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Systems biology: Gene
expressions profiling and
clustering
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Typical expression profiles
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Why clustering?

“Searching for meaningful information patterns and dependencies
among genes, in order to provide a basis for hypothesis testing,
typically includes the initial step of grouping genes, with similar
changes in expression into groups or ‘clusters’”.

Exploratory and unsupervised

Clustering the microarray matrix can be achieved in three ways:

I.  Genes can form a group which show similar expression across
conditions

1. Samples can form a group which show similar GE across all
genes

lii. Bi-clusters: genes and samples are clustered simultaneously,
giving rise to a subset of genes and a subset of samples.
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Clustering types:

One level v.s. Hierarchical
Exclusive v.s. overlapping
Boolean v.s. fuzzy

Clustering prerequisites:

Pattern representation; feature selection and extraction, e.qg.
PCA

Definition of pattern proximity — measure of “distance”, e.g.,
Euclidean distance, Mahalanobis distance, correlation
distances

Clustering

Data abstraction

Assessment of clusters: validation — internal, external and

relative BINF694, 14, Liao 6
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Effects of various metrics for measuring distance
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Pearson correlation coefficient

For a population
cov(X,Y) _ E[(X — px)(Y — py)]

Tx0y Ox0y

Pxy —

p=-1

1< p <0

0< p <+1 p=+1

For a sample
Y (X - X)(Y;-Y)
VI (X — X)2\ /o, (Y - V)2

T =

Pearson distance: dxy =1—pxy.
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Effect of different clustering schemes
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Iterative Distance-based Clustering ( K-means)

Basic idea: Given a predetermined constant k (the number of clusters),
iteratively recompute centers (means) of k clusters starting from randomly
chosen k instances as centers.

1. K 1instances are chosen at random as cluster centers.

2. Instances are assigned to their closest cluster center, generating £k clus-
ter.

3. while (there is change in cluster centers)
4. Compute the centroid (mean) of all instances in each cluster.

5. Instances are assigned to their closest cluster center, generating k
cluster.

6. end

Courtesy of Sun Kim
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A Correct Clustering Example
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An Incorrect Clustering Example

Chimet cenars arschossn @ mndom C st cenee® ane chosen or mndam
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The initial choice of cluster centers, node 1 and node2, leads to an incor-
rect clustering. Obviously. a different choice of cluster centers, node 1 and
node 3, result in a correct clustering.

Courtesy of Sun Kim
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Discussion

1. The iterative procedure for k-means may end up with a local minimum,
depending on the initial choice for cluster centers.

2. A simple heuristic is to run the k-mean clustering several times with
different starting points.

3. How do we know the number of clusters in advance?
Many different & can be tried.

4. K-mean clustering, as most clustering techniques, assumes that in-
stances can be placed in Euclidian space.

5. Speeding up the K-mean algorithm is important.
See the paper in SIGKDD Exploration (July 2000) by Farnstorm, Lewis,
and Elkan.

http://www-cse.ucsd.edu/élkan

Courtesy of Sun Kim
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Fuzzy k-means clustering

Fuzzy membership: Each data point x has some
probability to belong to a cluster w (centered at u).

P(wix)

The probabilities of cluster membership for each
point are normalized

2i-100k PWilx)=1forj=1,...,n (1)

Cluster cost:
J=2 i1tk 2 j=1ton [POWP)IP IIX — will>.  (2)

17



Condition for minimum cost:

oJ/ ou; =0
Ui=(Zi=110n [P(Wilxj)]b X (2 i=110n [P(Wilxj)]b )

(3)
Update posterior probability as

P(Wilxj) = (1/dij) V-1 f Zr:1 to k (1/drj) H(b-1) (4)
where d;; = [Ix; — ujl|*.
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Fuzzy k-means clustering algorithm

Initialize u,,..., U,
normalize P(w;|x;) by eq(1)
do recompute u; fori=1to k by eq(3)
recompute P(w;[x;) by eq(4)
until small change in u; and P(w;[x;)
return u,,..., U,.

19



Classical k-means is a special case when
membership is defined as

P(wilx;) =1 if [Ix; — uill < [Ix; — u,|| for all i’# .

=0 otherwise.

20



Support vector machine (SVM)

Marginy ® w-x;+b >0 ify;=+1

w-x;+b <0 ify;=-1

An unknown x is classified as
sign(w - X + b)

Separating hyperplane
(w, b)
Origin

21



Application of SVM classification
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(16,063 genes, 218 human tumor samples)
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Gene Set Enrichment

Gene set enrichment analysis: Identify sets of related genes
associated with (possibly cause) phenotypic changes.

- Discovery/exploratory mode: discovery of gene sets that were not
previously known to be related. (More difficult; see clustering).

- Validation mode: determination and confirmation of which set
among a known collection. (Require prior and domain knowledge).

Early approach:

- Examine individual genes by their differential expression between
phenotypes, exceeding a preset threshold, say p-value < 0.01. A binary
decision for prescreening.

