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ABSTRACT

In this paper we study data mining problems arising in the
analysis of metabolic pathways. Each pathway is repre-
sented as a set of enzymes. These pathways are clustered
according to their co-occurrence in various organisms. Each
enzyme in a pathway is represented by a phylogenetic tree.
By observing that pathways co-occurring in many organ-
isms tend to have common enzymes, we propose new tree
matching algorithms to cluster the pathways by clustering
their enzymes (trees). Using the tree matching algorithms,
we also develop a technique to classify enzymes in the path-
ways. We expect to apply these techniques to further study-
ing evolution of metabolism.

1. INTRODUCTION

As more genomes are sequenced and metabolic pathways of
organisms reconstructed, it becomes possible to perform de-
tailed pathway comparisons, thus gaining insights into the
evolution of metabolism. Often, metabolic pathways are
profiled according to their presence and absence in organ-
isms with completed genome sequences. A pathway is said
to be present in an organism if all enzymes that are required
for the pathway to function are found in the organism. Here,
we are not concerned with whether a pathway will be really
activated (i.e., producing the end product). In general, even
if all its enzymes exist, the pathway may still not be active.
In other words, being present here is different from being
active. Notice also that each step in a pathway, represent-
ing one chemical reaction, normally performs a different and
unique function in producing the end product. Putting in
the context of a pathway network, there have to be stoi-
chiometical relations to be conserved. However, we are not
concerned with these details for the purpose of this study.

Thus, each pathway can be considered as a string of zeros
and ones, corresponding to its absence and presence, respec-
tively, in a set of organisms. In the study presented here, we
consider 31 organisms. Thus, each pathway is a string of 31
bits, where a ‘0’ value at the ith bit indicates that the path-
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| | Org: Org: Orgs Orga |
P |0 1 0 1
P |1 0 1 0
P; (| 0 1 0 1
Py |1 0 1 0
Ps (| 0 1 0 1

Table 1: Profiles of presence and absence of metabolic path-
ways Pi,..., Ps in organisms Orgi,... ,0rga.

way is absent in the ¢th organism and a ‘1’ value at the jth
bit indicates that the pathway is present in the jth organism.
Such profiles have been utilized to compare genomes by us-
ing various scoring schemes, developed to compare profiles
bearing hierarchical structures [2]. As pointed out in [2],
these profiles can also be used to compare metabolic path-
ways. The scheme for comparing pathways in completed
genomes consists of two steps. First, based on their profiles,
co-occurrence of metabolic pathways in different organisms
is determined. These pathways are then clustered based on
their co-occurrence in the organisms, i.e. pathways that co-
occur in the same set of organisms are grouped into one
cluster. For example, Table 1 illustrates profiles of presence
and absence of metabolic pathways P, ... , Ps in organisms
Orgi, ... ,0rgs, respectively. P, P3 and Ps co-occur in
Orgs and Orgs and hence are clustered into the same group.
P, and Py co-occur in Org; and Orgs and are clustered into
another group. In the second step, co-evolution of enzyme
members of these pathways is evaluated.

Co-evolution of metabolic pathways has been mainly stud-
ied from substrate specificity [5]. In this paper we approach
it from a different perspective, namely by comparing the
phylogenetic trees of proteins involved in such pathways.
In general, a pathway is an ordered sequence of enzymes.
For our purpose, we ignore the order among the enzymes.
For example, there are 4 enzymes in a pathway called “4HP-
PYRO2FUMAAC.CAT - 4-hydroxyphenylpyruvate, -O(,2)—
fumarate, _acetoacetate_catabolism”, with the following or-
der: 1.13.11.27, 1.13.11.5, 5.2.1.2, 3.7.1.2. Here 1.13.11.27
refers to the enzyme with the enzyme commission number
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Figure 1: Pathways and enzymes in cluster 16.

(EC#) 1.13.11.27. We represent this pathway simply as a
set of the four enzymes, ignoring the order among these en-
zymes.

