
1

CISC889, S04, Lec7, Liao

CISC 889 Bioinformatics
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Hidden Markov Models (I)

a. Sampling

b. Markov chains

c. Hidden Markov chains
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Motivations:

A probabilistic framework 
– Handle uncertainty, which seems to be a 

ubiquitous phenomenon

– Capture correlations missing from previous 
methods

– Learn from data and make prediction for the 
unseen.
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Sampling from a distribution

• Uniform distribution
– Rand();  // convenient to use, but may not be what you 

really want.

– Criteria of a good sampling:

• Give a desired distribution over a long run

• At each step, the histogram shall “uniformly”  
converge towards the desired distribution

• Randomness shall be kept; no obvious correlation 
between two steps (though this is not true for 
markov chain based sampling).
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Transformation Sampling

Courtesy of Numerical Recipes (http://www.library.cornell.edu/nr/cbookcpdf.html)
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Rejection Sampling
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Markov chain Monte Carlo (MCMC)

Markov chain is a kind of  stochastic process 
– The outcome of each trial belongs to a f inite set, called the state space.
– The outcome of each trial depends only on the outcome of the previous one.

A markov chain is defined once we know Transition matrix, T, whose entries give transition probability from 
one state to another.

Initial probability, p (0) , specif ies each outcome’ s probability at the first trial.
Stationary MC: transition matrix is time independent.
E.g., our CIS Computer system is either up or down

u       d
T = [0.6  0.4]   u 

[0.3, 0.7]   d
And the first day it is equally to be either up or down, namely,

u      d
p (0) = (0.5, 0.5)

What about the following days?
p (1) = p (0) T = (0.45, 0.55)
p (2) = p (1) T = p (0) TT = (0.435, 0.565) 
….
p = lim t � ∞ p (0) T t   = (0.4286, 0.5714)

The limiting distribution p shall satisfy the following equation (called eigenvalue equation):
p = p T, or explicitly,  p n = Σm pm Tmn

If p is our desired distribution, we like to f ind the right  T  so we can run a sampling which would give distribution 
p.
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Metropolis algorithm for MCMC (1953, among top ten greatest numerical algorithms of the 20th century) 

Given p, transition matrix T is built as:

Tmn=  amn when  pn
�

pm    and m �n
Tmn=  amn (pn /pm )   when pn< pm       and m �n
Tmm= 1 - Σm� n Tmn

where a is a symmetrical stochastic matrix.

Why does this work? 
Since matrix a is symmetric, it gives equal chance for switching from m to n and vice versa.
But, since the final distribution p is not uniform among all  states, a ratio (pn /pm ) is introduced to 

favor a transition from a less likely state to a more likely state.  Rigorous proof using detailed balance 
is available in the text.

Note: One other advantage with MCMC is that we don’ t even need to know p, but rather the ratio 
pn /pm, because knowing p itself requires to calculate the normalization factor Σn pn, which is not 
always easy to obtain. 
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Hidden Markov models

• A Markov chain of states

• At each state, there are a set of possible 
observations 

• E.g.,

1: 1/6
2: 1/6
3: 1/6
4: 1/6
5: 1/6
6: 1/6

1: 1/10
2: 1/10
3: 1/10
4: 1/10
5: 1/10
6: 1/2

0.05

0.1

0.95 0.9
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• Three major problems
– Most probable state path: the Viterbi algorithm

– The likelihood: the forward algorithm

– Parameter estimation for HMMs- the training: 
• Baum-Welch

• Viterbi


