GLOBEX Bioinformatics
(Summer 2015)

Hidden Markov Models (1)

a. The model
b. The decoding: Viterbi algorithm



Hidden Markov models

A Markov chain of states

At each state, there are a set of possible observables (symbols), and
The states are not directly observable, namely, they are hidden.
E.g., Casino fraud
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« Three major problems
— Most probable state path
— The likelihood
— Parameter estimation for HMMs



A biological example: CpG islands

« Higher rate of Methyl-C mutating to T in CpG dinucleotides —
generally lower CpG presence in genome, except at some biologically
Important ranges, e.g., in promoters, -- called CpG islands.

« The conditional probabilities P, (N|N”)are collected from ~ 60,000 bps
human genome sequences, + stands for CpG islands and — for non
CpG islands.

P, A C G T Pl A C G T
A | 180 .274 .426 .120 A | 300 .205 .285 .210
C | 171 368 .274 .188 C | 322 298 .078 .302
G| 161 339 375 .125 G | 248 246 .298 .208
T | 079 355 384 .182 T | 177 239 292 292




Task 1: given a sequence X, determine if it is a CpG island.

One solution: compute the log-odds ratio scored by the two Markov chains:
S(x) = log [ P(x | model +) / P(x | model -)]
where P(x | model +) = P,(X,|X;) P.(X3X,)... P.(X_|X,.;) and

P(x | model -) = P-(2|1) -(X|)-_ - P-L|XL-1)

# of sequence

Histogram of the length-normalized scores
(CpG sequences are shown as dark shaded )



Task 2. For a long genomic sequence X, label these CpG
Islands, if there are any.

Approach 1: Adopt the method for Task 1 by calculating the log-odds
score for a window of, say, 100 bps around every nucleotide and
plotting it.

Problems with this approach:

— Won’t do well if CpG 1slands have sharp boundary and variable
length

— No effective way to choose a good Window size.



Approach 2: using hidden Markov model

&

0.35

0.30

+ —
 The model has two states, “+” for CpG island and *“-” for non
CpG island. Those numbers are made up here, and shall be fixed
by learning from training examples.

-  The notations: a,, is the transition probability from state k to state
l; e, (b) is the emission frequency — probability that symbol b is
seen when in state k.



The probability that sequence x is emitted by a state path x is:

P(X, ) = [ Tiz1 10 L €xi (Xi) @ g ziv1
1:123456789

X : TGCGCGTAC
mi-—++++-—-

P(x, ™) = 0.338 x 0.70 x 0.112 x 0.30 x 0.368 % 0.65 x 0.274 x 0.65 x 0.368 x 0.65 x
0.274 x 0.35x 0.338 x 0.70 x 0.372 x 0.70 x 0.198.

Then, the probability to observe sequence x in the model is
P(x) = 2_P(Xx, m),
which is also called the likelihood of the model.



Decoding: Given an observed sequence x, what is the most probable state path,
l.e.,
n* = argmax , P(X, )

Q: Given a sequence x of length L, how many state paths do we have?
A: N, where N stands for the number of states in the model.
As an exponential function of the input size, it precludes enumerating all possible state

paths for computing P(x).



Let v, (i) be the probability for the most probable path ending at position i with a state k.

Viterbi Algorithm
Initialization: v4(0) =1, v, (0) = 0 for k > 0.
Recursion: v, (i) = e,(X) max; (vj(i-l) ajk);
ptri(k) = argmax; (v;(i-1) a);
Termination: P(x, ©* ) = max, (v, (L) a);
m* = argmax; (v;(L) ay);

Traceback:  n*;, = ptr; (n™)).



V(1) = e,(%;) max; (v;(1-1) ay);
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Casino Fraud: investigation results by Viterbi decoding

3.2 Hidden Markov models 57
Rolls 315116246446644245311321631164152133625144543631656626566666
pie 7 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
Viterbi

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL

Rolls 651166453132651245636664631636663162326455236266666625151631
Die LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF

Rolls 222555441666566563564324364131513465146353411126414626253356
Die FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL

Rolls 366163666466232534413661661163252562462255265252266435353336
Die LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
| Viterbi LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFERER

233121625364414432335163243633665562466662632666612355245242
FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF




« The log transformation for Viterbi algorithm
V(1) = e (x;) max; (v;(1-1) ay,);
8 = log ay;
ex(%;) = log e,(x);

v (1) = log v, (1);

V(1) = &%) + max; (v;(I-1) + ay);
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« The model likelihood: Forward
algorithm, backward algorithm

«  Posterior decoding



The probability that sequence x is emitted by a state path x is:

P(X, ) = [ Tiz1 10 L €xi (Xi) @ g ziv1
1:123456789

X : TGCGCGTAC
mi-—++++-—-

P(x, ™) = 0.338 x 0.70 x 0.112 x 0.30 x 0.368 % 0.65 x 0.274 x 0.65 x 0.368 x 0.65 x
0.274 x 0.35x 0.338 x 0.70 x 0.372 x 0.70 x 0.198.

