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CISC 889 Bioinformatics
(Spring 2004)

Support Vector Machines I

The metholodogy
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Terminologies
• An object x is represented by a set of m attributes xi, 1 ≤ i 

≤ m.
• A set of n training examples S = {  (x1, y1), …, (xn, yn)} , 

where yi is the classification (or label) of instance xi. 
– For binary classification, yi ={ −1, +1} , and for k-class 

classification, yi ={ 1, 2, …,k} . 
– Without loss of generality, we focus on binary classification.

• The task is to learn the mapping: xi → yi

• A machine is a learned function/mapping/hypothesis h: 
xi → h(xi , α)

where α stands for parameters to be fixed during training. 

• Performance is measured as
E = (1/2n)� i=1 to n |yi- h(xi , α)|
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Linear SVMs: find a hyperplane (specified by normal vector w and 
perpendicular distance b to the origin) that separates the positive and negative 
examples with the largest margin.  

Separating hyperplane
(w, b)

Margin γ

Origin

w

b

w · xi + b  > 0  if yi = +1

w · xi + b  < 0  if yi = −1+

−

An unknown x is classified as 
sign(w · x + b)
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Rosenblatt’s Algorithm (1956)

η; // is the learning rate
w0 = 0; b0 = 0; k = 0
R = max 1 ≤ i ≤ n || xi ||

error = 1; // flag for misclassification/mistake
while (error) {   // as long as modification is made in the for-loop

error = 0;

for (i = 1 to n) {
if (yi ( <wk · xi> + bk ) ≤ 0 ){      // misclassification

wk+1 = wk +  η yi xi // update the weight 
bk+1 = bk + η yi R2        // update the bias
k = k +1
error = 1;

}
}

}
return (wk, bk)     // hyperplane that separates the data, where k is the number of

// modifications.
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Questions w.r.t. Rosenblatt’s algorithm
– Is the algorithm guaranteed to converge?

– How quickly does it converge?

Novikoff Theorem:

Let S be a training set of size n and R = max 1 ≤ i ≤ n || xi ||. If 
there exists a vector w*  such that ||w* || = 1 and

yi (w* · xi) ≥ γ, 

for 1 ≤ i ≤ n, then the number of modifications before 
convergence is at most

(R/ γ)2.
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Proof:

1.      wt· w* = wt-1 · w* + η yi xi · w* ≥ wt-1 · w* + η γ
wt· w* ≥ t η γ

2. || wt ||2 = || wt-1 ||2 + 2 η yi xi · wt-1 + η2 || xi ||2

≤ || wt-1 ||2 + η2 || xi ||2

≤ || wt-1 ||2 + η2 R2

|| wt ||2 ≤ t η R2

3. √t η R ||w* || ≥ wt · w* ≥ t η γ
t ≤ (R/ γ)2.

Note:  
– Without loss of generality, the separating plane is assumed to pass the 

origin, i.e., no bias b is necessary. 
– The learning rate η seems to have no bearing on this upper bound. 

(why?)
– What if the training data is not linearly separable, i.e., w* does not 

exist?
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Larger margin is preferred:

• converge more quickly

• generalize better
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Dual form
• The final hypothesis w is a linear combination of the 

training points:
w = � i=1 to n αi yixi 

where αi are positive values proportional to the number of 
times misclassification of xi has caused the weight to be 
updated.

• Vector αααα can be  considered as alternative representation 
of the hypothesis; αi can be regarded as an indication of 
the information content of the example xi.

• The decision function can be rewritten as
h(x) = sign (w · x + b)

= sign( (� j=1 to n αj yjxj)· x + b)
= sign( � j=1 to n αj yj (xj· x) + b)
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Rosenblatt’s Algorithm in dual form
αααα= 0; b = 0
R = max 1 ≤ i ≤ n || xi ||

error = 1; // flag for misclassification
while (error) {   // as long as modification is made in the for-loop

error = 0;
for (i = 1 to n) {

if (yi (� j=1 to n αj yj (xj· xi) + b) ≤ 0 ){      // misclassification
αi = αi +  1 // update the weight 
b = b + yi R2    // update the bias
error = 1;

}
}

}
return (αααα, b)     // hyperplane that separates the data, where k is the number of

// modifications.
Notes: 

– The training examples enter the algorithm as dot products (xj· xi). 

– αi is a measure of information content; xi with non-zero information content (αi >0) are called 
support vectors, as they are located on the boundaries. 
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Relationship to linear perceptrons

• Linear SVMsare almost identical to linear perceptrons

• They differ from each other when are generalize to handle non 
linear cases. 
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Non-linear mapping to a feature space

�
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X 

Nonlinear SVMs

Input Space Feature Space
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Kernel function for mapping

• For input X= (x1, x2), 
Define map Φ(X) = (x1x1, 
√2x1x2, x2x2).

• Define Kernel function as 
K(X,Y) = (X·Y)2.

• It has K(X,Y) = Φ(X) ·
Φ(Y)

• We can compute the 
scalar product in feature 
space without computing 
ΦΦΦΦ.

K(X,Y) = Φ(X) · Φ(Y)

= (x1 x1, √2 x1x2, x2 x2) · (y1 y1, √2 y1y2, y2 y2)

= (x1x1y1y1 + 2x1x2y1y2 + x2x2y2y2)

= (x1y1 + x2y2)(x1y1 + x2y2)

= ((x1, x2) · (y1, y2))2

= (X·Y)2
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Mercer’s condition

Since kernel functions play an important role, it is important 
to know if a kernel gives dot products (in some higher 
dimension space).

For a kernel K(x,y), if for any g(x) such that � g(x)2 dx is 
finite, we have  

� K(x,y)g(x)g(y) dx dy ≥ 0,
then there exist a mapping Φ such that 

K(x,y) = Φ(x) · Φ(y)
Notes: 

1. Mercer’s condition does not tell how to actually find Φ.
2. Mercer’s condition may be hard to check since it must hold for 

every g(x).
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More kernel functions
some commonly used generic kernel functions
– Polynomial kernel: K(x,y) = (1+x·y)p

– Radial (or Gaussian) kernel: K(x,y) = exp(-||x-y||2/2σ2)

Questions: By introducing extra dimensions (sometimes 
infinite), we can find a linearly separating hyperplane. But 
how can we be sure such a mapping to a higher dimension 
space will generalize well to unseen data? Because the 
mapping introduces flexibility for fitting the training 
examples, how to avoid overfitting?

Answer: Use the maximum margin hyperplane. (Vapnik
theory)
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w · x+ + b  = + 1

w · x- + b  = − 1

γ = ½ [ (x+ · w/||w||2 ) - (x- · w/||w||2 ) ]

= 1/||w||2

Therefore, maximizing the geometric margin γ is equivalent to minimizing 
||w||2, under linear contraints.

Min w,b < w · w >

subject to yi <w · xi> +b  ≥ 1 for i = 1, …, n

Lagrangian Theory 

Quadratic programming optimization problem

… guaranteed to converge to the global minimum because of its being 
a convex

Note: advantages over the artificial neural nets
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Advanced Issues
– Soft margin

• Allow misclassification, but with penalties

– Multiclass classification
• Indirect: combine multiple binary classifiers into a 

single multiclass classifier

• Direct: generalize binary classification methods

– SVM Regression

– Support vector clustering by Ben-Hur et al 
(2001)
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