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Abstract    
Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and 

computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in 
gene regulatory networks, especially when strong regulators do work significantly. In this paper, we propose a novel approach
based on combining neuro-fuzzy network models with biological knowledge to infer strong regulators and interrelated fuzzy 
rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory
conditions in regulatory networks, but also explain the meaning of nodes and weight value in the neural network. It can get 
useful rules automatically without factitious judgments. At the same time, it does not add recursive layers to the model, and the 
model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a 
partial gene regulatory network of yeast. The results show that this approach can work effectively. 
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1  Introduction 

One of the hottest topics in genome science is the 
interaction between genes. The study of Gene Regula-
tory Network (GRN) is focused to understand metabolic 
pathways and bioprocesses. As a system, a GRN com-
prises of biomolecular components (genes, mRNA and 
proteins) which interact with each other. These interac-
tions determine gene expression levels, that is, deter-
mine the rate of gene transcription to mRNA. In general, 
each mRNA molecule can be translated into a specific 
protein (or set of proteins). On one hand, some proteins 
serve only to activate other genes in nuclei, which are 
thought of the transcription factors that are the main 
players in regulatory networks. Transcription factors 
which transcribe genes into mRNAs, can be considered 
as input signals. When transcription factors bind to 
promoter regions adjacent to the regulated gene, they 
recruit RNA polymerase to perform transcription func-
tion. On the other hand, proteins that are translated from 
the mRNAs, can be considered as output signals. Some 
proteins act as transcription factors themselves to 

upregulate or downregulate gene expressions. These 
courses form feedback loops in the network, in which 
direct or indirect self-regulation happens[1–3]. With the 
rapid development in recent years, microarray data has 
become an important resource for bioinformatics re-
search increasingly. Based on time series expression 
data obtained from DNA microarrays regulatory net-
works, we can identify the complicated regulatory rela-
tionships, uncover the regulatory patterns in the cell, and 
obtain a systematic view for biological process. GRN 
models can be used to identify genetic diseases and to 
estimate the effects of medications. One of the most 
challenging tasks is to reconstruct interactional struc-
tures and to confirm mechanisms in cellular systems 
from available experimental data. Due to the lack of the 
experimental data and prior knowledge, it is hard to 
verify regulatory relations, which are required to con-
struct the regulatory network in traditional methods. 
Therefore, there is still a lot of work to do on gene 
networks construction[4,5]. 

Many computational approaches have been  
proposed to reconstruct GRNs based on large-scale  
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microarray data which is retrieved from such biological 
experiments as Boolean networks[6], differential equa-
tions[7], linear combination and weighted model[8], 
Bayesian networks[9] and neural networks[10]. But all the 
existing regulatory network models have some inevita-
ble drawbacks. For example, Boolean network models 
are used simply to determine the discrete model, but they 
are relatively rough, fixed, and have low accurate results. 
The differential equation model is a continuous network 
model, and it describes the relationships of gene impacts 
and changes. Although this model can reflect the genetic 
continuous dynamic relations better, it is difficult to 
establish differential equations in the right forms. It is 
thought that the linear combination and weighted model 
in the respect of establishing the relationship among 
genes is linear, but in fact, the relationship among genes 
is often very complex and nonlinear. While Bayesian 
network models are attractive due to dealing with sto-
chastic aspects of gene expression and noisy measure-
ments, but they also have the disadvantage of minimiz-
ing dynamic gene regulation. Recently, there have been 
some attempts to apply neural network models to inves-
tigate gene networks for better results. 

In this paper, we apply a neuro-fuzzy network 
model and optimize weight values with genetic algo-
rithm. By this approach we obtain strong regulators to 
regulate known genes, which include 7 genes whose 
regulators are indefinite, and get fuzzy rules during 
calculation. Finally we reconstruct a partial gene regu-
latory network using the obtained strong regulators and 
fuzzy rules, and satisfactory results are obtained from 
experiments. 

