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Gene Networks 

• Definition: A gene network is a set of molecular components, such 

as genes and proteins, and interactions between them that collectively 
carry out some cellular function.  A genetic regulatory network refers 
to the network of controls that turn on/off gene transcription.  

• Motivation: Using a known structure of such networks, it is 

sometimes possible to describe behavior of cellular processes, reveal 
their function and the role of specific genes and proteins 

• Experiments 

– DNA microarray : observe the expression of many genes simultaneously 
and  monitor gene expression at the level of mRNA abundance. 

– Protein chips:  the rapid identification of proteins and their abundance is 
becoming possible through methods such as 2D polyacrylamide gel 
electrophoresis. 

– 2-hybrid systems: identify protein-protein interactions  

• (Stan Fields’ lab http://depts.washington.edu/sfields/) 
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Genetic Network Models 

 
– Linear Model: expression level of a node in a network depends on 

linear combination of the expression levels of its neighbors.  

– Boolean Model:  The most promising technique to date is based on 

the view of gene systems as a logical network of nodes that 

influence each other's expression levels. It assumes only two 

distinct levels of expression: 0 and 1. According to this model a 

value of a node at the next step is boolean function of the values of 

its neighbors. 

– Bayesian Model:  attempts to give a more accurate model of 

network behavior, based on Bayesian probabilities for expression 

levels.  
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Evaluation of Models 

– Inferential power  

– Predictive power 

– Robustness 

– Consistency 

– Stability 

– Computational cost 
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Boolean Networks: An example 

Reverse Engineering Interpreting data 
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Boolean networks: A Predictor/Chooser scheme 
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Predictor 

• A population of cells containing a target genetic network T 

is monitored in the steady state over a series of M 

experimental perturbations. 

• In each perturbation pm (0 m < M) any number of nodes 

may be forced to a low or high level. 

Wild-type state 

-: forced low 

+: forced high 
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Step 1. For each gene  xn, find all pairs of rows (i, j) in E in 

which the expression level of xn differs, excluding rows in 

which xn was forced to a high or low value.  

For x3, we find:  

(p0, p1), 

(p0, p3), 

(p1, p2), 

(p2, p3) 
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Step 2. For each pair (i,j),  Sij contains all other genes whose 

expression levels also differ between experiments i and j. 

Find the minimum cover set Smin, which contains at least 

one node from  each set Sij 

Step 1:  

(p0,p1), 

(p0, p3), 

(p1,p2), 

(p2,p3) 

Step 2:  

(p0, p1)->S01={x0, x2} 

(p0, p3)->S03={x2} 

(p1, p2)-> S12={x0, x1} 

(p2, p3)->S23={x1) 

So, now the Smin is {x1, x2} 
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Step 3. use the nodes in Smin as input, xn as output, build truth 

table to find out fn (In this example, n=3) 

Now the Smin is {x1, x2} 

 x1 1 0 1 0 

 x2 1 1 0 0 

 x3 0 * 1 0 

So  f3    =   0 * 1 0 

* cannot be determined 
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Chooser 

For L hypothetical equiprobable networks generated by the 

predictor,  choose perturbation p that would best 

discriminate between the L networks, by maximizing 

entropy Hp as defined below. 

  

Hp = - s=1
S (ls/L) log2 (ls/L) 

 

where ls is the number of networks giving the state s  

Note: (1 s  S), and (1 S  L)  
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Result and Evaluation 

• Evaluation of Predictor 

• construct a target network T: size = N, and maximum in-degree = k (where the 

in-degree of a node is its number of incoming edges) 

• sensitivity is defined as the percentage of edges in the target network that were 

also present in the inferred network, and specificity is defined as the 

percentage of edges in the inferred network that were also present in the target 

network. 
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Discussions 

– Incorporate pre-existing information 

– Boolean to multi-levels 

– Cyclic networks 

– Noise tolerance 

 

References 
– Ideker, Thorsson, and Karp, PSB 2000, 5: 302-313. 

 



Bayesian Networks 
Biological processes are stochastic 
- Data can be noisy as well.  
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conditions 
Join 
probability 

e.g.,  
P(+,+,-, …,+) = 
0.003 
P(-,+,+,…, -) = 
0.00015 
… 
 
How many 
combinations? 

2N 

Query/Inference:  P(X1 | X6, X7) ? 
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Conditional Probability and Conditional Independence 
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Factorization of join probability 

Conditional independence 

Assuming max in-degree k,  the 
number of parameters is 
reduced to 2k N 

# of parameters = 1 + 2 + 4 + 8 + 16 = 31 # of parameters = 2N -1 

# of parameters = 1 + 1 + 4 + 1 + 1 = 10 

Bayesian Network as an efficient way to factorize the Joint Probability 

Example: 
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A greedy Algorithm to Learn Bayesian Network from the data 
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Parameter Estimation 
 

-Maximum Likelihood 
-Bayesian approach 

- Dirichlet  priors are used for model parameters. 

 

Structure evaluation 
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Model Averaging 

Feature f: edge XY is in the network. 
 
f(G) = 1, if G has the feature 
        = 0, otherwise. 

How to compute 
P[f(G)|D]? 
-Enumerate all high 
scored networks 
- Sampling (MCMC) 
- Bootstrap 
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Bootstrap 
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Inference 

BINF694, S15, Liao 24 

• Given P(X1, …, XN) as a BN, calculate P(Xi | evidence), 

where evidence is a subset of nodes that we know their 

values. 

 

e.g., P(X2 | X3, X4) =? 

• Exact inference is NP-hard (Cooper, 1990) 

P(Xi | evidence) =   Y  V – {Xi, evidence} P(Xi | Y)  
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Inference by Sampling 

 

• Direct sampling, e.g. P(X5) 

• Rejection sampling 

• Weighted (likelihood) sampling 

• Gibbs sampling 

Learning Bayesian Networks, Neapolitan, 2004 

P(X1 =1| X3=1, X4=2) = ¾ 

P(X2 =1| X3, X3) = ¼ 

P(X5 =1| X3, X3) = 2/4 
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Likelihood Weighting 
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Russell & Norvig, AI Modern Approach, 2ed. 

Gibbs sampler 
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Russell & Norvig, AI Modern Approach, 2ed. 

Markov blanket 
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Model Intervention for causality 
 

- Bayesian networks <= causal networks 

 

- Bayesian networks + intervention => causality 

 

External interventions are needed to infer the causal 

direction for edges in a Bayesian network: 

• Genetic mutations 

• siRNA  

• small chemical interventions as inhibitors or 

activators 
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Intervention on X 

 

-   do(X=x) for node X to take value x. 

- Incoming edges to X are cut off. 

- X becomes a root node, and P(X=x) =1. 
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Example 

Two Bayesian networks:  X  Y and Y  X 

 

- Equivalent based on observed data 

-   do(X=x) for node X to take value x. 

- If X  Y is the causal network, then  

 P(Y|do(X=x)) = P(Y|X=x) 

 

- If Y  X is the causal network, then 

 P(Y|do(X=x)) = P(Y) 

 

We will get a different conditional distribution in the 

observational and inhibited (intervened) samples. 

Whereas we cannot distinguish between the two models with the 

use of observations alone, we can differentiate between them 

with the use of interventional data.  



Linear model: 

Non-linear model: 

Dynamics of gene expression regulation 



Discretization: 

Stochastic  -- adding noise 









“Loops” in DBN 
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Bayesian networks for cellular signaling 
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