2. GENOME AND PATHWAY DATA

We considered 2719 pathways selected from 31 organisms
in the WIT database [3]. Table 2 lists these genomes. By
applying the co-occurrence criterion described in the pre-
vious section, we clustered these pathways into 69 groups.
For instance, cluster 16, which is shown in Figure 1, con-
sists of 4 pathways that all appear in A. fulgidus (AG),
P. horikoshii (PH), M. jannaschii (MJ), and M. thermoau-
totrophicum (TH), but not in any other of the 31 organisms.

A phylogenetic tree is built for each of the enzymes present
in each of the metabolic pathways. For example, proteins
that are present in the four organisms AG, PH, MJ and
TH, and belong to the enzyme with the enzyme commission
number (EC#) 2.4.2.14 are first aligned using Clustal W. A
phylogenetic tree is then reconstructed using the neighbor
joining method from the result of multiple sequence align-
ment. This phylogenetic tree will be used to represent the
enzyme 2.4.2.14 in our study (see Figure 2).

TH
MJ
PH
AG

Figure 2: The phylogenetic tree for enzyme 2.4.2.14.

We hypothesize that the “similarity” among phylogenetic
trees of enzyme members of clustered metabolic pathways
indicates co-evolution and that the “dissimilarity” among
the phylogenetic trees might be clues for other evolutionary
phenomena, such as lateral transfer. In the next section we
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propose (dis)similarity measures for comparing two phylo-
genetic trees.

3. (DIS)SIMILARITIES OF TREES

A phylogenetic tree is a labeled, unordered tree where the
order among siblings is unimportant and each node has a
label. From Figure 2 it can be seen that in phylogenetic
trees, node labels only occur in leaves (where each label
represents a genome or organism name) and interior nodes
do not have labels. We present two (dis)similarity measures
for comparing these trees. Let T1 and T3 be two trees. Let
S1 be the set of leaves of T1 and let S2 be the set of leaves
of T>. Define the similarity between T3 and T>, denoted
dz(Tl,Tz), to be

S1NS
d(Th,T2) = 7}51 U Szl

where |.| denotes the set cardinality. Thus, d,(T1,T>) mea-
sures the difference between the leaves of T7 and T%.

The second metric is to measure the structural difference of
T: and T>. We propose a parameterized distance, denoted
dy(T1,Ts), which is an extension of the degree-2 editing dis-
tance between two unordered trees previously reported in
[4; 7; 8]. We number the nodes in a tree based on preorder
traversal and use a dynamic programming algorithm to cal-
culate dy (Th,T2). Specifically, let £1[é] be the ith node in T1
and let ¢2[j] be the jth node in T5. Let t1[é1], ... ,t1[im] be
the children of t1[i] and let t2[j1], ... ,t2[jn] be the children
of t2[j]- Let T1[i] be the subtree rooted at ¢1[i] and let T5[j]
be the subtree rooted at t»[j]. There are three cases to be
considered when calculating d, (T1[:], T>[5]).

1. Ti[¢] is matched with T5[j;], for some ¢, 1 < t < n.
In this case, all the subtrees rooted at the children of

t2[4] (except t2[j:]) must be inserted. Hence

dy (T3], Telg]) = e x i {dy (T3 i), Tlji)

page 20



Code Class

Name, Number of Orfs, and Length |

AP Archaea
AG Archaea
TH Archaea
MJ Archaea
PO Archaea
PH Archaea
AA Bacteria
BS Bacteria
BB Bacteria
CJ Bacteria
CQ Bacteria
CcT Bacteria
CA Bacteria
DR Bacteria
EC Bacteria
HI Bacteria
HP Bacteria
ML Bacteria
MT Bacteria
MG Bacteria
MP Bacteria
NM Bacteria
PA Bacteria
RP Bacteria
CY Bacteria
T™ Bacteria
TP Bacteria
UU Bacteria

Aeropyrum pernix, 1631 ORF’s, 1669 Kb
Archaeoglobus fulgidus, 2491 ORF’s, 2178 Kb
Methanobacterium thermoautotrophicum, 1866 ORF’s, 1751 Kb
Methanococcus jannaschii, 1811 ORF’s, 1739 Kb
Pyrococcus abysii, 1874 ORF’s, 1765 Kb

