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GLOBEX Bioinformatics 

(Summer 2015) 

 

Phylogenetic Trees 

- Basic concepts 

- Character-based 

- Distance-based 

- Probability-based 
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– Mutation, selection, Only the Fittest Survive. 

– Speciation. At one extreme, a single gene 

mutation may lead to speciation. [Nature 

425(2003)679] 

– Phylogeny: evolutionary relation among 

species, often represented as a tree structure. 

Evolution 
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Question: how to infer phylogeny? 

 - Based on morphological features  

 - Based on molecular features 
• Gene trees  

• Phylogenetic trees (using 16s rRNA) 

• Criteria for selecting features 

– Ubiquitous 

– Relatively stable 

• Reconciliation between gene trees and species trees 

– Orthology genes  
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Trees (binary) 

– Unrooted vs rooted 

 

 

 

– Leaves versus internal nodes 

– For an unrooted binary tree with n (2) leaves 

• # of nodes (including leaves) is 2n – 2. 

• # of edges is 2n -3 

• Can lead to 2n-3 rooted trees, by adding a root at any 
edge. 
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How many different configurations can a 
tree of n leaves have?  
Assume the tree is unrooted. 

   Grow the tree by adding one leaf at a time 

    n = 2, there is    1 edge to break. 

    n = 3, there are  3 edges to break  => 3 different configurations 

  n = 4, there are  5 edges to break  => 5 different configurations 

       … 

    n = n, there are (2n-3) edges to break => (2n-5) 

 

      1·3 ·5 ·7 ·… ·(2n-3) = (2n-3)!! 

 

The number of possible configurations as a function of the tree 
size increases very fast (exponentially).  
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How to find the best tree? 
 

- Define what “best” means? 

- Character-based: parsimony  minimal number of 

mutations 

- Distance-based: shorter “distance” means more 

closely related. 

- Probability-based: best tree gives highest likelihood 

for the observed (Maximum Likelihood) 

- Search for the best 

- Brute-force (search space is huge, exponential in 

tree size) 

- Heuristics – genetic algorithm,.. 
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Parsimony 

– Based on sequence alignment.  

– Assign a cost to a given tree 

– Search through the topological (configuration) space of all trees for 

the best tree: the one that has the lowest cost. 

For example, given an alignment of four sequences 

 AAG 

 AAA 

 GGA  

 AGA 

        If the number of mutations is used as a measure of cost, then the leftmost tree in the following is the 

best tree. 

AAG AGA AAA GGA 

AAA AGA 

AAA 

AAG GGA AAA AGA 

AAA AGA 

AAA 

AAG AAA GGA AGA 

AAA AGA 

AAA 

Character-based approaches 
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Algorithm: unweighted parsimony [Fitch 1971] 

// given an alignment A of n sequences 

// each position in A is treated independently 

// Tree T with n leaves labeled for each sequence 

 

C = 0;   // the total cost 

  

for (u = 1 to |A|)  {                              // u is the position index into the alignment A 

 initialization: 

  set Cu = 0 and k = 2n -1  // Cu is the cost and k is the node index  

                                                            // index starting 1, from left to right, bottom to up 

 

 recursion: to obtain the set Rk       // contains candidate residues assigning to node k 

  if k is leaf node: 

           set Rk = xu
    // which is  the residue at position u 

  else 

           compute Ri, Rj for the daughter nodes i, j of k 

           if (Ri  Rj) is not empty:  

   set Rk = Ri  Rj  

           else 

   set Rk = Ri  Rj  

     Cu = Cu + 1 

 termination: C = C + Cu  

} 

minimal cost of tree  = C. 

   A A    A   G 

{A} {A,G} 

{A} 

1 2 3 4 

5 6 

7 

AAG AAA GGA AGA 
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Trackback phase: 

– Randomly choose a residue from R2n-1 (the root) and proceed down the tree. 

– if a residue is chosen from the set Rk 

• Choose the same residue from the daughter set Ri if possible, otherwise 

pick a residue at random from Ri. 

