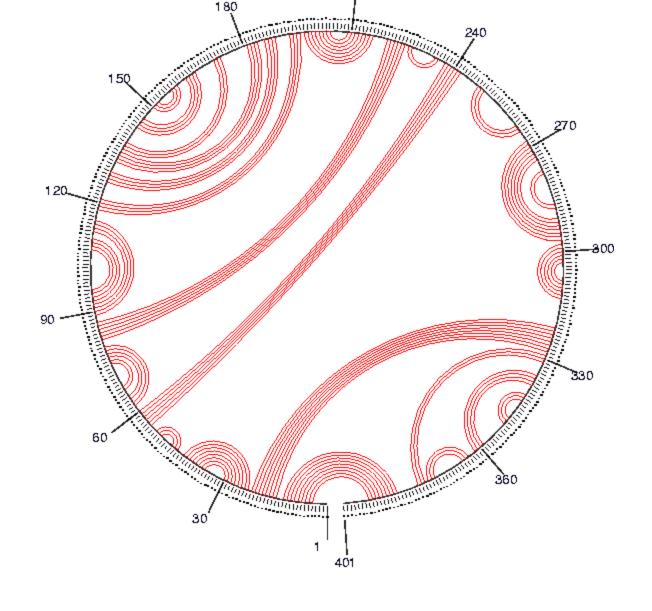
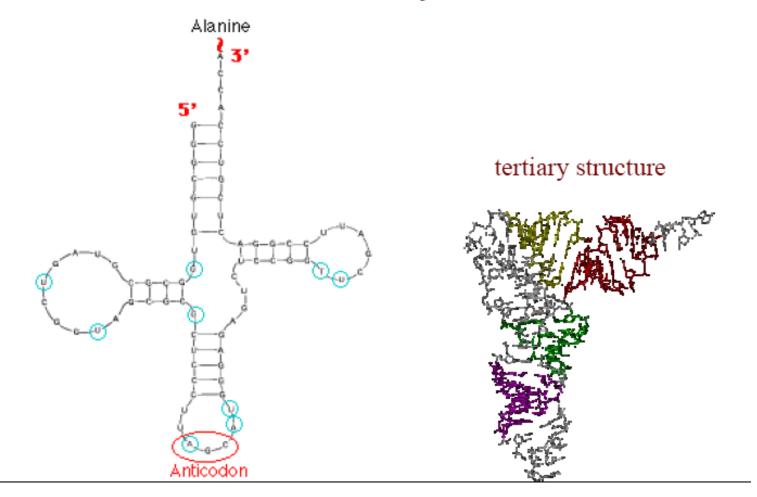

GLOBEX Bioinformatics (Summer 2015)


RNA secondary structure

Facts about RNAs

- Mainly as "information carrier" in protein synthesis
 - mRNA
 - tRNA
- Also as catalysts
 - Ribozymes
- Also as regulator
 - RNAi
- Single strand
 - Intra-molecular pairing
 - Secondary structure
 - Essential for sequence stability and function
- Similarity in secondary structure plays a more important role than primary sequence in determining homology for RNAs

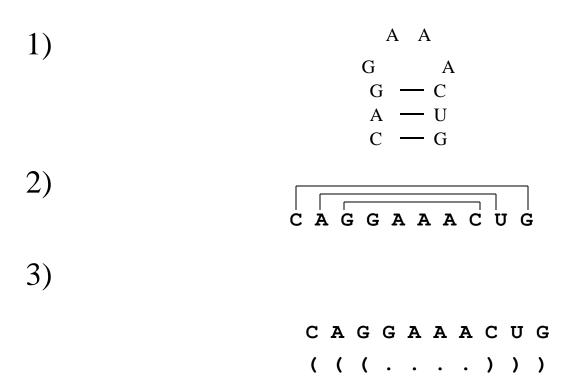

Bacillus subtilis RNase P RNA

ENERGY = -85.7 Bacillus subtilis RNase P RNA

tRNA Secondary Structure

RNA stem loop

hybridization pairing: A-U, and C-G


A A	C A	C A
G A	G A	G A
G — C	U — A	U x C
A — U	C — G	C x U
C — G	G — C	G x G
seq1	seq2	seq3

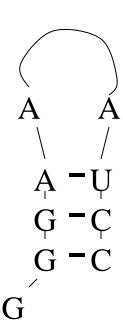
where "-" stands for a pairing, and "x" for no pairing.

In the above example, seq1 and seq2 fold into a similar structure, whereas seq3 does not.

Pairwise alignments disregarding such structural restrictions may be misleading; seq2 and seq3 have 70% sequence identity, seq1 and seq3 have 60%, whereas seq1 and seq2 have only 30%.

Representations for palindromic structures

There is a 1-1 correspondence between RNA secondary structures and well-balanced parenthesis expressions, where the balancing parentheses correspond to base pairings via hydrogen bonds.


Secondary structure prediction

Base pair maximization algorithm [Nussinov]

```
m_{i,j}: maximal # of base pairs that can be formed for sequence s_i ... s_j.
d_{i,i} = 1, if s_i and s_i are paired
     = 0, otherwise
Initialization
    m_{i,i-1} = 0 for i = [2, L]
    m_{i,i} = 0 for i = [1,L]
Recursion
m_{i,i} = \max \{ m_{i+1,i}, 
              m_{i,j-1},
              m_{i+1,j-1} + d_{i,j}
              \max_{i < k < i} \{ m_{i,k} + m_{k+1,i} \}
                                                       // bifurcation
```

Dynamic programming table

		1	2	3	4	5	6	7	8	9
		G	G	G	A	A	A	U	C	C
1	G	0-	* * *					1	2	3
2	G	/	0					1	2	3
3	G			0				1	(2)	2
4	A				0			(1)	1	1
5	A					0	$ 0\rangle$	1	1	1
6	A						$ 0\rangle$	1	1	1
7	U							0		
8	C								0	
9	C									0

Time Complexity: O(L³), where L is sequence length

Space complexity: $O(L^2)$

Secondary structure prediction

Minimum energry algorithm [Zuker]

```
E_{i,j}: minimum energy for an optimal fold formed by sequence s_i ... s_j.
e_{i,j} = -5, if s_i, s_i is CG or GC
   = -4, if s_i, s_i is AU or UA
     = -1, if s_i, s_i is GU or UG
Initialization
    E_{i.i-1} = 0 for i = [2, L]
    _{Ei,i} = 0 for i = [1,L]
Recursion
E_{i,j} = \min \{E_{i+1,j},
             E_{i,j-1},
              E_{i+1,j-1} + e_{i,j}
              \min_{i < k < i} \{ E_{i,k} + E_{k+1,i} \}
                                                  // bifurcation
```

Resources

Lecture notes:

http://www.bioinfo.rpi.edu/~zukerm/lectures/RNAfold-html/

RNA informatics:

http://www-lbit.iro.umontreal.ca/RNA_Links/RNA.shtml

Software:

- -Vienna RNA fold
- Mfold (http://www.bioinfo.rpi.edu/zukerm/export/)