

Forward algorith	m
Initialization:	$f_0(0) = 1, f_k(0) = 0$ for $k > 0$.
Recursion:	$f_k(i) = e_k(x_i) \sum_j f_j(i-1) a_{jk}.$
Termination:	$P(x) = \sum_{k} f_{k}(L) a_{k0}.$
Time complexity: length.	$O(N^2L), \mbox{where} N \mbox{ is the number of states and } L \mbox{ is the sequence}$
Similarly, we can	compute P(x) backwards.
Backward algorit	hm
Initialization:	$b_k(L) = a_{k0}$ for all k.
Recursion:	$b_k(i) = \sum_j a_{kl} e_l(x_{i+1}) b_l(i+1).$
Termination:	$P(x) = \sum_{k} a_{0k} e_k(x_1) b_k(1).$
Therefore, $f_k(i)b_k(i)$ that go through sta) gives $P(x, \pi_i = k)$, the probability contributed from all path te k at position i.
Note: b _k (i) does not i	nclude emitting $\boldsymbol{x}_i,$ this avoids double counting $\boldsymbol{e}_k(\boldsymbol{x}_i)$ in $\boldsymbol{f}_k(i)\boldsymbol{b}_k(i)$.
	CISC889 SOA Lecs Lizo

