CISC 889 Bioinformatics
(Spring 2004)

Protein secondary structure

prediction

using neural networks
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Secondary structure

Most proteins contain one or more stretches of amino acids that take on a characteristic
structure in 3-D space. The most common of these are the alpha helix and the beta
conformation, and random coil.

AlphaHelix

¢ theR groups of theamino acids all extend to the outside

¢ thehelix makesa complete turn every 3.6 amino acids

« thehdix isright-handed; it twistsin a clockwise direction

the carbonyl group (-C=0) of each peptide bond extends paralld to the axis of the helix
and points directly at the -N-H group of the peptide bond 4 amino acids below it in the
helix. A forms between them

[-N-H O:C-] .

Beta Confor mation

¢ consigsof pairsof chainslying sde-by-side
« dabilized by hydrogen bonds between the carbonyl oxygen atom on one chain and the -
NH group on the adjacent chain.

¢ thechainsare often "anti-parallel"; the N-terminal to C-terminal direction of one being
thereverse of the other.

Random coil
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Task:

primary sequence — secondary structures

Approach: Machine learning

Involve two steps: learning (hard, usually NP) & testing (easy, P)
What islearning? Toimprove from experience E with respect to
sometasks T and performance measure P.
How to learn? Often as a search, to find the hypothesis that best
fitsthe training examples.
Hypotheses:

e A function f: x — f(x, 6)

e |ssues

— Expressveness

— Generdization (Occam’ srazor, see Jeffreys and Berger, American
Scientist 80(1992)64 )
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which one should we pick?

i)

Credit:Alessandro Verri (MIT)
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Artificial Neural Networks

» Problems suitable for ANN to solve
— Instances are represented by many attribute-value pairs

— The target function output may be discrete-valued,
real-valued, or avector

— Training examples may contain errors

— Long training times are acceptable

— Fast evaluation of the learned target function may be
required

— The ability of humans to understand the learned target
function is not important
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Artificial neural networks

» Perceptron o(x,, ..., X,) = g(;W, ;)

Xy Activation

Xo=1
k\'wu function
Xp— W
.\‘ Output

Input output
Xn function

Input links
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» Activation functions g

] fr— +1

— 1 . «
t
—_
lifx>t ' _ [ lifx=0 Sigmoid(x) = 1/(1+eX)
= = Sign(x) = .
Step(x) { 0 otherwise { -1 otherwise
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» Example: AND function

O( Xy, X5) = sign(w, + w, X; + W, X,) will behave like AND

for w,=-0.8, w; =05, and w, =0.5

Note: the activation function gisasign function, and input function is
alinear function, which gives a straight line (dotted linein the figure

below).

X2
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» Example: XOR function
O( Xy, X5) = sign(wy + W, X; + W, X,)
There are no straight line that can separate + from -
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Note: single perceptrons have limited expressive power.
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* Neural Networks

Hidden Layers

N\

Input Layer\ /l)lllput Layer

Note: multi-layer networks can simulate any function
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» For any continuous function
y=1f(x), x €[0]]
we can construct a neural net h(x) that can approximate f(x) within any
error range e. There exigt n such that
f(x2) f(x)l< e < [x; x| < Un.

— oneinput unit for X, n+1 hidden nodes, and one output unit for y
— All weightsfrom input to n hidden unitsare set to 1

— K-th hidden unit has threshold value at (k-1)/n.

— Weight for kth hidden node to output unit is f(k/n) — f((k-1)/n).
— Output unit isidentity function with 0 threshold.

— For any x, it must fall in aninterval [(k-1)/n, k/n] for somek, then only the
first k hidden nodes are turned on, therefore

h(x) =f(0) + Xj =1k (f(j/n) —f((j-1)/n) = f(k/n)
and
[F(x) —h(x)] = [f(x) —f(k/n) |
<e
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Neural networks can represent any continuous functions

h(x)

fO) @DE) f(1)-f((n-1)n)
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Relation to Curve Fitting via Interpolation

y
f(x) f(x)
X X
Hypothesis: for unseen x, its Hypothesis: for unseen x, its function
function value f(x) is approximated value f(x) is approximated as f(x') +
as f(k/n), where k/nisx’s closest (X-x") (FOX")-F(X N/(X"-X"), where X’
neighbor, whose function vaueis and X'’ aretraining point and [X’, X"']
known. isthe smalegt interval containing x.
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e Inductive;

lacking any further information, it is assumed that the best
hypothesis regarding unseen instances is the hypothesis
that best fits the observed training data.

