CISC 889 Bioinformatics
(Spring 2004)

DNA Microarray and Gene
Expression
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» Gene expression
— How many copies of agene (its product) is present in
the cell?

— For experimental reasons, gene expressions are
measured by numbers of mMRNAS, not directly by
proteins. (See Proteomics)

— Various cell types are due to different genes expressed.

— The difference between diseased (e.g., cancerous) and
non-diseased

— Diseased cells are often resulted from the abnormal
levels of expression of key genes.
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* Microarray
— Oligonucleotide (Affymetrix) array
» Oligo (~ 25 bases long)
+ High density (1cm? contain 100k oligos)
— cDNA array
¢ cDNA (RT-PCR), much longer (> 1000 bases)

» Varied density of cDNA on each spot, hybridization depends
on length

» Lesspossibility for false positives
— Image processing
— Background subtraction
— Normalization
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Gene Expression Data Analysis
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Gene Expression Data Analysis
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Applications

» Understanding correlation b/w
genotype and phenotype
* predicting genotype <=> phenotype
» Phenotypes:
— drug/therapy response

— drug-drug interactions for expression
— drug mechanism

— interacting pathways of metabolism
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Iterative Distance-based Clustering (K -means)

Basic idea: Given a predetermined constant &k (the number of clusters),
iteratively recompute centers (means) of k clusters starting from randomly
chosen k instances as centers.

1. K instances are chosen at random as cluster centers.

2. Instances are assigned to their closest cluster center, generating k clus-
fer.

3. while (there is change in cluster centers)
4. Compute the centroid (mean) of all instances in each cluster.

5. Instances are assigned to their closest cluster center, generating &
cluster.

6. end

Courtesy of Sun Kim
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A Correct Clustering Example
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An Incorrect Clustering Example
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The initial choice of cluster centers, node 1 and node2, leads to an incor-

rect clustering. Ohviously. a different choice of cluster centers, node 1 and
node 3, result in a correct clustering.

Courtesy of Sun Kim
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Discussion

. The iterative procedure for k-means may end up with a local minimum,
depending on the initial choice for cluster centers.

. A simple heuristic is to run the k-mean clustering several times with
different starting points.

. How do we know the number of clusters in advance?
Many different &k can be tried.

. K-mean clustering, as most clustering techniques, assumes that in-
stances can be placed in Euclidian space.

. Speeding up the K-mean algorithm is important.
See the paper in SIGKDD Exploration (July 2000) by Famnstorm, Lewis,
and Elkan.
http://www-cse.ucsd.edu/&lkan

Courtesy of Sun Kim
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CLICK (by Ron Shamir)

CLICK (CLuster Identification via Connectivity Kernels) is a newer algorithm for cluster-
ing [20]. The input for CLICK is the gene expression matrix. Each row of this matrix is an
“expression fingerprint” for a single gene. The columns are specific conditions under which
gene expression is measured (e.g. different points in time). A more formal definition is as
follows:

Let N ={ey,...,e,} be a set of elements. Let M be an input real-valued matrix of order
n X p, where M;; is the j-th attribute of e;. The i-th row-vector in A is the fingerprint of
e;. For a set of elements K C NV, we define the fingerprint of K to be the mean vector of
the fingerprints of the members of K. One seeks to partition N into clusters (subsets). In
such a partition, elements in the same cluster are called mates.

The CLICK algorithm attempts to find a partition of N into clusters, so that two criteria
are satisfied: Homogeneity - mates are highly similar to each other; and separation - non-
mates have low similarity to each other.
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CLICK (by Ron Shamir)

Probabilistic Assumptions

The CLICK algorithm makes the following assumptions:

1. Similarity values between mates are normally distributed with mean pp and vari-
2
ance o7,

2. Similarity values between non-mates are normally distributed with mean pp and vari-
Z
ance 0.

3. ur > pp

These assumptions are justified both empirically and theoretically by the Central Limit
Theorem.
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CLICK (by Ron Shamir)

The Basic CLICK Algorithm

The CLICK algorithm represents the input data as a weighted similarity graph G = (V, E).
In this graph vertices correspond to elements and edge weights are derived from the similarity
values. The weight w;; of an edge (i,7) reflects the probability that i and j are mates, and
is set to be

Dimates f (Si;|1,7 are mates)
(1 — Piates) f(Sij|i,j are non-mates)

wi; = log

where f(S;;]¢,7 are mates) = f(S;|ur,or) is the value of the probability density function
for mates at Sj;:
1 7(‘“'/—/'102

e 207

f(Sij|i,7 are mates) =
2o

Similarly, f(S;;]¢,j are non-mates) is the value of the probability density function for non-
mates.
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CLICK (by Ron Shamir)

The idea behind the algorithm the following: given a connected graph G, we would like
to decide whether V(G) is a subset of some true cluster, or V(@) contains elements from at
least two true clusters. In the first case we say that G is pure. In order to make this decision
we test for each cut C in G the following two hypotheses:

. HDC: C contains only edges between non-mates.

e HE: C contains only edges between mates.

G is declared a kernel if H, is more probable for all cuts.

CISC889, S04, Lecl9, Liao 18




CLICK (by Ron Shamir)

Lemma 11.6 G is a kernel iff MinWeight Cut(G) > 0.
Proof Using Bayes Theorem, it can be shown that

Pr(Hf|C)

Obviously, W(C) > 0 iff Pr(HF|C) > Pr(HS|C). If the minimum cut is positive, then
obviously so are all the cuts. Conversely, if the minimum cut is non-positive, then for that

cut Pr(HS|C) < Pr(HE|C), therefore G is not a kernel. n
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CLICK (by Ron Shamir)

Basic-CLICK(G(V, E))

if (V(G) ={v}) then
move v to the singleton set R

elseif (G is a kernel) then
Output V(G)

else
(H,H, cut) « MinWeightCut(G)
Basic-CLICK (H)
Basic-CLICK(H)

end if

end
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CLICK (by Ron Shamir)
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