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CISC 889 Bioinformatics
(Spring 2004)

Hidden Markov Models (II)

a. Likelihood: forward algorithm
b. Decoding: Viterbi algorithm
c. Model building: 

– Baum-Welch algorithm
– Viterbi training
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Hidden Markov models
• A Markov chain of states
• At each state, there are a set of possible observations 
• E.g., 

• Three major problems
– Most probable state path
– The likelihood
– Parameter estimation for HMMs
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A biological example: CpG islands

• Higher rate of Methyl-C mutating to T in CpG dinucleotides �

generally lower CpG presence in genome, except at some biologically 
important ranges, e.g., in promoters, -- called CpG islands.

• The conditional probabilities are collected from ~ 60,000 bps human 
genome sequences, + stands for CpG islands and – for non CpG
islands.
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Task 1: given a sequence x, determine if it is a CpG island.

Solution: compute the log-odds ratio scored by the two Markov chains:

S(x) = log [ P(x | model +) / P(x | model -)]
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Task 2:  For a long genomic sequence x, label these CpG
islands, if there are any.

Approach 1: Adopt the method for Task 1 by calculating the log-odds 
score for a window of, say, 100 bps around every nucleotide and 
plotting it.

Problems with this approach:
– Won’ t do well if CpG islands have sharp boundary and variable 

length
– No effective way to choose a good Window size.
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Approach 2: using hidden Markov model
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• The model has two states, “+”  for CpG island and “ -”  for non CpG

island. Those numbers are made up here, and shall be fixed by 
learning from training examples.  A reasonable assignment for 
emission frequencies may use the respective eigenvectors of the two 
Markov chains in approach 1.

• Use the same notations as in the text: akl is the transition probability 
from state k to state l; ek(b) is the emission frequency – probability 
that symbol b is seen when in state k.
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Joint probability of an observed sequence x and a state path � :

P(x, � ) = 
�

i=1 to L e� i (xi) a � i � i+1
i:123456789
x:TGCGCGTAC

� :--++++---

P(x, � ) = 0.388 × 0.95 × 0.112 × 0.05 × 0.368 × 0.90 × 0.274 × 0.90 × 0.368 × 0.90 × 
0.274 × 0.10 × 0.338 × 0.95 × 0.372 × 0.95 × 0.198.

Then, the probability to observe sequence x in the model is 
P(x) = Σ� P(x, � ),

which is also called the likelihood of the model.
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Q: Given a sequence x of length L, how many 
state paths do we have?   

A: NL, where N stands for the number of 
states in the model. 

As an exponential function of the input size, it 
precludes enumerating all possible state 
paths  for computing P(x).

Example:  Let’s assume the model has a set of 
two states S = { , } . For L=3, 

there are 23 = 8 paths: Φ = { ,  , , 
, , , , } . 

P(x) = Σ� P(x, )
=  P(x| ) + P(x| ) + P(x| ) +  
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Specifically, let fk(i) be the intermediate result computed up to the k-th term in the i-th
bracket, 

[e1(x1) + …+ eN(x1) ]  ∧a …∧a [e1(xi) + … ek(xi) + … +eN (xi)] ∧a … ∧a [e1(xL) + …+eN (xL)]

fk(i)

which is the probabil ity contributed by all paths from the beginning up to (and include) 
position i with state at position i being k.

And it can be written recursively as f k(i) = [ΣΣΣΣ j f j(i-1) ajk ] ek(xi)

Graphically,
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A silent state 0 is introduced for better presentation
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Forward algor ithm

Initialization:  f0(0) =1, fk(0) = 0 for k > 0.

Recursion:      fk(i) = ek(xi) Σjfj(i-1) ajk.

Termination:   P(x) = Σkfk(L) ak0.

Time complexity:    O(N2L), where N is the number of states and L is the sequence 
length.

Similarly, we can compute P(x) backwards.

Backward algor ithm

Initialization:  bk(L) = a k0 for all k.

Recursion:      bk(i) = Σj akl el(x i+1) bl(i+1).

Termination:   P(x) = Σka0k ek(x1) bk(1).

Therefore, fk(i)bk(i) gives P(x, � i = k), the probability contributed from all paths 
that go through state k at position i.

Note: bk(i) does not include emitting xi, this avoids double counting ek(xi) in fk(i)bk(i) .



6

CISC889, S04, Lec8, Liao

Decoding: Given an observed sequence x, what is the most probable state path, 
i.e., 

� * = argmax � P(x, � )

[e1(x1) ∨ … ∨ eN(x1) ]  ∧a …∧a [e1(xi) ∨ … ek(xi) ∨ … ∨ eN (xi)] ∧a … ∧a [e1(xL) ∨ … ∨ eN (xL)]

vk(i)

Viterbi Algor ithm

Initialization:  v0(0) =1, vk(0) = 0 for k > 0.

Recursion:      vk(i) = ek(xi) maxj (vj(i-1) ajk);

ptri(k) =  argmaxj (vj(i-1) ajk);

Termination:   P(x, ) = maxk(vk(L) ak0);

� * L = argmaxj (vj(L) aj0);

Traceback:      � * i-1 = ptri (� * i).
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vk(i) = ek(xi) maxj (vj(i-1) ajk);



7

CISC889, S04, Lec8, Liao

CISC889, S04, Lec8, Liao

Posterior decoding
P( �

i = k |x) = P(x, �
i = k) /P(x) = fk(i)bk(i) / P(x)

Algor ithm: 
for i = 1 to L

do argmax k P( �
i = k |x)

Notes: 1. Posterior decoding may be useful when there are multiple almost 
most probable paths, or when a function is defined on the states.

2. The state path identified by posterior decoding may not be most 
probable overall, or may not even be a viable path.
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Model building
- Topology

- Requires domain knowledge
- Parameters

- When states are labeled
- Simple counting: 

akl = Akl / Σl ’Akl’ and ek(b) = Ek(b) / Σ b’Ek(b’ )
- When states are not labeled

Method 1 (Viterbi training)
1. Use Viterbi algorithm to label 
2. Do counting to collect new akl and ek(b);
3. Repeat steps 1 and 2 until stopping criterion is met.

Method 2 (Baum-Welch algorithm)
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Baum-Welch algorithm (Expectation-Maximization)

• A iterative procedure similar to Viterbi
training

• P(� i = k, � i+1= l | x,
�

) = fk(i) akl el (xi+1) bl(i+1) / P(x)

Akl = Σj { (1/P(xj) [Σi fk
j(i) akl el (xj

i+1) bl
j(i+1)] }

Ek(b) =Σj { (1/P(xj) [Σ{ i |x_i^j = b} fk
j(i) bk

j(i)] }


