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Gene Networks

« Definition: A gene network is a set of molecular components, such

as genes and proteins, and interactions between them that collectively
carry out some cellular function. A genetic regulatory network refers
to the network of controls that turn on/off gene transcription.

« Motivation: Using a known structure of such networks, it is
sometimes possible to describe behavior of cellular processes, reveal

their function and the role of specific genes and proteins
* Experiments

— DNA microarray : observe the expression of many genes simultaneously
and monitor gene expression at the level of MRNA abundance.

— Protein chips: the rapid identification of proteins and their abundance is
becoming possible through methods such as 2D polyacrylamide gel
electrophoresis.

— 2-hybrid systems: identify protein-protein interactions
» (Stan Fields’ lab http://depts.washington.edu/sfields/)
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Genetic Network Models

— Linear Model: expression level of a node in a network depends on
linear combination of the expression levels of its neighbors.

— Boolean Model: The most promising technique to date is based on
the view of gene systems as a logical network of nodes that
Influence each other's expression levels. It assumes only two
distinct levels of expression: 0 and 1. According to this model a
value of a node at the next step is boolean function of the values of
Its neighbors.

— Bayesian Model: attempts to give a more accurate model of
network behavior, based on Bayesian probabilities for expression
levels.



Evaluation of Models
— Inferential power
— Predictive power
— Robustness
— Consistency
— Stability
— Computational cost



Boolean Networks: An example
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Boolean networks: A Predictor/Chooser scheme
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Predictor

A population of cells containing a target genetic network T
IS monitored in the steady state over a series of M
experimental perturbations.

* Ineach perturbation p., (0 <m < M) any number of nodes
may be forced to a low or high level.

X, X, X, X,
1 1 1 0 P, «— Wild-type state
- 1 0 1 p,

E - 1 - 0 0 p: -: forced low
1 1 - 1 P _
1 1 1 | P, +: forced high

Figure 2: Example expression matrix
generated from the genetic network in fig. 1.



Step 1. For each gene x,, find all pairs of rows (i, J) in E In
which the expression level of x, differs, excluding rows in
which x. was forced to a high or low value.

-"in " i "E" . For x4, we find:
- 1 0 1 P,
L ; Yo N (PO, p1),
1 1 - 1 P, (p0, p3),
1 1 1 + P,
(p1, p2),
Figure 2: Example expression matrix (pz’ p3)

generated from the genetic network in fig. 1.
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Step 2. For each pair (1,J), S; contains all other genes whose
expression levels also differ between experiments i and j.
Find the minimum cover set S_..., which contains at least
one node from each set S;;

X, X, X, X,
1 | 1 0 P,
| 0 1 P,
E= ] - 0 0 2
1 | - 1 P
1 | 1 + P,

Figure 2: Example expression matrix
generated from the genetic network in fig. 1.

Step 1.
(pO,p1),
(PO, p3),
(p1,p2),
(p2,p3)

Step 2:

(PO, p1)->Sp;={Xo, X2}
(PO, p3)->Sgz={X,}
(P1, p2)-> S1={Xp, X1}
(P2, p3)->S,5={X,)

So, now the S, IS {X;, X5}
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Step 3. use the nodes in S, as input, X as output, build truth

table to find out f_ (In this example, n=3)

Now the S, IS {X, X5}

X” X .X: ,Y_‘\
L1 1 0 |» X4 1010
1 0 I P,
E=11 U 2 X, 1100
1 1 - I P,
1 1 I | P,
X, 0%10

Figure 2: Example expression matrix
generated from the genetic network in fig. 1.

Sof, = 0%10

* cannot be determined
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Chooser

For L hypothetical equiprobable networks generated by the
predictor, choose perturbation p that would best
discriminate between the L networks, by maximizing
entropy H, as defined below.

