
1

CISC889, S04, Lec15, Liao 1

CISC 889 Bioinformatics
(Spring 2004)

Stochastic Grammars

CISC889, S04, Lec15, Liao 2

Motivation:

• Both DNA and protein sequences can be considered as
sentences in a “ language”.

• We know the “ language” is not random

• What’s the grammar of the language?

• “The linguistics of DNA” – David Searls, American
Scientist, 80(19920579.

2

CISC889, S04, Lec15, Liao 3

Chomsky hierarchy of transformational grammars (1956)
• Regular expression (no recursive structure, cannot handle

palindromes)
– W → aW, or W → a

• Context-free
– W → β

• Context-sensitive
– α1W α2 → α1 β α2

• Unrestricted grammars
– α1W α2 → γ

Notations:
a: any terminals;
α, γ: any string of non-terminals and/or terminals, including the null
string;
β: any string of non-terminals and/or terminals, not including the null
string.

CISC889, S04, Lec15, Liao 4

Prositepatterns
For example, a RNA binding motif is expressed as

[RK]-G-{ EDRKHPCG} -[AGSCI]-[FY]-[LIVA]-X-[FYM]

In regular expression, the motif is defined as
S→→→→ r W1 | kW1
W1 →→→→ g W2
W2 →→→→ [afilmnqstvwy] W3
W3 →→→→ [agsci] W4
W4 →→→→ f W5 | y W5
W5 →→→→ l W6 |I W6 |v W6 | a W6
W6 →→→→ [a..y] W7
W7 →→→→ f | y | m

Note:
1. [ac]W is an alternative way to say aW | cW.
2. Non-terminals W1 , …, W7 correspond to the 7 positions in the motif.

3

CISC889, S04, Lec15, Liao 5

RNA stem loop

hybridization pairing: A-U, and C-G

where “ -” stands for a pairing, and “x” for no pairing.

In the above example, seq1 and seq2 fold into a similar structure, whereas seq3
does not.

Pairwisealignments disregarding such structural restrictions may be misleading;
seq2 and seq3 have 70% sequence identity, seq1 and seq3 have 60%, whereas
seq1 and seq2 have only 30%.

G C
A U
C G

G A

A A

U A
C G
G C

G A

C A

U C
C U
G G

G A

C A

x
x
x

seq1 seq2 seq3

seq1
seq2
seq3

C A G G A A A C U G
G C U G C A A A G C
G C U G C A A C U G

CISC889, S04, Lec15, Liao 6

To capture the palindromic structure, a context-free grammar
can be given as follows.

S →→→→ aW1u | cW1g | gW1c | uW1a

W1 →→→→aW2u| cW2g| gW2c| uW2a

W2 →→→→aW3u| cW3g| gW3c| uW3a

W3 →→→→ gaaa | gcaa

seq1
seq2

C A G G A A A C U G
G C U G C A A A G C

c a g g a a a c u g

w3

w2

w1

S

4

CISC889, S04, Lec15, Liao 7

Stochastic grammars

Motivations:
– Irregularities (or exceptions to the grammar) in languages

– Such irregularities can be taken care of by “growing” your grammar;
introducing new non-terminals and new production rules.

– It is useful to differentiate productions that account for a large portion of
the language from those that are rare exceptions.

– This can be achieved by assigning probabilities to various productions.
• For any non-terminals, the probabilities of all its possible productions must

add to 1.

e.g.,

• Given a sentence x, a stochastic grammar θ parsing the sentence will assign a
probability P(x|θ) that the sentence belongs to the language specified by the
grammar, whereas, a conventional grammar will just give a yer-or-no answer.

– �x ∈language P(x| θ) =1

CISC889, S04, Lec15, Liao 8

Stochastic CFG for sequence modeling

• Calculate optimal alignment of a sequence to a parameterized SCFG.
[CYK algorithm]

• Calculate probability for a given sequence to belong to the language
specified by SCFG. [inside algorithm, and inside-outside algorithm]

• Given a set of example sequences/structures, estimate optimal
probability parameters for a SCFG.

Note:
– The issues addressed above by SCFGs are quite similar to those for

HMMs; actually it can be proved that HMMs are equivalent to stochastic
regular grammars.

– Chomsky normal form: any CFG can be written such that all productions
have the following forms:

Wv → Wy Wz

Wv→ a

5

CISC889, S04, Lec15, Liao 9

Inside algorithm

• Non-terminals: W1, …, WM, where W1 is the start.

• tv(y,z): probability for a production like Wv → Wy Wz

• ev(a) : probability for production like Wv→ a

• x = x1, …, xL is a sequence of length L.

• α(i,j,v): probability of a parse subtree rooted at non-terminal Wv for
subsequence xi,…, xj.

Initialization: for i = 1 to L, v = 1 to M

α(i,i,v) = ev(xi)

Iteration: for i =1 to L-1, j = i+1 to L, v = 1 to M

α(i,j,v) = �y=1 to M �z=1 to M �k=i to j-1 α(i,k,y) α(k+1,j,z) tv(y,z)

Termination:

P(x|θ) = α(1,L,1)

1 Li k k+1 j

v

y
z

CISC889, S04, Lec15, Liao 10

CYK (Cocke-Younger-Kasami) algorithm

Initialization: for i = 1 to L, v = 1 = M
γ(i,i,v) = log ev(xi)

τ(i,i,v) = (0,0,0)

Iteration: for I = 1 to L-1, j= i+1 to L, v = 1 to M

γ(i,j,v) = MAXy,z MAX k=i,…,j-1 { γ(i,k,y) + γ(k+1,j,z) + log tv(y,z)}

τ(i,j,v) = argmax (y,z,k) { γ(i,k,y) γ(k+1,j,z) + log tv(y,z)}

Termination: γ(1,L,1) = log P(x, π* |θ) // where π* is the most probable parse tree.

Traceback
push (1,L,1) on the stack

Iteration:
pop (i,j,v)

(y,z,k) = τ(i,j,v)
if τ(i,j,v) = (0,0,0), // implying i = j

attach xi as the child of v
else

attach y, z to parse tree as children of v
push (k+1, j, z)
push (i, k, y).

1 Li k k+1 j

v

y
z