Pyrococcus horikoshii, 1825 ORF’s, 1738 Kb

Aquifex aeolicus, 1744 ORF’s, 1590 Kb

Bacillus subtilis, 4093 ORF’s, 4214 Kb

Borrelia burgdorferi, 1666 ORF’s, 1519 Kb
Campylobacter jejuni, 1633 ORF’s, 1641 Kb
Chlamydia pneumoniae CWL029, 993 ORF’s, 1230 Kb
Chlamydia trachomatis D/UW-3/Cx, 867 ORF’s, 1057 Kb
Clostridium acetobutylicum, 3967 ORF’s, 4030 Kb
Deinococcus radiodurans, 3103 ORF’s, 3284 Kb
Escherichia coli, 4285 ORF’s, 4639 Kb

Haemophilus influenzae, 1846 ORF’s, 1830 Kb
Helicobacter pylori, 1547 ORF’s, 1667 Kb
Mycobacterium leprae, 2940 ORF’s, 3807 Kb
Mycobacterium tuberculosis, 3924 ORF’s, 4411 Kb
Mycoplasma genitalium, 532 ORF’s, 580 Kb
Mycoplasma pneumoniae, 674 ORF’s, 816 Kb
Neisseria meningitidis ser. A (str. Z2491), 1838 ORF’s, 2168 Kb
Pseudomonas aeruginosa, 5626 ORF’s, 6246 Kb
Rickettsia prowazekii, 854 ORF’s, 1111 Kb
Synechocystis sp., 3226 ORF’s, 3573 Kb

Thermotoga maritima, 1846 ORF’s, 1860 Kb
Treponema pallidum, 1031 ORF’s, 1138 Kb
Ureaplasma urealyticum, 646 ORF’s, 751 Kb

AT Eucaryota Arabidopsis thaliana, 9460 ORF’s, 36506 Kb

CE Eucaryota Caenorhabditis elegans, 16639 ORF’s, 100096 Kb

SC Eucaryota Saccharomyces cerevisiae, 6259 ORF’s, 12057 Kb

Table 2: A list of genomes used in this study.

dy (0, T2[ja])} + (X, ta[4])

>

1<q<n,q#t

Here dy(0,T2[j4]) is the cost of inserting the subtree
T>[jq], and p(A, t2[4]) is the cost of inserting the node
t2[j]. In contrast to the formulas in [4; 7; 8], we intro-
duce here a real number ¢ as a weighting parameter.

2. Ty[j] is matched with T1[é;s], for some s, 1 < s < m.
In this case, all the subtrees rooted at the children of
t1[i] (except t1[is]) must be deleted. Hence

dy(Tafil, L) = ¢ x min {d, (Tifis], Toli)

>

1<p<m,p#s

dy(T1[ip], 0)} + p(ta[i], A)

Here dy(Ti[ip],0) is the cost of deleting the subtree
T1[ip], and p(t1[i], A) is the cost of deleting the node
t1[7]-

3. t1[¢] is matched with ¢2[j]. In this case, we can con-
struct a weighted bipartite graph between the children

BIOKDD(2: Workshop on Data Mining in Bioinformatics (with SIGKDD02 Conference)

of t1[i] and the children of ¢2[j] and find the optimal
matching between the children as described in [4; 7;
8]. Let C; be the cost incurred by matching ¢1[¢] with
t2[j] and let C2 be the cost incurred by matching the
children of ¢1[¢] and the children of ¢[j] obtained from
the optimal bipartite matching. Then

dy(Th[i], T2[5]) = C1 + ¢ x Ca

The distance dy (T1[¢], T2[j]) is obtained from the minimum
of the above three cases. This recurrence formula suggests to
use a dynamic programming algorithm to calculate dy (11, T%).
As in [7; 8], we use the unit cost for all editing operations
(insert, delete, and relabel nodes).

Figure 3 illustrates the parameterized distances between trees.
When we set the parameter ¢ value to 0.5, the distance be-
tween D; and p is 1.875, and the distance between D> and
p is 1.8125. When we set the ¢ value to 1, which becomes
the degree-2 editing distance [7; 8], the distance between D
and p, and the distance between D» and p, is 6, respectively
(representing the cost of deleting the 6 nodes not touched
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Figure 3: Illustration of parameterized distances between
trees.
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by the dotted mapping lines in the figure). Note D; differs
from Dj topologically. This example shows that the pro-
posed parameterized distance better reflects the structural
difference between trees than the degree-2 editing distance
when the c value is properly chosen.