Then, the probability to observe sequence x in the model is
P(x) = 2_P(Xx, m),
which is also called the likelihood of the model.



How to calculate the probability to observe sequence x in the model?

P(x) =Z_P(X, m)

Let f, (i) be the probability contributed by all paths from the beginning up
to (and include) position i with the state at position i being k.

The the following recurrence is true:
£ () =[Z; 1;0-1) ] e (X))

Graphically, X, X5 ) CORN X

O—

A

Again, a silent state 0 is introduced for better presentation



Forward algorithm
Initialization: f,(0) =1, f, (0) = 0 for k > 0.
Recursion: (1) = e, (x;) Z;f;(1-1) a.

Termination: P(x) = X, f (L) a,,.

Time complexity: O(NZL), where N is the number of states and L is the
sequence length.



Let b, (i) be the probability contributed by all paths that pass
state k at position I.

0(1) = P(Xisgs - X [ (1) =K)

Backward algorithm
Initialization: b, (L) = a, for all k.
Recursion (i=L-1, ..., 1):  by(i) = Z;a €j(Xj4q) by(i+1).

Termination: P(x) = %, 8y, €, (X1)b,(2).

Time complexity: O(NZL), where N is the number of states and L is the
sequence length.



Posterior decoding
P(m; = K [X) = P(X, T, = K) IP(X) = f ()b, (i) / P(X)

Algorithm:
fori=1toL
do argmax , P(m; = k |X)

Notes: 1. Posterior decoding may be useful when there are multiple almost
most probable paths, or when a function is defined on the states.

2. The state path identified by posterior decoding may not be most
probable overall, or may not even be a viable path.
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- Viterbi training

- Baum-Welch algorithm

- Maximum Likelihood

- Expectation Maximization



Model building

- Topology
- Requires domain knowledge

- Parameters

- When states are labeled for sequences of observables
- Simple counting:
8y = A/ Zp A and g (b) = E(b) / 2, E(b)
- When states are not labeled

Method 1 (Viterbi training)

1. Assign random parameters

2. Use Viterbi algorithm for labeling/decoding

2. Do counting to collect new a,, and e, (b);

3. Repeat steps 2 and 3 until stopping criterion is met.

Method 2 (Baum-Welch algorithm)



Baum-Welch algorithm (Expectation-Maximization)

 An Iterative procedure similar to Viterbi
training

 Probability that a,, Is used at position i in sequence j.
P(m; = K, mi, = 11X,0) = fi (i) a4 € (Xi4p) by(i+1) / P(X)

Calculate the expected number of times that is used by
summing over all position and over all training sequences.

Ay = Z; {(1/P() [Z; £J(1) ay &) (Ky,y) bI(i+1)] }

Similarly, calculate the expected number of times that symbol
b is emitted in state K.

E,(0) =Z; {(1/P() [Zgipx_inj =y (D) bJI(D] }



Maximum Likelihood
Define L(0) = P(x| 0)
Estimate O such that the distribution with the

estimated 0 best agrees with or support the
data observed so far.

OML = argmax L(0)
0

E.g. There are red and black balls in a box.
What is the probability P of picking up a
black ball?

Do sampling (with replacement).



Maximum Likelihood

Define L(0) = P(x| 0)
Estimate such that the distriibution with the estimated best agrees with or supports the
data observed so far.

0 ML= argmax 0 L(0) oL(0)

When L(8) is differentiable, =0
06 oM

For example, want to know the ratio: # of blackball/# of whiteball, in other words, the
probability P of picking up a black ball. Sampling (with replacement):

O @ ® O © @

Prob (iid) = p° El-rg)) o . 100 Counts; whiteball 91,
Likelihood L(p) = p*(1-p), times blackball 9

2 _9p' (- p) -91p°(L- p)? =0

=> PML =9/100 = 9%. The ML estimate of P is just the frequency.



