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Hidden Markov Models (I) 

a. The model 

b. The decoding: Viterbi algorithm 

 

 



Hidden Markov models 
• A Markov chain of states 

• At each state, there are a set of possible observables (symbols), and 

• The states are not directly observable, namely, they are hidden. 

• E.g.,  Casino fraud 

 

 

 

 

 

 
 

 

 

• Three major problems 

– Most probable state path 

– The likelihood 

– Parameter estimation for HMMs  
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A biological example: CpG islands 

• Higher rate of Methyl-C mutating to T in CpG dinucleotides → 

generally lower CpG presence in genome, except at some biologically 

important ranges, e.g., in promoters, -- called CpG islands. 

• The conditional probabilities P±(N|N’)are collected from ~ 60,000 bps 

human genome sequences, + stands for CpG islands and – for non 

CpG islands. 
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Task 1: given a sequence x, determine if it is a CpG island. 

 

One solution: compute the log-odds ratio scored by the two Markov chains: 

 S(x) = log [ P(x | model +) / P(x | model -)] 

where P(x | model +) = P+(x2|x1) P+(x3|x2)… P+(xL|xL-1) and 

           P(x | model -) = P-(x2|x1) P-(x3|x2)… P-(xL|xL-1) 
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Histogram of the length-normalized scores 

(CpG sequences are shown as dark shaded ) 



Task 2:  For a long genomic sequence x, label these CpG 
islands, if there are any. 

 

Approach 1: Adopt the method for Task 1 by calculating the log-odds 
score for a window of, say, 100 bps around every nucleotide and 
plotting it. 

 

 

 

 

 

Problems with this approach: 

– Won’t do well if CpG islands have sharp boundary and variable 
length 

– No effective way to choose a good Window size. 



Approach 2: using hidden Markov model 
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• The model has two states, “+” for CpG island and “-” for non 

CpG island. Those numbers are made up here, and shall be fixed 

by learning from training examples.   

• The notations: akl is the transition probability from state k to state 

l; ek(b) is the emission frequency – probability that symbol b is 

seen when in state k. 



The probability that sequence x is emitted by a state path π is: 

P(x, π) = ∏i=1 to L eπi (xi) a πi πi+1  

 i:123456789 

 x:TGCGCGTAC 

 π :--++++--- 

 

P(x, π) = 0.338 × 0.70 × 0.112 × 0.30 × 0.368 × 0.65 × 0.274 × 0.65 × 0.368 × 0.65 ×  

0.274 × 0.35 × 0.338 × 0.70 × 0.372 × 0.70 × 0.198. 

 

Then, the probability to observe sequence x in the model is  

P(x) = π P(x, π), 

which is also called the likelihood of the model.   
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Decoding: Given an observed sequence x, what is the most probable state path, 

i.e.,  

 π* = argmax π P(x, π) 

 
Q: Given a sequence x of length L, how many state paths do we have?    

A:  NL, where N stands for the number of states in the model.  

As an exponential function of the input size, it precludes enumerating all possible state 

paths  for computing P(x).  

 



 

 

Let vk(i)  be the probability for the most probable path ending at position i with a state k. 

 

Viterbi Algorithm 

Initialization:  v0(0) =1, vk(0) = 0 for k > 0. 

Recursion:      vk(i) = ek(xi) maxj (vj(i-1) ajk); 

                        ptri(k) =  argmaxj (vj(i-1) ajk); 

Termination:   P(x, π* ) = maxk(vk(L) ak0); 

                        π*L = argmaxj (vj(L) aj0); 

Traceback:      π*i-1 = ptri (π*i). 
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Casino Fraud: investigation results by Viterbi decoding 



• The log transformation for Viterbi algorithm 

vk(i) = ek(xi) maxj (vj(i-1) ajk); 

 

ajk = log ajk; 

ek(xi) = log ek(xi); 

vk(i) = log vk(i); 

 

vk(i) = ek(xi) + maxj (vj(i-1) + ajk); 
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Hidden Markov Models (II) 

• The model likelihood: Forward 

algorithm, backward algorithm 

• Posterior decoding 

 



The probability that sequence x is emitted by a state path π is: 

P(x, π) = ∏i=1 to L eπi (xi) a πi πi+1  

 i:123456789 

 x:TGCGCGTAC 

 π :--++++--- 

 

P(x, π) = 0.338 × 0.70 × 0.112 × 0.30 × 0.368 × 0.65 × 0.274 × 0.65 × 0.368 × 0.65 ×  

0.274 × 0.35 × 0.338 × 0.70 × 0.372 × 0.70 × 0.198. 