• Choose the same residue from the daughter set Rj if possible, otherwise 

pick a residue at random from Rj. 

For example, 

   A 
G 

   A 

{A} 

{A,G} 

{A,G} 

   G 
G 

   A 

A 

   A 

   A 

   G 
   A 

X 

X 
G 

   A 

  A 

   A 

  G 

   G 

X 

X 

G 

   A 

  G 

   G 

  G 

   G 

X 
X 

   A 
   A 

Traceback cannot find 

this tree, although it is 

equally optimal as the 

other two trees. 
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Algorithm: Weighted parsimony [Sankoff & Cedergren 1983] 

 

// given an alignment A, each position in A is treated independently 

// Tree T with the leaves labeled, and a residue substitute  score matrix S. 

 

C = 0;   // the total cost 

  

for (u = 1 to |A|)  {    // u is the position index into the alignment A 

 

 initialization: 

  set k = 2n -1  // k is the node index, currently pointing to the root 

 

 recursion: Compute Sk(a)   // the minimal cost for assigning residue a to node k   

  if k is leaf node: 

             if a = xu
k   then  Sk(a) = 0 

             else Sk(a) =      // cannot substitute a leaf 

   

  else    // k is not a leaf node 

            compute Si(a), Sj(a) for all a at the daughter nodes i, j of k 

            set Sk(a) = minb [Si(b) +S(a,b)]   + minb [Sj(b) +S(a,b)]  

            set lk(a) = argminb [Si(b) +S(a,b)],  rk(a) = argminb [Sj(b) +S(a,b)].  // for traceback 

 termination: 

  C = C+ mina S2n-1(a). 

} 

 

minimal cost of tree  = C. 

   A 
T 

   C 

{3,4,3,5} 

{1,4,1,4} 

{5,5,5,5} 

   G 
{0,, , } 

{,,0, , } 

{,  ,0, } 
{ ,  ,0} 

A C G T 

A 0 2 1 2 

C 2 0 2 1 

G 1 2 0 2 

T 2 1 2 0 
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• Both algorithms run in O(nm), where n is number of sequences and m is the 
sequence length in terms of number of residues. 

 

• Weighted parsimony, when using S(a,a) = 0 for all a and S(a,b) = 1 for all a ≠ 
b, gives the same cost as that for the traditional parsimony. 

 

• Traceback in weighted parsimony can find assignments that are missed in the 
traditional unweighted parsimony. 

 

• The cost from the unweighted parsimony is independent of the position for the 
root node.  Therefore, the cost can be computed using unrooted trees. 

 

• The number of trees to search using parsimony grows huge as the number of 
leaves increases.  It is proved that finding the most parsimonious tree is an NP-
hard problem. 

 

• Branch-and-bound 
– Guarantee to find the optimal tree 

– Worse-case complexity is the same as exhaustive search. 
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Assessing the trees: the bootstrap 

• “Plug-in” sampling with replacement 

– Given an alignment with, say, one hundred columns. 

– Randomly select one column from the original 
alignment as the first column, and repeat this process 
until one hundred columns are selected forming a new 
alignment of one hundred columns. 

– Use this artificially created alignment for parsimony 
analysis, a new tree is found. 

– Repeat this whole process many times (say 1000).   

– The frequency with which a chosen phylogenetic 
feature appears is used as a measure of the confidence 
we have in this feature. 
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    1234567890 

I   GGGGGGATCA 

II  GGGAGTATCA 

III GGATAGACAT 

Iv  GATCATGTAT 

V   GTTCATATCT 

    1155569999 

I   GGGGGGCCCC 

II  GGGGGTCCCC 

III GGAAAGAAAA 

Iv  GGAAATAAAA 

V   GGAAATCCCC 

    1224555770 
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II  GGGAGGGAAA 

III GGATAAAAAT 

Iv  GATCAAAGGT 

V   GTTCAAAAAT 
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67 

Bootstrap  

Consensus 

bootstrap tree 
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UPGMA – unweighted pair group method using arithmetic  

averages 
 

Distance between two clusters Ci 
and Cj: 

dij =  (1/|Ci||Cj|) p Ci, q  Cj dpq. 