— This should remind you of the maximum likelihood
method. We will seen maximum posterior probability
approach when discuss bayesian.

— Bias (rote learner) v.s. generalization
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» Learning: to determine weights and thresholds for all
nodes (neurons) so that the net can approximate the
training data within error range.

— Back-propagation algorithm

¢ Feedforward from Input to output

¢ Calculatethe error (which is the difference between the network
output and the target output):

E=(1V2) %, (t;—093

where D stands for set of al training data, and for datad, t; and o, are
the target output and network output respectively.

« Eisafunction of al weights w in the network. Adjust w (by gradient
descent) to decrease the error. Thisis done layer-to-layer backwards
in the network, called back-propogation.
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Gradient descent
W oy =W gq - ' [OE/OW]

wherer isapositive constant called learning rate, which
determines the step size for the weightsto be altered in the
steepest descent direction aong the error surface.

E[w]
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* Issueswith ANNs
— Network architecture
¢ FeedForward (fully connected vs sparsely connected)
¢ Recurrent
« Number of hidden layers, number of hidden units within alayer
— Network parameters
e Learningrate
e Momentum term
— Input/output encoding
¢ One of the most significant factors for good performance
e Extract maxima info
e Similar ingtances are encoded to “ closer” vectors
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» Avoid Overfitting (early stop)

— Dataset is split into three parts:. training set, validation
set, and prediction set.

— Training continues as long as the performance on the
validation set keeps improving, and stops otherwise.

» Avoid local optima
— Add momentum term

— Use stochastic gradient descent (e.g., Simulated
annealing)

— Train multiple networks (initializing each with different
random weights)
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E[w]

w

-Initialize weights randomly to have chance to start from differently
locations, e.g., 1, 3and 4.

-Add momentum term to help get over little bumpslike location 2.

-Simulated annealing: even when anew location will increase AE,
thereis ill a chance e2&'T to take this new location. Thisis how to
avoid being trapped in alocal minimum.
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Application for sequence analysis

* Input/output encoding
— Direct sequence encoding
* BIN4:
A —1000; T — 0100; G — 0010; C — 0001; - — 0000
* BIN2:
A—-00,T—01,G—10,C— 11
¢ For amino acids: each amino acid — a vector of 21 bits(Thisis called BIN21)
¢ Other properties of amino acids, such as hydrophobicity.
— Indirect sequence encoding
Sequence features and information content can be extracted
by various scoring mechanisms.
¢ Resdue frequency
— Input trimming
Reduce dimensions and condense information content
« Decisontrees
¢ Singular value decomposition (SVD)
¢ Principle component analysis (PCA)
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Qian & Sejnowski, IMB 202(1988)865-884

Secondary
structure

oo output (3 units encoding

/ I \ helix, sheet, and coail)

[Phe[Asn [ Ala| Arg [ Met [ Lys [ Leu ]

Sequence of amino acid processed as dliding windows of fixed-
length (7 to 17 aa) segments. The central residues are then
classified by a three-state (helix, sheet, or coil) prediction.
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» Evaluation of performance

— Successrate Q;
Q= (P,+ P, + PN
Where N istotal number of predicted residues and
P, , P, , and P,are numbers of correctly predicted helix, shet,
and coil respectively.
— Correlation coefficient
C=TPs TN - FP- FN /v (PPs PN « AP+ AN )

— Cross validation

 Ink-fold cross validation, data set israndomly split into two
exclusive parts, training and testing, with ratio k tol.
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* Performance

— ceiling at about 65% for direct encoding

* Local encoding schemes present limited correlation
information between residues

« Little or no improvement using multiple hidden layers.
— Surpassing 70% by
* Including evolutionary information (contained in multiple
alignment)
 Using cascaded neura networks
* Incorporating global information (e.g., position specific
conservation weights)
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Cathy Wu, Computers Chem. 21(1997)237-256

Table T. Neural network applications for DNA/RNA sequence analysis

Reference

Application

Neural network*

/O encodingt

Intron/Exon (I/E) Discrimi

and Gene Identification

Uberbacher and Mural. 1991
Uberbacher er al., 1996
Snyder and Stormo. 1993
Snyder and Stormo, 1995
Brunak er al., 1991