I_IIO = - 21> (/L) log, (I/L)

where | is the number of networks giving the state s
Note: (1<s<S),and (1<S<L)
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Result and Evaluation

e Evaluation of Predictor

« construct a target network T: size = N, and maximum in-degree = k (where the
in-degree of a node is its number of incoming edges)

 sensitivity is defined as the percentage of edges in the target network that were
also present in the inferred network, and specificity is defined as the
percentage of edges in the inferred network that were also present in the target

network. ]
A B C D E F G H ! J

. Total Sim. Num. Inferred Total ‘Num. Sens- Spec- Num. C,PU

N k Ed Network Inferred Shared itivity  ificity Nodes w/ Time

ges ctworks Edges Edges tavity ety 1 Soln. (sec)
5 2 4 (0.1) 1(.02) 3 (0.1) 3 (0.1) 77% 99% 5 (0.0) 0.1 (0.0)
10 2 12 (0.1) 60 (50) 9 (0.1) 9 (0.1) 71% 95% 9 (0.1) 0.1 (0.0)
20 2 27 (0.2) 3%107 (107) 21 (0.2) 19 (0.1) 71% 92% 18 (0.1) 0.2 (0.0)
50 2 72 (0.2) 1x10" (10") 57 (0.3) 51(0.3) 71% 90% 45(0.2) 0.8 (0.0)
100 2 146 (0.7) 3x10™ (10™) 119 (0.9) 104 (0.7) 70% 88% 89(0.5) 6.6 (0.3)
20 4 44 (0.3) 2x10° (10°) 28 (0.3) 23 (0.2) 51% 84% 16 (0.1) 0.2 (0.0)
20 6 57 (0.5) 2x107 (107) 33(0.3) 27(0.2) 42% 82% 14 (0.2) 0.2 (0.0)
20 8 69 (0.7) 9%10" (10%) 38 (0.4) 31(0.3) 35% 82% 13 (0.2) 0.2 (0.0)
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Discussions

— Incorporate pre-existing information
— Boolean to multi-levels

— Cyclic networks

— Noise tolerance

References
— ldeker, Thorsson, and Karp, PSB 2000, 5: 302-313.
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Bayesian Networks

Biological processes are stochastic

- Data can be noisy as well.

positive edgk‘ /negatiue edge

§ Cluantitative part:

Gene A | Gene B | P(C+|AB) | P(C-|AB)
+ + 0.6 0.4
- + 0.01 0.99
+ - 0.99 0.01
- - 0.4 0.6

=

This row indicates that when
(Gene A and Gene B are up-
regulated, then Gene C has a
60% probability to be up-
regulated and a 40% probability
to be down-regulated.
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I conditions

(xll Xp o xlm\‘
variables
]:ZI xZE IZm —
Xy X,
(genes)
l K'xnl xn‘E T Inm )
. J
'

m independent (steady-state) observatiol

of the system X,

Query/Inference: P(X1 | X6, X7) ?

Join

probability
P(X1, .... X»)

€.8.
P(+,+,-, ...,+) =
0.003
P(-,+,+,..., -) =

0.00015
2N
How many

combinations?
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Conditional Probability and Conditional Independence
00
120

P(One) = %
3
P(One|Square) = S
3 1
P(One|Black) = =3
2 1
P(One|Square M Black) = =3
P(One|White) = ?i:%
1
P(One|Square N White) = .

So One and Square are not independent, but they are conditionally independent
given Black and given White.
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Bayesian Network as an efficient way to factorize the Joint Probability

Factorization of join probability

P(Xy, ... H P(X)| Xy, ..., Xi—1)
# of parameters = 2N-1

Conditional independence

P(Xy, ..., H P(X;|Pa;)

Assuming max in-degree k, the
number of parameters is
reduced to 2kN

Example:

P(A.E,B.C,D)

P(A.E.B,C,D)

L
©

=P(A)P(E|JA)P(B|A,E)P(C|AE,B)
P(D|A.EB.C)

# of parameters=1+2+4+8+16=31

= P(A)P(E)P(B|A.E) P(C|B)P(D|A)

o
()

# of parameters=1+1+4+1+1=10
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A greedy Algorithm to Learn Bayesian Network from the data

Input

D// adata set
G, // initial network structure

Qutput
G // final network structure
Greedy-structure-search

Gpest = Go
repeat // apply best possible operator to G in each iteration
G = Gpest
foreach operator o // (each edge addition, deletion, or reversal on G)
G°=0(G) // apply to G
if G°is cyclic continue
if scoreBDe(G® : D) > scoreBDe(Gy e : D)
Gpest = G°

until G == G,.; // no change in structure improves score

20



Parameter Estimation

-Maximum Likelihood
-Bayesian approach

- Dirichlet priors are used for model parameters.