 

 

Note: it is NOT always possible to 
interpret pairwise sequence 
similarity scores as metric 
distance. 

 
  

Distance-based approaches 
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Algorithm: UPGMA 

Initialization: 
– Assign each sequence i to its own cluster Ci 

– Define one leaf of T for each sequence, and place at 
height zero 

Iteration: 
– Determine the two clusters i, j for which dij is minimal. 

– Define a new cluster k by Ck = Ci Cj, and define dkm 
for all m 

– Define a node k with daughter noes i and j, and place it 
at height dij / 2. 

– Add k to the current clusters and remove i and j. 

Termination:  
– When only two clusters i, j remain, place the root at 

height dij/ 2. 
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Ultrametric: for any triplet (xi, xj, xk), distances dij, djk, dki are either all 

equal or two are equal and the remaining is smaller. 

 

Molecular clock: two siblings evolve at the same constant rate. 

 

Such requirements are often not satisfied, and UPGMA trees then will be 

not correct. 

For example, 

 

 

1 

2 3 

4 1 4 2 3 

Actual tree 

Tree reconstructed 

incorrectly using UPGMA 
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Neighbor-joining: 
– Distances are additive. 

– Given a pair of leaves, determine if they are neighboring leaves 

(not necessarily with shortest distance) 

– Once we merge a pair of neighboring leaves, how do we compute 

the distance between this pair (as a whole, called k) and another 

leaf, called m? 

  ½ (dim + djm – dij) 

      = ½ (dik + dkm + djk + dkm - dik - djk ) 

     = ½ (dkm + dkm ) = dkm.  

 

 

 

 

i 

j 

k 

m 
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Without a tree, how can we know that if two 

leaves are neighbor (when neighbors do not 

mean shortest distance)? 

 

Theorem (Saitou & Nei, 1987): For each leaf i, 

define ri as  

ri =  (1/(|L|-2)) k L dik, 

    where L stands for the set of leaves.  

   Then a pair of leaves i and j will be neighboring 

leaves if Dij = dij – (ri + rj) is minimal. 
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Example: 

 
d12 = 0.3   D12 = -1.1 

d13 = 0.5   D13 = -1.2 

d14 = 0.6   D14 = -1.1 

d23 = 0.6   D23 = -1.1 

d24 = 0.5   D24 = -1.2 

d34 = 0.9   D34 = -1.1 

 

r1 = 0.7 

r2 = 0.7 

r3 = 1.0 

r4 = 1.0 

 

Neighbor joining will generate unrooted trees. 

1 2 

3 4 

0.1 

0.1 

0.1 

0.4 0.4 



Initialization: 

 define T to be the set of leaf nodes, one for each given 

sequence, and put L = T 

Iteration: 

 - Pick a pair i, j in L for which Dij is minimal 

 - Define a new node k and set dkm = ½(dim + djm – dij) for 

all m in L. 

 - Add k to T with edges of lengths dik = ½ (dij +ri – rj), djk = 

dij – dik. 

 - Remove i and j from L and add k. 

Termination: 

 When L consists of two leaves I and j, add the remaining 

edge between i and j, with length dij. 

23 
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Pros and Cons of distance-based methods 

– Easy to implement, and fast to run 

– Robust to minor sequence errors 

– Distance-based phylogenetic trees do not 

generate ancestral sequences 

– Definition of “distance” may be problematic 
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Evolutionary processes are by nature stochastic. 

 

Baye’s rule:  P(model|data) = P(data|model) P(model)/P(data) 

• model includes  

– the evolution theory,  

– a specific phylogenetic tree (topology and edge lengths), and 

– assignment of sequences to the tree leaves. 

• Data: a set of sequences that are used to infer phylogeny. 

Let P(x|y, t) be the probability in that sequence x is evolved from an ancestral 
sequence y over an edge of length t. 

 

P( x1, x2, x3, x4, x5|T, t.)  