A proof that the observed frequency -> ML estimate of
probabilities for polynomial distribution

Let Counts n; for outcome i
The observed frequencies 0; = n, /N, where N = >.. n,
If 6, ML=n./N, then P(n|6 ML) > p(n| 6) for any 6 = 6 ML

Proof:

ML l_[(‘giML)ni ML N S
P(n|e™) i B o
T N § ()it A /

ML ML
)= 30 log(*L)

o no oM
:Zni Iog(?)_NZN log( 0

— H(O ||6) >0



Maximum Likelihood: pros and cons

- Consistent, 1.e., in the limit of a large amount of data, ML
estimate converges to the true parameters by which the data
are created.

- Simple

- Poor estimate when data are insufficient.

e.g., If you roll a die for less than 6 times, the ML estimate
for some numbers would be zero.

Pseudo counts: 0 — N+«

" N+A

where A= 2. a;



Conditional Probability and Join Probability

nEEERoee
120

P(one) =5/13
P(square) = 8/13

P(one, square) = 3/13
P(one | square) = 3/8 = P(one, square) / P(square)

In general, P(D,M) =P(D|M)P(M) = P(M|D)P(D)
P(D|M)P(M)
P(D)

=> Baye’s Rule: P(M|D) =

P(Black|One) P(One)
P(Black|One) P(One) + P(Black|Two)P(Two)

(2)(2) 1

S(H+ (S 3

P(One|Black) =




Conditional Probability and Conditional Independence
00
120

P(One) = %
3
P(One|Square) = S
3 1
P(One|Black) = =3
2 1
P(One|Square M Black) = =3
P(One|White) = ?i:%
1
P(One|Square N White) = .

So One and Square are not independent, but they are conditionally independent
given Black and given White.



Baye’s Rule:
P(DIM)P(M)
P(D)

P(M|D) =

Example: disease diagnosis/inference
P(Leukemia | Fever) = ?

P(Fever | Leukemia) = 0.85

P(Fever) =0.9

P(Leukemia) = 0.005

P(Leukemia | Fever) = P(F|L)P(L)/P(F) = 0.85*0.01/0.9 =
0.0047



Bayesian Inference
Maximum a posterior estimate

O™ =argmax P(6| x)
0



Expectation Maximization
P(X,y[0)=P(y[x,0)P(x|0)

P(x|0)=P(x,y|0)/ P(y|x,0)
log P(x|8) =log P(x,y|&) —log P(y| X, 6)

2. PyIxe) ( )  Expectation
log P(x|8) =D P(y|x,6)logP(x,y|0)—> P(y|x,6)logP(y|x,6)

Q16" =2 P(y|x8")logP(x,y|6)

log P(x|8)—log P(x|6")

P(y|x 6
P(y|x,0)

=Q(016")-Q(8'[6")+>_P(y|x,6")log

2Q(016)-Q('|¢')

t+1 t
0" =arg gnaXQ(ﬁlﬁ) Maximization



EM explanation of the Baum-Welch algorithm

Weliketo  px19) =S P(x| 7.0 But state path r Is
maximize by (x16) Z (x| 7.6) hidden variable. Thus,

choosing 6 " EM.
Q(616')=> P(x|x,6")logP(x, 7|6)

P(x,m|f)= 1—[ 1_[[6 (b)]Eﬂb 131—[ Hw‘u(ﬂi

k=1 & k=0 I=1

Q616" = ZP(H |x,8")

I:Z Z Ey(b,m)loger(b) + Z Z Ay () lﬂgak,::l

k= k=0 I=1



EM Explanation of the Baum-Welch algorithm

Ev(b)=) P(r|x,00Ei(b,m) and Ay =) P(m|x,0")Au(r).

0(016") = Z ZEk(b)logek(bHZZAH log a-

k=1 b k=0 I=1

E-term A-term
A-term is maximized if a;" = Zf%
.

E-term is maximized if E (b)

SE.®)

e (b) =
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Profile HMMs
IPHMMs
GeneScan
TMMOD

o 0o T p



Profile HMM for a family of sequences

Applications of HMM’s

* Given a family of sequences, Olzdl...O}(|, build a hidden Markov
model that best fits to this family-->Problem 3

* Correct multiple alignment is given--> Problem 3, path known
* MA built from structural information

* MA obtained from other sequence based alignment procedures

* Alignment is not assumed--> Problem 3, path not known (B-W)

* Use the obtained model to:

» Score potential matches of new sequences-->Problem 1

* Align new sequences--> Problem 2

Javier Garcia-Frias



Profile HMM: Correct alighment assumed

HMM construction

T AG---C O

e 2

Example: Assume MA given 7 i f}fé i (': ((;: 83

(columns marked with +) "~ GLV. C O
“x\ + + +

* Segments of family where an alignment exists are produced by
MATCH STATES

Begin — M, {Mz - —» My — End

* Generation probabilities are position dependent!