Structure evaluation

BavesianScore(M) =log[P(M | D)]
=log[P(M)] + log[P(DIM)] +c

« Where M = model, D = microarray data, ¢ = constant
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Model Averaging

@Q@) % @ @‘Q GS@
© © ©

P(G,|D) = 3041 P(G,|D) = 30.43 P(G,|D) = 30.44 P(G,|D) = 30.42 P(G|D) = 30.40
P[f(G)|D] = Zf (G)P How to compute
P[f(G)|D]?

Feature f: edge X—Y is in the network. -Enumerate all high
scored networks
f(G) = 1, if G has the feature - Sampling (MCMC)

= 0, otherwise. - Bootstrap
22



Bootstrap

* Fori=1, ..., m construct a data set D, by sampling, with
replacement, M instances from D. Then, apply the learning
procedure on D. to induce a network structure G..

* For each feature f of interest, calculate

23



Inference

« Given P(X,, ..., X\) as a BN, calculate P(X, | evidence),
where evidence Is a subset of nodes that we know their
values.

e.g., P(X, | X5, X,) =7

PX,=1X,=1)= 7
POG=11X,=2)= 4

P(X,=11X,=1)=6 PX;=1X,=1,X,=1)=
N

PIX, = 1X,=2)=
PRG=11X,=2,),=1)=
PRG=11X,=2,X,=2)=

« Exact inference is NP-hard (Cooper, 1990)
P(Xi | evidence) = Z Y € V- {Xi, evidence} P(Xi | Y)

)
POG =11 =1,X,=2) =

)

)

bW N =

BINF694, S15, Liao 24



Inference by Sampling

 Direct sampling, e.g. P(Xc) ot 10, 1) - 1
« Rejection sampling e
« Weighted (likelihood) sampling
* Gibbs sampling
PO S
Case | %1 | %o | X5 | Xa | K 2t s
1 1 2 1 2 2
2 1 2 2
3 1 2 1 2 1
4 2 1 1 1
3 2 2 1 2 2 — —_ —9\ —
S I P(X| =1| X5=1, X,=2) = %
A T T T I BB P(X, =1| X3, X3) =Y
P(Xs =1| X5, X3) = 2/4

Learning Bayesian Networks, Neapolitan, 2004

BINF694, S15, Liao 25



Likelihood Weighting

Case | X | Xo | Xg | Xy | X5 | score’
1 2 2 1 2 1 36
2 1 1 1 2 2 28
3 2 1 1 2 2 16
4 1 1 1 2 1 28

P(Xi=1|X3=1.X4=2) o [score'(Case 2)+ score’(Case 4)]
o [.28 4 .28] = .56

P(Xi=2X3=1.X,=2) o [score'(Case 1)+ score’(Case 3)]
o [.36 +.16] = .52

So

. .56

PIX,=1lAs=1.N,=92) = — = .52,
(X1 =1]43 +=2) 56+ 52

BINF694, S15, Liao
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Gibbs sampler

function MCMC-ASK(X, e, bn, N) returns an estimate of P(X|e)
local variables: N[ X |, a vector of counts over X, initially zero
Z, the nonevidence variables in bn
X, the current state of the network, initially copied from e

initialize x with random values for the variables in Z
forj=1toNdo
for each Z; in Z do
sample the value of Z; in x from P(Z;|mb(Z;)) given the values of M B(Z;) in x
N[z| < N[z] + 1 where z is the value of X in x
return NORMALIZE(N[X )

Figure 14.15  The MCMC algorithm for approximate inference in Bayesian networks.

Russell & Norvig, Al Modern Approach, 2ed.