        = P( x1| x4, t1) P( x2| x4, t2) P( x3| x5, t3) P( x4| x5, t4) P( x5) 

 

A shorthand notation P( x·|T, t.) is used where x· stands for 

 a set of sequences, and t. for edge lengths of the tree T.    x1 

2 

   x2 

   x3 

   x4 

   x5 

   t1 
   t2 

   t3 

   t4 

Probabilistic Approaches 
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In general, if we know 

• P(x|y, t) for any sequences x, y, and time duration t 

• A tree T, and assignment of sequences to tree nodes, 

Then we can compute the likelihood for observing the sequences as they 
are assigned onto the tree leaves. 

 

Q: Given n, the number of leaves, there are (2n-3)!! different trees (plus 
many different ways to assign length to tree edges), which tree can 
best interpret the data? 

A: The tree that gives the maximum likelihood (ML). 

 

In practice, to implement the ML method, two issues we need to address 
1. A model of evolution, which gives the conditional probabilities P(x|y, t) 

2. Method to find the maximum likelihood. For this, any optimization 
method may be utilized, such as 
• Descent gradient 

• Simulated annealing 

• Genetic algorithm 
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Models of evolution 

 

 Independence assumption: mutations occur independently at different positions. 

Therefore,   

P(x|y, t) =  u P(xu|yu, t), 

 

where P(xu|yu, t) is the probability that residue xu in sequence x mutates to residue yu in sequence y over 
time t. 

 

multiplicative assumption:  

 

 P(b|a, t +  t) =   c P(c|a, t)·P(b|c, t). 

 

For DNA sequences, probabilities for all possible mutations among four nucleotides during a given time 
period t form a 4 by 4 matrix 

 

 

 

 

 

 

 

 

And, we have multiplicative property for these matrices 

 

S(t) ·S(t) = S(t + t). 

P(A|A, t) P(A|C, t) P(A|G, t) P(A|T, t) 

P(C|A, t) P(C|C, t) P(C|G, t) P(C|T, t) 

P(G|A, t) 

P(T|A, t) 

P(G|C, t) 

P(T|C, t) 

P(G|G, t) P(G|T, t) 

P(T|T, t) P(T|G, t) 

S(t) = 
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For each P(b|a, t) in the substitution matrix S(t), it is reasonable to assume that no mutation 

can occur at zero time interval: 

• P(a|a, 0) = 1 

• P(b|a, 0) = 0. 

That is, 

 

 

 

Further, let’s assume that P(b|a, t) over a infinitesimal interval t is proportional 

to t by a constant r, called mutation rate: 

P(b|a, t) = r t. 

Jukes-Cantor model for DNA sequences assumes that all nucleotide mutations 

have the same rate.  That is, 

 

 

 

 

 

 

 

 

 

 

1 0 0 0 

0 1 0 0 

0 

0 

0 

0 

1 0 

1 0 

S(0) = 

1-3r r r r 

r 1-3r r r 

r 

r 

r 

r 

1-3r r 

1-3r r 

S(t)= t  I + R t 
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Therefore,  

S(t + t) = S(t) ·S(t) = S(t) ·[I + Rt] 

 

[S(t + t) - S(t)] /t = S(t)·R 

 

S’(t) = S(t)·R   when t  0. 

 

Solving the differential equations, we have  

• P(a|a, t) = ¼ (1+ 3e -4rt)    for a  {A,C, G, T} 

• P(b|a, t) = ¼ (1- e -4rt)       for ab, a and b {A,C, G, T} 

 

In this model,  when t = , P(b|a, ) = ¼. That is, the nucleotide 

equilibrium frequencies are all equal.  
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Kimura model for DNA sequences assumes different rates for transitions (AG 

and C  T) and transversions (A  T, G  T, A  C, and C  G).   

That is, 

 

 

 

 

 
Similar models are proposed for mutations among amino acids. 

If we were able to quantify the “time” as how many number mutations 

have occurred, the substitute matrices in those models would 

correspond to PAM matrices at respective times. 