 

Then, the probability to observe sequence x in the model is  

P(x) = π P(x, π), 

which is also called the likelihood of the model.   
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How to calculate the probability to observe sequence x in the model? 

P(x) = π P(x, π) 

 

Let fk(i) be the probability contributed by all paths from the beginning up 

to (and include) position i with the state at position i being k. 

 

The the following recurrence is true: 

f k(i) = [ j f j(i-1) ajk ] ek(xi)  

 

Graphically, 
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Again, a silent state 0 is introduced for better presentation 



Forward algorithm 

Initialization:  f0(0) =1, fk(0) = 0 for k > 0. 

Recursion:      fk(i) = ek(xi) jfj(i-1) ajk. 

Termination:   P(x) = kfk(L) ak0. 

 

Time complexity:    O(N2L), where N is the number of states and L is the 

sequence length. 



Let bk(i) be the probability contributed by all paths that pass 

state k at position i. 

 

bk(i) = P(xi+1, …, xL | (i) = k) 
 

Backward algorithm 

Initialization:  bk(L) = ak0 for all k. 

Recursion (i = L-1, …, 1):      bk(i) = j akj ej(xi+1) bj(i+1). 

Termination:   P(x) = k a0k ek(x1)bk(1). 

 

Time complexity:    O(N2L), where N is the number of states and L is the 

sequence length. 



Posterior decoding  
 

P(πi = k |x) = P(x, πi = k) /P(x) = fk(i)bk(i) / P(x) 

 

Algorithm:  

 for i = 1 to L 

     do argmax k P(πi = k |x) 

 

Notes: 1. Posterior decoding may be useful when there are multiple almost 

most probable paths, or when a function is defined on the states. 

           2. The state path identified by posterior decoding may not be most 

probable overall, or may not even be a viable path. 
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Hidden Markov Models (III) 

- Viterbi training 

- Baum-Welch algorithm 

- Maximum Likelihood 

- Expectation Maximization 



Model building 

- Topology 
- Requires domain knowledge 

- Parameters 
- When states are labeled for sequences of observables 

- Simple counting:  

akl = Akl / l’Akl’ and ek(b) = Ek(b) /  b’Ek(b’) 

- When states are not labeled 

   Method 1 (Viterbi training) 
 1. Assign random parameters 

 2. Use Viterbi algorithm for labeling/decoding  

 2. Do counting to collect new akl and ek(b); 

 3. Repeat steps 2 and 3 until stopping criterion is met. 

   Method 2 (Baum-Welch algorithm) 

  



Baum-Welch algorithm (Expectation-Maximization) 

• An iterative procedure similar to Viterbi 
training 

• Probability that akl is used at position i in sequence j.  

 P(πi = k, πi+1= l | x,θ ) = fk(i) akl el (xi+1) bl(i+1) / P(xj) 

 

   Calculate the expected number of times that is used by 
summing over all position and over all training sequences. 

Akl = j {(1/P(xj) [i fk
j(i) akl el (x

j
i+1) bl

j(i+1)] } 

 

   Similarly, calculate the expected number of times that symbol 
b is emitted in state k. 

 

Ek(b) =j {(1/P(xj) [{i|x_i^j = b} fk
j(i) bk

j(i)] } 



Maximum Likelihood 

Define L() = P(x| ) 

Estimate  such that the distribution with the 
estimated  best agrees with or support the 
data observed so far. 

ML = argmax L() 

                 

E.g. There are red and black balls in a box. 
What is the probability P of picking up a 
black ball? 

Do sampling (with replacement). 



Maximum Likelihood 

 
Define L() = P(x| ) 

Estimate such that the distriibution with the estimated best agrees with or supports the 

data observed so far. 

 

   ML= argmax  L() 

When L() is differentiable,  

 

 

For example, want to know the ratio: # of blackball/# of whiteball, in other words, the 

probability P of picking up a black ball.  Sampling (with replacement): 

 

 

 

 

Prob ( iid)  =  p9 (1-p) 91 

Likelihood L(p) = p9(1-p)91. 

 

 

 

=> PML = 9/100 = 9%.   The ML estimate of P is just the frequency. 
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A proof that the observed frequency -> ML estimate of 

probabilities for polynomial distribution 

 

Let Counts  ni for outcome i 

The observed frequencies i = ni /N, where N = i ni  

If  i 
ML = ni /N, then P(n| ML ) > p(n| ) for any    ML 

 

Proof: 
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Maximum Likelihood: pros and cons 
 

- Consistent, i.e., in the limit of a large amount of data, ML 

estimate converges to the true parameters by which the data 

are created. 