Remark: Our algorithm considers node labels for both
leaves and non-leaves. In dealing with phylogenetic trees,
we assign a label to each interior node of a phylogenetic tree
by concatenating the labels occurring in its children.

4. CLUSTERING AND CLASSIFYING EN-
ZYMES

After describing how to calculate the (dis)similarity values
between two phylogenetic trees, we now turn to the descrip-
tion of the algorithms for clustering and classifying these
trees (enzymes). Both of the algorithms are distance-based.
They use the two distance measures [d., dy] together to com-
pare the trees.

Our clustering algorithm is based on an agglomerative hi-
erarchical clustering technique [1], which proceeds by itera-
tively considering all pairs of clusters built so far, and merg-
ing the pair that exhibits the greatest similarity into a single
group (which then becomes a node of the dendrogram). The
algorithm continues the merging until a pre-determined con-
dition is met. In our case, each phylogenetic tree itself is a
group initially. We use the group-average linkage method to
determine which two groups should be linked (merged). Let
group G contain enzymes (trees) Pi,..., P, and let group
G2 contain enzymes (trees) Q1,...,Qq. The similarity of
the two groups is obtained from averaging the d, values as
follows:

Lircicp Lizj<q T (P, Qj)
pXxXq

‘We pick and merge the two groups with the greatest similar-
ity. Suppose there are several pairs of groups that tie (i.e.,
they have the same similarity value). We then consider the
distance between these groups. Specifically, the distance be-
tween group G: and group G: is obtained from averaging
the d, values as follows:

Lici<p 2aa<j<q W (P Qj)
pXxq

Among the pairs of groups that tie on their similarity val-
ues, we pick and merge the pair of groups with the smallest
distance. Intuitively we first consider the difference between
leaves of trees in two groups, and if there is a tie, we con-
sider the difference between structures of the trees in the
two groups.

We also develop a nearest neighbor classifier [6] to classify
the phylogenetic trees by utilizing the pair of (dis)similarity
values [dz,dy]. A test tree T is assigned to a class C if C
contains a training tree that has the largest d, value to T'. If
there are several classes satisfying this condition, we assign
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Figure 4: Occurrence frequency of genomes in the leaves of trees.
dy dy ing the similarity and distance of two enzyme trees. We
c=02 ¢=06 ¢c=08 c¢c=1 c=2

0.778 1.804 6.724 14.114 30 879

Table 3: The distance and similarity values for two enzyme
trees.

T to one of these classes, C*, where C* contains a training
tree that has the smallest dy value from T'. This technique
can be easily generalized to classify metabolic pathways. If
the majority of the enzymes (trees) of a pathway is assigned
to a class, then the pathway should belong to that class.

5. EXPERIMENTS AND RESULTS

We carried out a series of experiments on the pathway data
to evaluate the performance of our approach. The programs
were written in ¢/c++ programming languages and run on a
Sun Ultra60 workstation under the Solaris operating system
5.8.

There were 523 phylogenetic trees distributed into 69 groups.
Figure 4 shows the occurrence frequency of genomes in the
leaves of these trees. It can be seen that the genome DR
occurs most frequently in the trees. Pairwise distances and
similarities for the trees were calculated. For example, Table
3 shows the d, and dy values for two trees (enzyme 3.4.23.46
in group 28 and enzyme 6.3.2.17 in group 46) with respect
to different ¢ values.

In the experiments, we set the ¢ value to 0.6 for calculat-
ing dy. Our experimental results show that our algorithms
achieved a 100% correct rate in both clustering and classi-
fying the phylogenetic trees.

6. CONCLUSION AND FUTURE WORK

In this paper we have presented two metrics for measur-
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then use these metrics to cluster and classify the enzymes
in metabolic pathways. Our experimental results showed
a 100% correct rate, indicating the significance of our ap-
proach. Future work includes the development of new dis-
tance measures for comparing metabolic pathways and for
studying pathway evolution.
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