* In previous example, K=3

Javier Garcia-Frias



Profile HMM: Correct alignment assumed

* Handling insertions: Portion of the sequences that are not aligned
---> Add INSERT STATES

AG--- C O]
. : AG -C O
Example: Assume MA given A-CACIC O

(columns marked with +)

- GLV[- ¢ oOf

+ + +

* To cope with all possibilities for insertions, an insert state
should be added after each match state

State I;_inserts sequence just after match state M, (i.e.. aligned column k)

O'--> M,M,M;
O?%--> M| M,1,1,M;
0’--> M, ? State M, 1s skipped

\

Javier Garcia-Frias



Profile HMM: Correct alignment assumed

* Handling deletions: Portion of the sequences that “skips™ the align-
ment---> Add SILENT (DELETE) STATES .

.- AG---C O
Example: Assume MA given ol iG’é g (': g (())%;
(columns marked with +) o SIGLV- C O

N + + + il

T

* To cope with all possibilities for deletions
» Connect all possible match states (big complexity)

* Add silent states (less complexity, but loss of generality)-->NO EMISSION

State Db skips match state Mb (i.e., aligned column k)

Sl 4.\

Begin — M, M, > .. End

Javier Garcia-Frias




Profile HMM: Correct alignment assumed
Resulting HMM (Profile HMM)

* Notice we have added transitions between insert and delete states

-7 AG--- C O MM,M;
Example: Assume MA given -~ AGAG - C 03 MM, 1, M
(columns marked with +) - A- CACC 04 M, D, 1L1hM;5
NN -GLV- C O DM,LIL,M;
SN+ + +

Javier Garcia-Frias



Profile HMM: Correct alignment assumed

Key idea of profile HMM

* Transition and emission probabilities capture specific information
about each position in the multiple alignment of the whole family

+ Profile HMM=Statistical model representing the family

Questions
* How do we build the profile HMM that best fits to a given family?
-->Problem 3 (simplified)

* How do we detect potential membership in this family (for new
sequences)? --> Problem 1

* How do we align a new sequence? --> Problem 2

Javier Garcia-Frias



Parameterization of profile HMM’s: Correct alignment assumed

Profile HMM parametrization (simplified Problem 3)
* Model length

* Length (and structure) completely defined when we decide
which MA columns should be assigned to match states
« Manual construction

* Heuristic construction: e.g., column aligned if proportion of gaps
is less than a threshold

* More sophisticated methods

e Parameter estimation

* Alignment 1s given-->Path through model is given for any
sequence

* Apply solution to Problem 3 when path is given (just count
events)

Javier Garcia-Frias



Parameterization of profile HMM’s: Correct alignhment assumed

Previous example L
T AG--- C O MM,M;
MA given o AGAG - C Oi M1MalalaMs
. . A- CACC O M1D2121212M3
(columns marked with +) N - GLV- C 0% DMLLM;
\"“x\ + + +

Begin — M, M) — = M, End

Javier Garcia-Frias



Parameterization of profile HMM’s: Correct alignment assumed

Emission probabilities: Estimate from number of emissions

N(A|M|)=3  N(other|M,)=0

Iy, I, I5 are not used

N(AM,)=3  N(other]M,)=0 |[N(A[I,)=2 N(C|I,)=2 N(G|I,)=1

N(C|M3)=4  N(other|M3)=0 |N(L|I;)=1 N(V|I;)=1 N(other|l,)=0

Transition probabilities: Estimate from number of transitions

N(M|[B)=3  N(Dy[B)-I N(L,[Dy)=1

NM; M )=3  N(D,M))=1 N(L,|I))=4 N(M;|l,)=3
N(M;[M,)=1  N(I,[M;)=2
N(E|M;)=3

e If number of sequences is not high enough, estimation should be
modified

Javier Garcia-Frias



Membership in a profile HMM

Detection of potential membership, for a new sequence,
in family defined by a profile HMM (Problem 1)

* Apply forward equation

* Since P(O|M) is length dependent, usually scoring function is
modified

P(O|M)
P(O|S)

Scoring=log

S 1s called “standard model™": Model to use if sequences were
independently distributed