2  Method 

2.1  Model 
It is very popular that neural network is used for 

inferring. For example, dynamic neuro-fuzzy network 
model, whose network structure and rules are con-
structed during on-line learning, is flexible[15]. But the 
determined rules are not necessarily accurate. Recurrent 
neuro-fuzzy network model is better in dealing with the 
series data than other neuro-fuzzy networks, but it is 
more complex in calculation[16]. 

The proposed model is a six-layer, two-input and 
single-output neuro-fuzzy network, which has the ad-
vantages of both neural networks and fuzzy systems. As 
a hybrid neuro-fuzzy architecture, it can not only infer 

the fuzzy rules, which are suitable for describing the 
regulatory conditions in regulatory networks, but also 
explain the meaning of nodes and weight value in the 
neural network. It can get useful rules automatically 
without factitious judgments[17,18]. At the same time, no 
recursive layers are added to the model, but the model 
can still strengthen the relationships among genes and 
reduce calculation. The proposed neuro-fuzzy network 
model is shown in Fig.1. 
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Fig. 1  The neuro-fuzzy network model. 

 
We use j

iO  and j
iI  to respectively represent the 

output and input of the i-th node in the j-th layer. 
In the first layer, each node represents an input 

linguistic variable (a linguistic input variable). There is 
no calculation taking place in this layer, and each node 
transfers the value of an input variable to the next layer. 

1 1  ( 0,1),i i iO I X i= = =                     (1) 

where Xi represents gene. 
We make input linguistic variable turn into fuzzy 

output in the second and third layers. Each node in the 
second layer needs to do a conversion as 

2 2  ( 0,  1,  ... ,5).i i i i iO I Wb X Wb i= − = − =          (2) 

where Wbi is the weight from Ii to Oi in the second layer. 
In the third layer, input and output variables define 

three fuzzy sets (big, mid, small), which present large, 
medium and small respectively. The membership func-
tions are represented as 
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where αi and βi are factors in fuzzy membership func-
tions. At the same time the output of the third layer is 
shown as 

3 3sigmoid( )

exp( / ) 

1 sigmoid( ) ( 0,1,...,5),     (6)

i i i

j
i i

j
i i

O Wc I

I Wc

Wc I i

= ×

= −

= − × =

 

where Wci is the weight from Ii to Oi in the third layer. 
Fuzzy rules are inferred in the fourth and fifth lay-

ers. The output of each node in the fourth layer is as 
follows 

4 4 ,  0,1,... ,8,i iO I i= =∏                        (7) 

The conversion formula for the fifth layer is 
5 5sigmoid( ( )) ( 0,1,2),i i ijO I We i= × =∑         (8) 

where Weij is the weight from Ii to Oi in the fifth layer. 
The sixth layer is responsible for the defuzzifica-

tion operation. It implements sum function by using the 
cancroids non-fuzzy method. The output of each node in 
sixth layer is shown below 

6 6 6( ) / ,i i i iO Wf I I= ×∑ ∑                    (9) 

where Wfi is the weight from Ii to Oi in the sixth layer. 
 

2.2  Algorithm implementation 
In the algorithm implementation, we use genetic 

algorithm to train network. Chromosomes are made up 
of weights Wbi, Wci, Weij and Wfi, the fitness S(i) of the 
i-th chromosome in group is 

( ) 1 ( ) ,S i E i=                          (10) 

21( ) ( ) ,
2 k

E i O T= −∑                    (11) 

where k is the number of samples, T is teacher signal, 
and O is the actual output of network to which this 
chromosome corresponds. The chromosome number of 
initial group is selected as 200, and the chromosomes 
with higher fitness are selected as fathers and mothers. 
We reserve the top 10 fitness chromosomes in each 
generation, and there are 10 chromosomes mutating in 
each generation. Then we select 90 pairs of father 
chromosomes to carry out cross operation. The network 
error is normally between 1 and 2 when the genetic op-
eration arrives at the 20th generation. At this time, the 
network is easily to fall into local minimum value, and 

the error does not change any more. Our approach is to 
modify gene fragments, and meanwhile modify the 
value at 10 places of the chromosome randomly. Then 
we check the network error of the corresponding chro-
mosome to see whether it decreases or not. If it decreases, 
we preserve the modified chromosome; otherwise the 
experiment goes on. Each chromosome is experimented 
100 times, so we can make sure that the network error 
can jump out the local minimum. The network error will 
decline below 1 after the algorithm runs 20 generations. 
Training error curve is shown in Fig. 2. 
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Fig. 2  Error curve of neural network. 