- Use Fisher’s exact test to determine if selected genes belong to a pre-
specified gene set.

Current approach:

- rank all genes according to differential expression

- determine if a pre-specified gene set is overrepresented toward the top or the

bottom of the ranked list.
BINF694, S14, Liao 23



Motivations and challenges for gene set enrichment analysis

(1) After correcting tor multiple hypotheses testing, no individual
gene may meet the threshold for statistical significance, because the
relevant biological differences are modest relative to the noise
inherent to the microarray technology.

(ii) Alternatively, one may be left with a long list of statistically
significant genes without any unifying biological theme. Interpre-
tation can be daunting and ad hoc, being dependent on a biologist’s
arca of expertise.

(zi1) Single-gene analysis may miss important effects on pathways.
Cellular processes often affect sets of genes acting in concert. An
increase of 20% in all genes encoding members of a metabolic
pathway may dramatically alter the flux through the pathway and
may be more important than a 20-fold increase in a single gene.

(izv) When different groups study the same biological system, the
list of statistically significant genes from the two studies may show
distressingly little overlap (3).

BINF694, S14, Liao 24



Gene set enrichment analysis: A knowledge-based
approach for interpreting genome-wide
expression profiles

Aravind Subramanian®®, Pablo Tamayo®P?, Vamsi K. Mootha®€, Sayan Mukherjee?, Benjamin L. Ebert®®,
Michael A. Gillette*f, Amanda Paulovich9, Scott L. Pomeroy", Todd R. Golub®®, Eric S. Lander®<'i, and Jill P. Mes

PNAS | October 25,2005 | vol. 102 | no.43 | 15545-15550

Inputs to GSEA.

1. Expression data set D with N genes and k samples.

2. Ranking procedure to produce Gene List L. Includes a corre-
lation (or other ranking metric) and a phenotype or profile of
interest C. We use only one probe per gene to prevent overes-
timation of the enrichment statistic (Supporting Text; see also
Table 8, which 1s published as supporting information on the
PNAS web site).

An exponent p to control the weight of the step.
Independently derived Gene Set .S of Ny genes (e.g, a pathway,
a cytogenetic band, or a GO category). In the analyses above,

we used only gene sets with at least 15 members to focus on
robust signals (78% of MSigDB) (Table 3).

DINFOY4, Ol14, LIdV 25
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Enrichment Score ES(S).

I. Rankorderthe NgenesinDtoformL ={gy, ..., gn} according
to the correlation, r(gj)= r;, of their expression profiles with C.

2. Evaluate the fraction of genes in S (“hits””) weighted by their
correlation and the fraction of genes not in S (“misses’) present
up to a given position 7 in L.

;'.P

Pyie(S. i) = 2, Q where Ng = D, |r;l?

ges NR |

j=i gi<s

1 [1]
Pmiss Sa f) — .
( 3_;5 (N = Np)
J=i

The ES is the maximum deviation from zero of Ppj; — Pujss.

This Is a weighted Kolmogorov-Smirnov like statistic.

BINF694, S14, Liao
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Kolmogorov—Smirnov statistic [edi

The empirical distribution function Fn for n iid observations XI Is defined as

Fal) = =3 Ixics

i=1

where fxl-f_:z Is the indicator function, equal to 1 ifXI. = x and equal to 0 otherwise.

The Kolmogorov—5Smirnov test may also be used to test whether two underlying
one-dimensional probability distributions differ. In this case, the Kolmogorov—Smirnov
statistic is

Dy e = sup | Fy n(2) — Fa ()],

where Fl,n and Fg}nr are the empirical distribution functions of the first and the second
1 ’

sample respectively.
The null hypothesis is rejected at level ¢y if % 08!
@
n—+n' o °
Dyt > cla)y| ———. S 06
nn pe
i
The value of c(a) IS given in the table below for each level of ﬂ,[?] % 04r
E
3 02
¥ 0.10/0.05/0.025 0.01 0.005 0.001 O v
c(r)[122/136/148 163173 195 y
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A Phenotype B ‘Leading edge subset
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[— ] Gene set S
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=
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c
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enrichment score ES(S)

Fig. 1. A GSEA overview illustrating the method. (A) An expression data set
sorted by correlation with phenotype, the corresponding heat map, and the
""gene tags,” i.e., location of genes from a set S within the sorted list. (B) Plot
oftherunningsum for Sinthe dataset, including the location of the maximum
enrichment score (ES) and the leading-edge subset.
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Estimating Significance. We assess the significance of an observed
ES by comparing it with the set of scores ESnurr computed with
randomly assigned phenotypes.

I. Randomly assign the original phenotype labels to samples,
reorder genes, and re-compute ES(S).

2. Repeat step 1 for 1,000 permutations, and create a histogram of
the corresponding enrichment scores ESNULL.

3. Estimate nominal P value for S from ESnurp by using the

positive or negative portion of the distribution corresponding to
the sign of the observed ES(S).

BINF694, S14, Liao 29