+ Other statistical approaches can also be used to improve the scoring
system

Javier Garcia-Frias



Multiple alignment using profile HMM’s

No alignment is assumed

* From an initially unaligned family of sequences, jointly perform:
* Profile HMM estimation

* Alignment estimation

1. Initialization
* Choose length of profile HMM and initialize parameters

2. Training
* Estimate parameters of the profile HMM

* Path not known (no alignment)--> Problem 3 (Baum-Welch)

3. Alignment
 Align all sequences using Viterbi algorithm (Problem 2)

Javier Garcia-Frias






Interaction profile HMM (ipHMM)

o

OaVaC;

Friedrich et al, Bioinformatics 2006

>

Can measure the
log-likelihood of the
sequence, given the

model:

logP (x|6)

protein sequence, x



GENSCAN (generalized HMMs)
* Chris Burge, PhD Thesis *97, Stanford

* Four components
— A vector z of initial probabilities
— A matrix T of state transition probabilities
— A set of length distribution f
— A set of sequence generating models P

e Generalized HMMs:

— at each state, emission is not symbols (or residues),
rather, it is a fragment of sequence.

— Modified viterbi algorithm


http://genes.mit.edu/GENSCAN.html




* Initial state probabilities

— As frequency for each functional unit to occur
In actual genomic data. E.g., as ~ 80% portion
are non-coding intergenic regions, the initial
probability for state N is 0.80

 Transition probabilities
o State length distributions



 Training data
— 2.5 Mb human genomic sequences

— 380 genes, 142 single-exon genes, 1492 exons
and 1254 introns

— 1619 cDNAS



Open areas for research

» Model building

— Integration of domain knowledge, such as structural
Information, into profile HMMs

— Meta learning?
 Biological mechanism
DNA replication
» Hybrid models
— Generalized HMM



TMMOD: An improved hidden Markov model for
predicting transmembrane topology

.. W 'T ....
ffector .
Ligand

©
4 e .
. . 3 s
. . .507 -
—————— ;;0 : : :
Cﬂ" ‘Jjn Y" T,F\’F Fg}’m *—59
Membrane *%& 2o
‘ G s P
ﬁ 331 U S 488
F
: 400
®
3 o
&

Signal

o)

MFQLLAGVRMNSTGRPRAKIILLYALLIAFNIGAWLCALAAFRDHPVLLGT
131333313133i3333131313131 31 MMMMMMMMMMMMMMMMMMMMMO 0000000000



TMHMM by Krogh, A. et al JMB 305(2001)567-580

Non-cytoplasmic side

Cytoplasmic side

Accuracy of prediction for topology: 78%
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Data Correct Correct Sens- Speci-
Mod. Reg. set topology location itivity ficity
(a) 65 (78.3%) 67 (80.7%) 97.4% 97.4%
TMMOD 1 (b) S-83 51 (61.4%) 52 (62.7%) 71.3% 71.3%
(c) 64 (77.1%) 65 (78.3%) 97.1% 97.1%
(a) 61 (73.5%) 65 (78.3%) 99.4% 97.4%
TMMOD 2 (b) S-83 54 (65.1%) 61 (73.5%) 93.8% 71.3%
(c) 54 (65.1%) 66 (79.5%) 99.7% 97.1%
(a) 70 (84.3%) 71 (85.5%) 98.2% 97.4%
TMMOD 3 (b) S-83 64 (77.1%) 65 (78.3%) 95.3% 71.3%
(c) 74 (89.2%) 74 (89.2%) 99.1% 97.1%
64 (77.1%) 69 (83.1%) 96.2% 96.2%

TMHMM S-83
(85.5%) (88.0%) 98.8% 95.2%

PHDtm S-83
(a) 117 (73.1%) 128 (80.0%) 97.4% 97.0%
TMMOD 1 (b) S-160 92 (57.5%) 103 (64.4%) 77.4% 80.8%
(c) 117 (73.1%) 126 (78.8%) 96.1% 96.7%
(a) 120 (75.0%) 132 (82.5%) 98.4% 97.2%
TMMOD 2 (b) S-160 97  (60.6%) 121 (75.6%) 97.7% 95.6%
(c) 118 (73.8%) 135 (84.4%) 98.4% 97.2%
(a) 120 (75.0%) 133 (83.1%) 97.8% 97.6%
TMMOD 3 (b) S-160 110 (68.8%) 124 (77.5%) 94.5% 98.1%
(c) 135 (84.4%) 143 (89.4%) 98.3% 98.1%
TMHMM S-160 123 (76.9%) 134 (83.8%) 97.1% 97.7%