 
2.3  Extracting fuzzy rules 

We record any change of weight Weij in the process 
of implementing algorithm. The growing of Weij is ex-
tracted with the decrease in the network error. These 
obtained weights contribute to the convergence of net-
work, so the corresponding fuzzy rules are needed. 
There are multiple obtained fuzzy rules, for example, we 
get two rules, Rule 1: If regulator Y is big, then gene X1 is 
big and gene X2 is mid, it corresponds to a weight 
marked as W1; Rule 2: If regulator Y is big, then gene X1 
is mid and gene X2 is small, and it corresponds to a 
weight marked as W2. If the increased value of W1 is 
greater than that of W2, we will keep Rule 1 and give up 
Rule 2. 

3  Experimental results 

3.1  Profiles introduction 
We applied yeast (Saccharomyces cerevisiae) 

cell-cycle gene expression data[19] (download from 
http://genome-www.stanford.edu/cellcycle/) reported by 
Spellman et al.[20], which is made up of 77 samples 
collected at different time points of the cell-cycle. The 
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data come from six different experiments: alpha-factor, 
CDC15 arrest, CDC28 arrest, elutriation, CLN3 and 
CLB2. Missing values are filled with zero. After nor-
malization, the anterior 60 samples were used as training 
data of the neuro-fuzzy network, and the fuzzy rules 
inferred were tested for the consistency of the other 17 
samples. 

The biological knowledge was integrated in our 
method. The knowledge includes: 

(1) There are 104 genes which are regulated in 
cell-cycle of the yeast and they were substantiated by 
scientists through distinct ways. However, only 97 genes 
were analyzed by using the methods of the researchers in 
Stanford University, and the evidence of the other 7 
genes has not been found yet. 

(2) This cell-cycle includes five periods: M/G1, G1, 
S, S/G2 and G2/M. The genes in each period have been 
clustered by Spellman et al., and their paper also showed 
us the functions of genes[20]. 

(3) There are 149 regulators for 97 genes in the 
(Saccharomyces Genome Database) SGD database[21], 
and each gene usually has 6 regulators. 

 
3.2  Results 

(1) The calculating results of the strong regulators 
of 97 genes 

There are two inputs X1 and X2, and single output Y 
in our neuro-fuzzy network model. This model describes 
the intensity of relations among these 3 genes. If the 
inputs X1, X2 and output Y are in the same period and have 
similar functions, or they have regulation relationships, 
the error gained from training samples will be the 
minimum and the expected curve is more similar with 
real curve in test. In our experiments, the input genes X1, 
X2 were selected from the same period and they have 
same or similar functions, and Y is selected from the 
regulator sets of this period. We got Ymin whose calcu-
lated network error was the least (minimum) for each pair 
of X1, X2, which is the strong regulator of X1 and X2. If 
Ymin belong to the regulator subsets of X1 and X2, then we 
consider the result is right, otherwise, it is wrong. 

As mentioned above 104 genes and 149 regulators 
are divided into 5 parts according to the cell-cycle pe-
riods, as shown in Table 1. There are only 97 genes 
whose regulator sets are recorded in SGD database. Our 
first experiment is to calculate the strong regulators of 
these genes, and results show that only 8 genes do not 

belong to their own regulator sets, the accuracy is 
91.75%. 