Farber e/ af., 1992

Granjeon and Tarroux, 1995
Reczko er al .. 1995

Coding region recognition

Coding region recognition

L/E feature weighting

I/E feature weighting

Splicing donor/acceptor site prediction

1/E discrimination

1/E compositional constraints

Parallel implementation for I/E discrimination

4L/FF/BP
JL/FF/BP
2L/FF/Delta
23L/FF/Delta BP
IL/FF,BP
3L/FF/BP
3IL/FF,BP
3L/FF;BP.QP.RP

FEATT/I(Y.N)
FEATI3/1(Y.N)
FEATS/I{Inequality)
FEATS/1(Inequality)
BIN4/i(Y,N)
BIN4.FREQ/I(Y,N)
BIN4/3(1.E.0)
BIN4/1(1,E)

Prediction and Analysis of Ribosome-binding Sites, Promoters and Other Sites

Stormo er al.. 1982a Ribosome-binding site prediction Perceptron BIN4/HY,N)

Bisant and Maizel. 1995 Riboseme-binding site prediction IL,/FF/BP BIN4/H(Y N)

Abremski ez al., 1993 E. coli promoter prediction 3L/FF/BP BIN4/I(Y . N)

Demeler and Zhou, 1991 E. coli promoter prediction 3L/FF.BP BIN2,BIN4/I(Y.N)
O'Neill, 1991, 1992 E. coli promoter prediction 3L,FF/BP BIN4/I(Y.N)

Horton and Kanehisa, 1992 E. ¢oli promoter prediction 2L/FF/BP BIN4 + 3 + FREQ/I(Y,N)
Mahadevan and Ghosh, 1994 E. coli promoter prediction 2 x 3L/FF/BP BIN4/1(Y.N)

Pedersen and Engelbrecht, 1995 Transcription start site and feature detection 3L/FF/BP BIN4/I{Y N}

Larsen et af.. 1995 Eukaryotic promoter prediction 3L,FF/BP BIN4/I{Y N}

Matis er al.. 1996 RNA polymerase [1 binding site prediction 4L /FF/BP FEATI3/1(Y.N)

Nair e al., 1994 Prediction of transeriptional terminator 3L/FF/BP BIN4.REALI/1(Y.N)
Nair er al., 1995 Prediction of transcription control signal 3L/FF/BP BIN4/I(RTL)
DNA/RNA Seq Analysis, Phyl ic Classification and Code Mapping

Arrigo ef al.. 1991 Clustering and functional region identification 2L/Kohonen REALI1/Map(3i0)
Giuliano er af.. 1993 Clustering and functional region identification 2L/Kohonen REALI/Map

Leblanc er af., 1994 Phylogenetic classification 2L/ART BIN4/19(Class)

‘Wu and Shivak , 1994 Rib | RNA classification 2 x 3L/FF/BP.CP  FREQ.SVD/220,15(Class)
Sun er af., 1995 Transfer RNA gene recognition 3L/FF/BP BIN4/10(Class)

Tolstrup er al.. 1994 Genetic code mapping SL/FF/BP BIN4/20(Class)

*Neural network architectures: 2L/FF = two-layer. feedforward network (i.e. perceptron): 3L or 4L/FF = three- or four-layer, feedforward
network (i.e. multi-layer perceptron).
Neural network learning algorithms: BP = Back-propagation; Delta = Delta rule; QP = Quick-propagation; RP = Rprop; ART = Adaptive
resonance theory; CP = Counter-propagation.
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¢ http://www.cmpharm.ucsf.edu/~nomi/nnpredict.html

Secondary Structure Prediction Results

Top lineisyour sequence. Second lineis the Sstructure prediction. Third lineisthe pre-
residue confidence of the prediction (0=low confidence, 9=high confidence)

MLMPKKNRIAIYELLFKEGVMVAKKDVHMPKHPELADKNVPNLHVMKAM
HHHHHHHHH___EEEE
0089007099979990069566755998099099999899988570900
SLKSRGYVKEQFAWRHFYWY LTNEGIQYLRDYLHLPPEIVPATLRRSRP
HHHHHH

HHH___ HHHHHHHHHHHHH

HHHHHH

HHHHHHH

0966066999996677880057097077050050000006666766009
TGRPRPKGPEGERPARFTRGEADRDTY RRSAVPPGADKKAEAGAGSATE

HHHHH

9000000000000076007888007056007090900006777909865

QFRGGFGRGRGQPPQ

CISC889, S04, Lecll, Liao

000699999990000

15