- Simple 

- Poor estimate when data are insufficient. 

e.g., if you roll a die for less than 6 times, the ML estimate 

for some numbers would be zero. 

 

Pseudo counts:  
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Conditional Probability and Join Probability 

P(one) = 5/13 

P(square) = 8/13 

P(one, square) = 3/13 

P(one | square) = 3/8 = P(one, square) / P(square) 

 

In general,      P(D,M) = P(D|M)P(M) = P(M|D)P(D) 

 

=> Baye’s Rule: 
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Conditional Probability and Conditional Independence 



Baye’s Rule: 

Example: disease diagnosis/inference 
     P(Leukemia | Fever) =  ? 
 
P(Fever | Leukemia) = 0.85 
P(Fever) = 0.9 
P(Leukemia) = 0.005 
P(Leukemia | Fever) = P(F|L)P(L)/P(F) = 0.85*0.01/0.9 = 
0.0047   
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Bayesian Inference 

Maximum a posterior estimate 
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Expectation Maximization 
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EM explanation of the Baum-Welch algorithm 
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We like to 

maximize by 

choosing  

But state path  is 

hidden variable.  Thus, 

EM. 



EM Explanation of the Baum-Welch algorithm 

A-term E-term 

A-term is maximized if  

 

E-term is maximized if  
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Hidden Markov Models (IV) 

a. Profile HMMs 

b. ipHMMs 

c. GeneScan 

d. TMMOD 

 



























Friedrich et al, Bioinformatics 2006 

Interaction profile HMM (ipHMM) 



GENSCAN (generalized HMMs) 

• Chris Burge, PhD Thesis ’97, Stanford 

• http://genes.mit.edu/GENSCAN.html 

• Four components 

– A vector π of initial probabilities 

– A matrix T of state transition probabilities 

– A set of length distribution f 

– A set of sequence generating models P 

• Generalized HMMs:  

– at each state, emission is not symbols (or residues), 

rather, it is a fragment of sequence. 

– Modified viterbi algorithm 

 

http://genes.mit.edu/GENSCAN.html




• Initial state probabilities 

– As frequency for each functional unit to occur 

in actual genomic data. E.g., as ~ 80% portion 

are non-coding intergenic regions,  the initial 

probability for state N is 0.80 

• Transition probabilities 

• State length distributions 



• Training data 

– 2.5 Mb human genomic sequences 

– 380 genes, 142 single-exon genes, 1492 exons 

and 1254 introns 

– 1619 cDNAs 



Open areas for research  

• Model building 
– Integration of domain knowledge, such as structural 

information, into profile HMMs 

– Meta learning?  

• Biological mechanism 
DNA replication 

• Hybrid models 
– Generalized HMM 

– … 



TMMOD: An improved hidden Markov model for 

predicting transmembrane topology 
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TMHMM   by Krogh, A. et al  JMB 305(2001)567-580 

Accuracy of prediction for topology: 78% 
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Mod. Reg. 
Data 

set 

Correct 

topology 

Correct 

location 

 Sens- 
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Speci- 

ficity 

TMMOD 1 

(a) 

(b) 

(c) 

S-83 

65  (78.3%) 

51  (61.4%) 

64  (77.1%) 

67  (80.7%) 

52  (62.7%) 

65  (78.3%) 

97.4% 

71.3% 

97.1% 
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71.3% 

97.1% 

TMMOD 2 

(a) 

(b) 

(c) 

S-83 

61  (73.5%) 

54  (65.1%) 

54  (65.1%) 

65  (78.3%) 

61  (73.5%) 
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TMMOD 3 
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95.3% 
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TMHMM S-83 

64  (77.1%) 69  (83.1%) 96.2% 96.2% 
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(85.5%)       (88.0%) 98.8% 95.2% 

TMMOD 1 

(a) 

(b) 

(c) 

S-160 
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92     (57.5%) 

117   (73.1%) 
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103   (64.4%) 
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TMMOD 2 

(a) 

(b) 

(c) 

S-160 

120   (75.0%) 

97     (60.6%) 

118   (73.8%) 

132   (82.5%) 

121   (75.6%) 

135   (84.4%) 
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TMMOD 3 

(a) 

(b) 

(c) 

S-160 

120   (75.0%) 

110   (68.8%) 

135  (84.4%) 

133   (83.1%) 

124   (77.5%) 

143  (89.4%) 
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TMHMM S-160 123  (76.9%) 134  (83.8%) 97.1% 97.7% 


