CISC 889 Bioinformatics
(Spring 2004)

Support Vector Machines (I1)

applications in bioinformatics
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Linear SVMS: find ahyperplane (specified by normal vector w and
perpendicular distance b to the origin) that separates the positive and negative
examples with the largest margin.

Marginy 5. e} w-x;+b >0 ify =+1
w-x;+b <0 ify,=-1

An unknown x is classified as
sign(w - x +b)

Separating hyperplane
(w, b)

Origin
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Larger marginis preferred:
* converge more quickly

* generalize better
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w-x,+b =+1
w-X+b=-1
2= [(% - w) - -w)] =X -x)-w=]x, - x || wl]

Therefore, maximizing the geometric margin || x, - X_|| is equivalent to minimizing
Y2 |lw|P?, under linear congtraints: y; (W - x;) +b =1fori=1,...,n.

This optimization can be solved by introducing Lagrangian multiplier a; for each
constraint

L(w, b, &)= [WIP = X a, (y; (W - X, + b) - 1),
and then calculating
oL oL oL
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The optimal w* and b* can be found by solving the dual problem for a to
maximize:
L(a) =2 o = Y2 X o 0 Y; Y X; - X
under the congtraints: o; = 0, and 2 a; y; = 0.

Oncea issolved,
wr =3 a; Y X
b* =% (max,_, W* X +min ., w*X)
And an unknown x is classified as
sign(w* - x + b*) =sign(X o; y; X, - X + b*)

Notes:
1. Only thedot product for vectorsis needed.

2. Many g, are equal to zero, and those that are not zero correspond to x;
on the boundaries — support vectors!

3. Inpractice, instead of sign function, the actual value of w* - x + b* is
used when its absolute value is less than or equal to one. Such avalueis
caled adiscriminant.
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- ) Separating hyperplane
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Non-linear mapping to afeature space
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Kernds

Given amapping @( ) from the space of input vectors to some higher
dimensional feature space, the kernel K of two vectors x;, x; isthe
inner product of their images in the feature space, namely, K(x;, X;) =
@ (%)@ (X;)-

Since we just need the inner product of vectorsin the feature space to find
the maximal margin separating hyperplane, we use the kernel in place
of the mapping @( ).

Because inner product of two vectorsis a measure of the distance between
the vectors, akernel function actually defines the geometry of the
feature space (lengths and angles), and implicitly provides a similarity
measure for objects to be classified.
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Applications to Gene Expression

http://www.soe.ucsc.edu/research/compbio/genex

Each gene (of 2467 genes from S. cerevisiae) 1s
represented as a vector

X =xg:Xp5 00 Ky

where x,=log (E;/R;) /(\»"zj log? (E;/R;)), E/R; is ratio
of expression levels for a géne between test and control at
the 1-th experiment (out of n = 79 total).
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Similarity between the average expression profiles of the tricarboxylic-
acid pathway and respiration chain complexes.
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Other applications 1n bioinformatics

» Protein localization
— Hua and Sun, Biomformatics, 17(2001)721-728.

* Protein secondary structure prediction
— Hua and Sun, IMB, 308(2001)397-407
— Ding and Dubchak, Bioinformatics, 17(2001)349-358
* Protein supertamily
— Jaakkola, Diekhans and haussler, JCB 7(2000)95-114
— Liao and Noble, RECOMB 2002.
» Tissue classification
— Guyon, Weston, Barmhill and Vapnik, Machine Learning
46(2002)389-422
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Combining pairwise similarity with SVMs for protein
homology detection

Positivetrain

Negativetrain

Protein non-
homologs
Negative _
pairwise score Testing data
Vectors Target protein of
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Support vector
machine
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Binary classification
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Experiment: known protein families
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A measur e of sensitivity and specificity

ROC
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ROC: receiver operating characteristic score is the normalized area
under a curve the plots true positives as a function of false positives
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Performance Comparison (1)
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Kernel engineering

+ Kernels provide a similarity measure

+ Kernels should retlect special features about the
data (e.g., prior knowledge)

+ Special kernels can be designed for that purpose.
— Kernels for sequences based on common subsequences
— Kernels built from Bayesian tree models
— Convolution kernels

— Diffusion kernels on graphs
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« Kernels based on common subsequences

— Two strings are more similar in the feature
space 1f they share rare common substrings

- KX, Y) = p(X)p(Y) 2 s€ comumon substrings (l/p(s))
where p 1s the probability distribution on the set
of sequences
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» Convolution Kernels
— X and Y are closer to each other if they share
common “hidden state sequences”
— K(X.)Y) =2, p(s)p(X|s)p(Y]s)
— D. Haussler, Convolution kernels on discrete

structures, technical report UC Santa Cruz,
1999

CISC889, S04, Lecl8, Liao

20

10



Using Phylogenetic Profiles & SVMs

YALOO1C
E-value Phylogenetic profile
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phylogenetic profi Igas and Evolution Petterns

Impossible to know for sure if the gene followed exactly this
evolution pattern
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Tree Kernd (Vert, 2002)

= For aphylogenetic profile x and an evolution pattern
€.
* P(e) quantifies how “natural” the pattern is
* P(x|e) quantifies how likely the pattern e is the “true
history” of the profile x

» TreeKernd :
K ree(xy) = Z. P(e)P(x[€)p(y | ¢)
= Can be proved to be akernel

= |ntuition: two profiles get closer in the feature space when
they have shared common evolution patterns with high
probability.
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Tree-Encoded Profile (Narra & Liao, 2004)

1 1010001 1 O o1 033050670.750.340.55
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Tree Encoded Ad-hoc Hamming
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Refer ences and resources

o Cristianini & Shawe-Tayor, “An introduction to
Support Vector Machines’, Cambridge University
Press, 2000.

» www.kernel-machines.org
— SVMLight
— ChrisBurges, A tutoria

e J-PVert, A 3-day tutoria

* W. Noble, “Support vector machine applications
in computational biology”, Kernel Methods in
Computational Biology. B. Schoe kopf, K. Tsuda
and J.-P. Vert, ed. MIT Press, 2004.

CISC889, S04, Lecl8, Liao 26

13