 

 

 

 

1-2r-s r s r 

r 1-2r-s r s 

s 

r 

r 

s 
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1-2r-s r 

S(t)= t  I+R t 

   A                 C               G               T 

A 

C 

G 

T 
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Maximum Likelihood 
• The case of two sequences aligned with no gaps 
P( x1, x2|T, t1, t2) =  u=1 to N P( x1

u, x
2

u|T, t1, t2)  

 

• Let  x1 = CCGGCCGCGCG  

               x2 = CGGGCCGCCCG 

 

P(C,C| T, t1, t2) =   P(C|A, t2) P(C|A, t1) P(A) 

              + P(C|C, t2) P(C|C, t1) P(C) 

                                + P(C|G, t2) P(C|G, t1) P(G) 

                                + P(C|T, t2) P(C|T, t1) P(T) 

                         = ¼ [3  ¼ (1- e -4rt1)  ¼ (1- e -4rt2) +  

                                 ¼ (1+3 e -4rt1)  ¼ (1+3 e -4rt2) ] 

                      = 1/16 (1+3 e -4r(t1 +t2)). 

P(G,G| T, t1, t2) = 1/16 (1+ 3 e -4r(t1 +t2)). 

 

P(C,G| T, t1, t2) = 1/16 (1- e -4r(t1 +t2)). 

 

Therefore, for an alignment that has n1 identical sites and n2 
mutational sites, we have 

 

P( x1, x2|T, t1, t2) = 1/ 16n1+n2 (1+3 e -4r(t1 +t2))n1  (1- e -4r(t1 +t2))n2, 

 

which is a function of edge lengths in tree T. 

 

 
 

t1 
t2 

x1 x2 
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In general, the probability can be computed by working up 

the tree from the leaves using post-order traversal. This is 

done by Felsenstein’s algorithm (1981). 

  

Once the probability is available, optimizing the assignments 

of edge lengths t in the tree amounts to  

 

 

 

 

Where tm is the tree length assignment that maximize the 

likelihood.  

 

 

 t 

 

 P 

tm 

= 0 
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How to optimize tree topology? 

– Discrete structure, therefore cannot take derivatives. 

 

Basic strategy for searching the tree space 

– A tree generation algorithm that can generate trees 

– Assess the likelihood 

• Accept  

• Reject 

 

A genetic algorithm implementation [Matsuda 1998] 
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Genetic algorithm 

Input 
– P, the population,  

– r: the fraction of population to be replaced,  

– f, a fitness,  

– ft, the fitness_threshold,  

– m: the rate for mutation. 

Initialize population (randomly) 

Evaluate: for each h in P, compute Fitness(h) 

While [Maxh f(h)] < ft 

 do 
1. Select 

2. Crossover 

3. Mutate 

4. Update P with the new generation Ps  

5. Evaluate:  f(h) for all h  P 

Return the h in P that has the best fitness 
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Branch exchange in a phylogenetic tree 
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Key components for implementing genetic 

algorithms 

– Representing hypotheses (which are the trees here) 

• New Hampshire format 

(A,(F,(C,(B,D)))) 

– Genetic operators 

• Crossover:  

– Single 

– Two point 

– uniform 

• Mutation: point 

– Fitness function: we use the likelihood computed for 

each tree using 

 

F C B D A 
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Blanchette, O;Keefe & Benuskova, 2012 
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Blanchette, O;Keefe & Benuskova, 2012 



39 

Software packages and databases  

for phylogenetic trees 

• Phylip by Felsenstein 
(http://evolution.genetics.washington.edu/phylip.html) 

• PAUP (http://paup.csit.fsu.edu/) 

• MacClad (http://macclade.org/macclade.html) 

• TreeBase (http://www.treebase.org/treebase/) 
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More advanced topics in phylogenetic analysis 

– Different heuristics for sampling the tree space 

• Monte Carlo 

• … 

– More realistic evolutionary models 

• With gaps 

• Non-uniform: different rates at different sites 

• … 

– Using different data sets and reconciliation 

• Sequences 

• Gene positions -> genome rearrangement [Nadeau & Taylor 

1984, PNAS 81:814-818, Pavzner, Sankoff, …]   

• … 