 
Table 1  The number of genes and regulators in each period 

Period Number of genes Number of regulators 
M/G1 19 46 
G1 53 49 
S 8 5 
S/G2 9 27 
G2/M 15 22 
Sum 104 149 

 
(2) The calculating results of the strong regulators 

of 7 genes which do not have regulator records in the 
SGD database 

These 7 genes are: CSD2/CHS3, CDC8, DPB3, 
PRI1, RAD17, CWP2 and TIR1. Among them, 
CSD2/CHS3, CDC8, DPB3, PRI1 and RAD17 are in G1 
phase, CWP2 and TIR1 are their strong regulators. 
CWP2 and TIR1 were calculated by the neuro-fuzzy 
network model from their regulator sets which consists 
of 53 regulators. CWP2 and TIR1 are in S/G2 phase, 
HCM1 is their strong regulator which was calculated by 
the neuro-fuzzy network model from its regulator set 
which is made up of 27 regulators. The result needs to be 
further validated by biological experiments. 

(3) Using the strong regulators of 104 genes and 
fuzzy rules to reconstruct a partial gene regulatory net-
work of yeast 

Each gene we researched has about 6 regulators in 
the SGD database. Our method can compute regulators’ 
degree of each gene and extract the strong regulator 
whose regulatory phenomenon is most obvious. 

We can use the fuzzy rules to describe conditions of 
regulation. For example, there is a rule: if the expression 
of regulator Y is big, then the expression of gene X1 is big 
and that of gene X2 is small, which means that the ex-
pression of gene X1 is induced and that of gene X2 is 
repressed when regulator Y is highly expressed. But 
sometimes the expression of gene X1 or X2 is mid, which 
means that the expression of regulated gene is in the 
middle express level, which is not obviously increased 
or decreased. Simple regulation is shown in Fig. 3. 

The results of regulation and the regulatory mod-
ules in Saccharomyces Genome Database[22] are com-
pared with each other. There are 70 regulation sides in 
common, and 59 sides are consistent with the records in 
the database above. The accuracy is 84.28%. The regu-
latory network we have reconstructed is shown in Fig. 4. 
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Fig. 3  Introduce the meaning of four kinds of relations. (a) Gene A makes the expression of gene B increase in biology process with “+”; 
(b) gene A makes the expression of gene C decrease with “−”; (c) gene D is in medium level and the regulation relationship between gene 
A and gene D is not obvious; (d) we do not know the regulators of gene E, which is in the form of hexagon. 

 

 
(a) M/G1 period 

 
(b) G1 period 

Fig. 4  Reconstructing a gene regulatory network of 104 genes based on the combination of neuro-fuzzy network model and biological 
knowledge: It shows the express situation of regulated genes when expressions of strong regulators increase. The entire network consists 
of networks of 5 periods during cell cycle of yeast. (a) M/G1 period: there are 19 genes and 8 strong regulators. (b) G1 period: there are 53 
genes, including 5 purple genes whose regulators are unknown and 13 strong regulators. (c) S period, there are 8 genes and 2 strong 
regulators. (d) S/G2 period, there are 9 genes, including 2 purple genes whose regulators are unknown and 6 strong regulators. (e) G2/M 
period, there are 15 genes and 6 strong regulators. The genes in pane are regulators, the genes in ellipse are 97 regulated genes, while 7 
genes in hexagon are the genes without regulators in record. 
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(c) S period 

 

(d) S/G2 period 

 
(e) G2/M period 

Fig. 4  Continued. 

4  Discussion 

When calculating the relation among X1, X2 and Y 
with neuro-fuzzy network model, we find that there are 
four relations between X1, X2. Relation 1: X1 and X2 are 
in the same period and have similar functions, and Y is 
their regulator. Relation 2: X1 and X2 do not have similar 
functions and Y is the regulator of X1 or X2. Relation 3: 
X1 and X2 are in the same period and have similar func-
tions, Y is not the regulator of them. Relation 4: X1, X2 
and Y are in the same period and they also have same or 
similar functions. 

Comparing the above relations among input genes 
X1, X2 and the output gene Y, we can find that the error 
gained from training is minimum and the expected curve 
is more similar to real curve than other relations when X1, 
X2 and Y obey Relation 1. The curves of the four kinds of 
relations are shown in Figs. 5 to 8. 
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Fig. 5  Test curves of Relation 1. Total error is 0.7232, the average 
error of a single data is 0.012. 
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Fig. 6  Test curves of Relation 2. Total error is 0.4893, the average 
error of a single data is 0.008. 
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Fig. 7  Test curves of Relation 3. Total error is 2.4893, the average 
error of a single data is 0.043. 
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Fig. 8  Test curves of Relation 4. Total error is 2.7704, the average 
error of a single data is 0.046. 
 

