set [5, 6]. 
 
 
 
  Table 1.  ROC scores for various experiments 
 

 Oligo mRNA Oligo+ 
mRNA 

Triplet 0.935 0.955 0.960 
GS 0.567 0.660 0.586 

GS+Triplet      0.871     0.973     0.888 
 
 
     Profiling on parenthesis orientation sensitive 
triplets and quadruplets was also tested, but did not 
improve the performance, instead the performance 
decreased slightly (results not reported here). To a 
certain extent, such phenomena are not unusual. As the 
Nmer’s size increases, the profile vector dimension 
increases exponentially, and most of the Nmers do not 
occur in the short sequence of AO, leaving many 
components of the resultant profile vector with zero 
value, which dilutes the information content. This is 
part of the consequences of so-called dimensionality 
curse, and may also be responsible for why 
GS+Triplet on Oligo+mRNA did not perform well as 
initially expected. 
     A closer look at the Nmer’s distribution can shed 
light on why the profiling on mRNAs outperforms that 
on oligonucleotides, and more importantly, may 
provide useful guidance for designing high efficacy 
AOs. In Figures 2 and 3, the distributions of all 32 
triplets for oligonucleotides and mRNA target sites are 
displayed respectively. The occurrence frequency (Y-
axis) of a given triplet (X-axis) is counted separately 
for high activity (>0.75) v.s. low activity (<0.25) 
oligonucleotides. On X-axis, from left to right, the first 

8 triplets have nucleotide A in the middle position, the 
next 8 triplets have C, and the next 8 triplets have U, 
and the last 8 triplets have G. It can be seen that at 
mRNA target sites, triplets ‘(((’ have higher 
occurrence frequency regardless what nucleotide is in 
the middle position, implying a more stable structure 
because more bases are paired up. When the middle 
nucleotide is considered, the target sites for AOs with 
high efficacy have about 23% chance of having a 
triplet ‘(((‘ with a base G in the middle, which is more 
than double the 11% for sites that correspond to low 
efficacy. On the contrary, high occurrences are 
observed for triplets ‘…’ on the oligonucleotides, 
implying a less stable structure because fewer bases 
are paired up. No surprisingly, base C is the most 
prominent composition, due to the sequence 
complementarity between the AOs and the target 
mRNAs, because there are more Gs on mRNA as 
mentioned above. It is worth noting that, the difference 
between the frequencies of a triplet to occur in high 
efficacy and in low efficacy is more pronounced in 
mRNAs (Figure 3) than in oligonucleotides (Figure 2). 
This partly explains why profiling on mRNAs is more 
effective in discriminating high activity AOs from low 
activity AOs, than profiling on AOs. As the sequences 
are complementary between an oligonucleotide and its 
target mRNA, it is reasonable to think that the 
discriminative power of profiling on mRNAs comes 
from the secondary structure of mRNAs at the binding 
site, which, as part of the folding of the whole mRNA 
molecule, can be quite different from what the 
oligonucleotide alone can fold into.  In other words, 
the secondary structure of mRNAs at the binding site 
carries some global structural information, which 
provides the rational behind the GS profiling. 
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Figure 2. Distribution of occurrence frequency for 
triplets on oligonucleotides 
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Figure 3. Distribution of occurrence frequency for 
triplets on mRNAs 

 
 
4. Discussion 
 
     In summary, in this work, we have developed a new 
method to classify and predict oligonucleotides into 
two classes of high activity efficacy and low activity 
efficacy respectively, based on some local and global 
structural features.  The results from the cross 
validation experiments indicated that, although these 
global features alone do not yield better performance, 
the classification accuracy was improved when they 
are used in conjunction with the local features. We 
also found that profiling on mRNAs is more 
discriminative than on oligonucleotides themselves in 
telling whether they will have high activity. What is 
more, the highly discriminative triplets can be useful 
guides in designing/selecting AOs for high activity 
efficacy.  
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