BINF694, S15, Liao 27




Markov blanket

(b)

Figure 144 (a) A node X is conditionally independent of its non-descendants (e.g., the
Z;js) given its parents (the [/;s shown in the gray area). (b) A node X is conditionally
independent of all other nodes in the network given its Markov blanket (the gray area).

Russell & Norvig, Al Modern Approach, 2ed.

BINF694, S15, Liao
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Model Intervention for causality

- Bayesian networks <= causal networks

- Bayesian networks + intervention => causality

External interventions are needed to infer the causal
direction for edges in a Bayesian network:

Genetic mutations
SIRNA
small chemical interventions as inhibitors or

activators

BINF694, S15, Liao
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Intervention on X

- do(X=x) for node X to take value x.
- Incoming edges to X are cut off.
- X becomes a root node, and P(X=x) =1.

R
O\o/qfo AL

G do(X=x)

BINF694, S15, Liao 30



Example
Two Bayesian networks: X > YandyY — X

Equivalent based on observed data

do(>X=x) for node X to take value X.

If X — Y Is the causal network, then
P(Y|do(X=x)) = P(Y|X=x)

If Y — X is the causal network, then
P(Y|do(X=x)) = P(Y)

We will get a different conditional distribution in the
observational and inhibited (intervened) samples.

Whereas we cannot distinguish between the two models with the
use of observations alone, we can differentiate between them

with the use of interventional data.
BINF694, S15, Liao 31



Dynamics of gene expression regulation

Linear model:

dE’

_ZwUEr + b;

Non-linear model:

d*E; (1 dE; (i
(1) N (1)

772 i Wi ‘|‘(1);2E1(f) — wajEj(f)

J
e wj; > 0: gene j activates gene i
e w;; < 0:gene ; inhibits gene 7

e w;; = 0: gene j does not regulate gene i



Discretization:

AB® — E.(t+ 1) — E().

Yo = (Er, o, Enl), BED, .. 8E0 )

Xip1 = AX;

A= identity 1dentity
T | W —Q* identity — 2QA

Stochastic -- adding noise

"Y-j“ +1 = A JY} +u
Yi CXi + pops + v



Dynamic Bayesian networks

A dynamic Bayesian network N is a representation of sto-
chastic evolution of a set of random variables X = {X,,...,

X, } over discretized time. Represented temporal process is

assumed to be Markovian, i.e.
P(X(t)|X(0), X(1),..., X(t-1)) = P(X(1)|X(t- 1))

and time homogenous, i.e.P(X(t)|X(t - 1)) are independent
of t. The representation consists of two components:

e a directed graph G = (X, E) encoding con ditional (in-
)dependencies

e a family of conditional distributions P(X;(t)|Pa;(t - 1)),
where Pa; = {X; € X|(X;, X;) € E}



T
P(X(0),X(1),..., X(T)) = P(X(0))[ | P(X(¢) | X(t - 1))
t=1

T I' n
PIX(1),.... X(T) | X(0)) = [ | P(X(e) | X(e=1)) = [ ] [ ] POXi(e) | Pyt —1)) =
=l =1 i=l

1

T
= [T P0X;(0) | Pa(t—1))

i=1 =1






“Loops” in DBN
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Transmembrane Topology and Signal Peptide Prediction
Using Dynamic Bayesian Networks

Sheila M. Reynolds’, Lukas Kill?, Michael E. Riffle®, Jeff A. Bilmes'*, William Stafford Noble®**

1 Department of Electrical Engineering, University of Washington, Seattle, Washington, United States of America, 2 Department of Genome Sciences, University of
Washington, Seattle, Washington, United States of America, 3 Department of Biochemistry, University of Washington, Seattle, Washington, United States of America,
4 Department of Computer Science and Engineering, University of Washington, Seattle, Washington, United States of America