We carried out 20 experiments altogether with re-
spect to the relations among genes X1, X2 and Y, in which 
we selected genes X1, X2 and regulator Y randomly from 
5 periods in each relation and calculated their relations 
with our method. We could get results via comparing 
network errors and the similarity of the test curves. The 
result is good if the changing tendency of the real output 
curve is consistent with that of the expected output curve. 
The results are shown in Table 2. 
 

Table 2  Results of four relations 
Relation Good results Bad results 

Relation 1 5 0 
Relation 2 3 2 
Relation 3 0 5 
Relation 4 2 3 

 
From the experiments above we can know that, in 

the modeling, if X1, X2 and Y are in Relation 1, the error 
gained from the model is small. The strength of the 

regulation and the error are in an inverse proportion. 
When we only calculate the relation of gene X1 and 
regulator Y, we need assign X1 to X2. 

When the calculation is completed, the set of rules 
will come out. The rule sets describe the relations of the 
regulation network. There may be conflicts in the sets 
because the constraint of the rules is not strong enough at 
the beginning. 

There were 8 wrong results in the first experiment: 
2 results existed in M/G1 period, 3 results appeared in 
G1, 1 result was in S/G2 and 2 results were in G2/M. 
There are two major reasons why mistakes happened in 
our model. One reason is that there is serious deficiency 
in some genetic data, which results in inability to cal-
culate actual relations. The other reason is that there is a 
major regulator in each period, and the calculated error 
about it is always small. Therefore it is sometimes dif-
ficult to get the real strong regulator in this period. 

In the second experiment, we obtained the regula-
tors of the 7 genes. Some references also indicated that 
the 7 genes are regulated in cell cycle of yeast. But we 
are still unable to verify these regulators by now. 

In the third experiment we reconstructed a gene 
regulatory network of 104 genes, and there were many 
regulation relations consistent with the regulation mod-
els in the SGD database. 

5  Conclusion 

In this paper, we proposed a novel approach for 
reconstruction of gene regulatory networks by integrat-
ing biological knowledge of a set of regulators, biology 
functions of genes, and a set of expression profiles. We 
determined the regulatory relationships among genes 
with fuzzy rules, such as activation, inhibition or no 
effect. Our approach is based on a neuro-fuzzy network 
model which could infer strong relations among genes. 
We obtained the strong regulator of each gene and their 
fuzzy rules, then we applied them to reconstruct partial 
gene regulatory network. 

The number of fuzzy rules we got is usually more 
than one. There are two kinds of regulatory conditions. 
One condition is that regulated genes are influenced by 
its regulator which increases gene expression value, and 
the other is that the regulator decreases gene expression 
value. As a result, we reserved two kinds of fuzzy rules 
corresponding to the conditions mentioned above, which 
describe how regulators control genes. It should be  
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noticed that the model calculates the relations of three 
genes X1, X2 and Y each time, and we have to research 
thousands of genes, which is a time-consuming work 
Nevertheless, due to the theory of neuro-fuzzy network 
models, we are confident that the proposed approach 
could deal with even larger datasets in less time by dis-
tributing computations. 

Experimental results validate the approach, which 
can obtain high accuracy in processing real biology data. 
Three works about gene regulatory networks recon-
struction have been done. First, we obtained strong 
regulators of 97 known regulated genes; second, we got 
strong regulators of 7 unknown regulated genes; third, 
we reconstructed a partial gene regulatory network of 
these 104 genes with fuzzy rules. 

In fact, the fuzzy rules are changing all the time, so 
it is not good enough to get only one rule to describe 
monolithic change. We need more details about the 
fuzzy rules. Future work will extend this model with 
appropriate structure and more effective algorithm 
which can reduce computing time and obtain time series 
of fuzzy rules. 
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