Abstract

Hidden Markov models (HMMs) have been successfully applied to the tasks of transmembrane protein topology prediction
and signal peptide prediction. In this paper we expand upon this work by making use of the more powerful class of
dynamic Bayesian networks (DBNs). Our model, Philius, is inspired by a previously published HMM, Phobius, and combines a
signal peptide submodel with a transmembrane submodel. We introduce a two-stage DBN decoder that combines the
power of posterior decoding with the grammar constraints of Viterbi-style decoding. Philius also provides protein type,
segment, and topology confidence metrics to aid in the interpretation of the predictions. We report a relative improvement
of 13% over Phobius in full-topology prediction accuracy on transmembrane proteins, and a sensitivity and specificity of
0.96 in detecting signal peptides. We also show that our confidence metrics correlate well with the observed precision. In
addition, we have made predictions on all 6.3 million proteins in the Yeast Resource Center (YRC) database. This large-scale
study provides an overall picture of the relative numbers of proteins that include a signal-peptide and/or one or more
transmembrane segments as well as a valuable resource for the scientific community. All DBNs are implemented using the
Graphical Models Toolkit. Source code for the models described here is available at http://noble.gs.washington.edu/proj/
philius. A Philius Web server is available at http://www.yeastrc.org/philius, and the predictions on the YRC database are
available at http://www.yeastrc.org/pdr.

Citation: Reynolds 5M, Kall L, Riffle ME, Bilmes JA, Noble WS (2008) Transmembrane Topology and Signal Peptide Prediction Using Dynamic Bayesian
Networks. PLo5 Comput Biol 4(11): 1000213, doi:10.1371/journal.pcbi1000213
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Cytoplasmic Membrane Non-Cytoplasmic

(“inside”) (‘outside”)
SP-n SP-h SP-cic3|c2\c 1| cut \
— Shﬂﬂ-m'ﬂp\. >Dﬂ‘
apH helix Hca ou
_~ loop Sﬁﬂff"‘mﬁ{ ~
@ loop
lob
™ loop | - e
apn helix pfca long-loop fong‘:—nut-
4= _Q.IQ_QL
long-loop x| long-out-
glob3
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Table 2. Segment-level metrics.

Segment Type Sensitivity Precision
S5P 0.96 0.96
™ 0.94 0.92
Inside 0.87 0.85
Outside{TM) 0.89 0.88
Outsidefall) 0.97 0.97

doi:10.1371/journal.pcbi. 1000213.t002

BINF694, S15, Liao
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95l p(signal/stimulant)

Stimulant | High Medium Low
Present 0.6 0.3 0.1
Mot present 0.1 0.2 0.7

®IN p(inhibitor/signal)

Signal | High Medium Low
High 0.6 0.3 0.1
Medium 0.2 0.2 0.6
Low 0.1 0.1 0.8

®GP p(G protein/receptor)
Receptor I:nind5| Active Not active

Yes ‘ 0.9 0.1
No 0.1 0.9

2CR p(cellular response/G protein)

G protein | Yes MNo
Active ‘ 0.8 0.2
Mot active 0.1 0.9

Bayesian networks for cellular signaling

85T p(stimulant)
| Present Not present

0.4 0.6

Y
CR-cellular
reponse

BINF694, S15, Liao

“RE p(receptor binds/signal, inhibitor)

Signal Inhibitor |  Yes MNo
High High 0.5 0.5
High Medium 0.8 0.2
High Low 0.9 0.1
Medium  High 03 0.7
Medium  Medium 0.5 0.5
Medium  Low 0.8 0.2
Low High 0.2 0.8
Low Medium 0.3 0.7
Low Low 0.5 0.5

41
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Figure 4

Clustergram of quantized gene expression profiles
for 37 genes of interest, over 2904 microarrays. Both
genes and experiments have been clustered. The three
classes representing the low, medium and high classes are
coloured blue, white and red respectively.

o o G G os

Figure 5

Lega.rned regulatory network for other networks and poorly-characterized genes. The learned network structure
starting from a set of nine genes (four clock and five GATA genes of interest), with additional genes added to the necwork from
a selection of 37 genes. The number in parentheses next to the gene name denotes the order it was added to the network.
Most of these genes were added to the network in early ierations, however, genes such as SRR and ZTL with bona fide roles
in the clock were added late and only indirectly linked to other dlock components. All these interactions are very similar
throughout the later iterations. once most of these components have been added to the nerwork.
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