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Abstract

In the last decade, recurrent neural networks (RNNs) have attracted more efforts in inferring genetic regulatory networks (GRNs), using time
series gene expression data from microarray experiments. This is critically important for revealing fundamental cellular processes, investigating
gene functions, and understanding their relations. However, RNNs are well known for training difficulty. Traditional gradient descent-based
methods are easily stuck in local minima and the computation of the derivatives is also not always possible. Here, the performance of three
evolutionary–swarm computation technology-based methods, known as differential evolution (DE), particle swarm optimization (PSO), and the
hybrid of DE and PSO (DEPSO), in training RNNs is investigated. Furthermore, the gene networks are reconstructed via the identification of the
gene interactions, which are explained through corresponding connection weight matrices. The experimental results on two data sets studied in
this paper demonstrate that the DEPSO algorithm performs better in RNN training. Also, the RNN-based model can provide meaningful insight
in capturing the nonlinear dynamics of genetic networks and revealing genetic regulatory interactions.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A major advancement in genetic experimental technologies,
DNA microarray analysis provides a systematic method to
characterize genetic functions, discriminate disease types, and
test drug effects (McLachlan, Do, & Ambroise, 2004; Xu &
Wunsch II, 2005). Inference of genetic regulatory networks
from time series gene expression data has attracted attention,
due to its importance in revealing fundamental cellular
processes, investigating functions of genes, and understanding
complex relations and interactions between genes (De Jong,
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2002; D’haeseleer, Liang, & Somogyi, 2000; Xu, Hu, &
Wunsch II, 2004a). In the context of the data generated
from microarray technologies, i.e. transcriptional regulation of
protein-coding genes, a genetic regulatory network consists
of a set of DNA, RNA, proteins, and other molecules, and
it describes regulatory mechanisms among these components.
Genetic information that determines structures, functions,
and properties of living cells is stored in DNA, whose
coding regions, known as genes, encode proteins. According
to the central dogma of molecular biology, genes are first
transcribed into mRNA molecules, which are then translated
to proteins. During the sophisticated process, the mechanism
of gene regulation, which can occur at any step along the
cellular information flow, determines which subset of genes is
expressed, to what level, and in response to what conditions
of the cellular environment (Latchman, 2005; Perdew, Vanden
Heuvel, & Peters, 2006). For example, genes encoding
digestive enzymes are expressed in the gut but not the skin, and
their level of expression increases in the presence of food. One
of the most common and well-studied levels on gene expression
regulation is the initiation of transcription. In this context,
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the control is achieved through the actions of regulatory
proteins, called transcription factors, which activate or inhibit
the transcription rate of certain genes by binding to their
transcriptional regulatory sites. Therefore, the transcription of
a specific gene, or the control of its expression, can be regarded
as a combinatorial effect of a set of other genes. In other
words, when gene g1 is said to regulate gene g2, it actually
means that the transcription factors encoded by g1, translated
from its mRNA products, control the transcription rate of g2.
Other activities, such as RNA splicing and post-translational
modification of proteins, are also constituents of the entire
regulatory system. However, due to limited data availability,
the focus can only be put on the transcription (mRNA) level
at the current stage, instead of the protein level. Despite such
restrictions, simplification has the advantage of measurements
over a very large scale, and the use of mRNA expression-based
microarrays has led to many interesting and important results
(Bar-Joseph, 2004; De Jong, 2002; D’haeseleer et al., 2000).

Classical molecular methods such as Northern blotting,
reporter genes, and DNA footprinting, have provided great
insight into the regulatory relationships between a pair of genes
or among a few pre-selected genes, which is far from sufficient
for exploring their complicated regulatory mechanisms. DNA
microarray technologies provide an effective and efficient way
to measure the gene expression levels of up to tens of thousands
of genes simultaneously under many different conditions,
which makes it possible to investigate gene relations and
interactions when taking the entire genome into consideration
(De Jong, 2002; D’haeseleer et al., 2000). Currently, major
microarray technologies belong to two categories, based on
the nature of the attached DNA and the manufacturing
technologies (Eisen & Brown, 1999; Lipshutz, Fodor, Gingeras,
& Lockhart, 1999; McLachlan et al., 2004; Schena, Shalon,
Davis, & Brown, 1995). For instance, in the context of cDNA
technologies, cDNA clones or expressed sequence tag (EST)
(EST is a unique short subsequence for a certain gene) libraries,
with length varying from several hundred to a few thousand
bases are robotically spotted and placed on a solid substrate
(Eisen & Brown, 1999; McLachlan et al., 2004). The robot
spotter touches and then places the droplets of the solution
containing the probes synthesized in advance on the array.
Fluorescently labeled cDNA, obtained from RNA samples of
interest through the process of reverse transcription, is then
hybridized with the array. A reference sample with a different
fluorescent label is also required for the purpose of comparison.
Generally, the test sample and reference sample are labeled with
Cyanine 5 (Cy5) in red and Cyanine 3 (Cy3) in green dyes,
respectively. Therefore, the red spots in the hybridized array
indicate higher expression of the genes in the test sample, and
the green spots indicate the higher expression in the reference
sample. If the gene transcripts are similar in both samples,
the spots are displayed in yellow. The fluorescence of each
dye after the genes are washed off can be measured using
image analysis techniques. The final data are the ratios of the
intensity of test sample and the reference sample and reflect
relative levels of gene expression. On the other hand, for
the high-density oligonucleotide microarray, oligonucleotides,
containing 20–70 bases, are fixed on a chip through techniques
like photolithography and solid-phase DNA synthesis (Lipshutz
et al., 1999). In this case, absolute gene expression levels are
obtained. Gene expression data can be used for investigating the
activities of a single gene, clustering genes of similar functions,
providing evidence for cancer diagnosis, and reconstructing
genetic regulatory networks, to name a few (Baldi & Long,
2001).

Several computational models have been proposed to infer
regulatory networks through the analysis of gene expression
data (De Jong, 2002; D’haeseleer et al., 2000; Xu et al.,
2004a). Boolean networks are binary models, which consider
that a gene has only two states: 1 for active and 0 for
inactive (Hallinan & Jackway, 2005; Kauffman, 1993; Liang,
Fuhrman, & Somogyi, 1998; Shmulevich, Dougherty, & Zhang,
2002). The effect of other genes on the state change of a
given gene is described through a Boolean function. Although
Boolean networks make it possible to explore the dynamics
of a genetic regulatory system, they ignore the effect of
genes at intermediate levels and inevitably, cause information
loss during the discretization process. Bayesian networks are
graph models that estimate complicated multivariate joint
probability distributions through local probabilities (Friedman,
Linial, Nachman, & Pe’er, 2000; Smith, Jarvis, & Hartemink,
2002; Werhli, Grzegorczyk, & Husmeier, 2006). Under this
framework, a genetic regulatory network is described as a
directed acyclic graph that includes a set of vertices and edges.
The vertices are related to random variables and are regarded
as genes or other components while the edges capture the
conditional dependence relation and represent the interactions
between genes. Bayesian networks are effective in dealing
with noise, incompleteness, and stochastic aspects of gene
expression data. However, they do not consider dynamical
aspects of gene regulation and leave temporal information
unhandled. Recently, dynamic Bayesian networks (DBN) have
attracted more attention (Husmeier, 2003; Murphy & Mian,
1999; Perrin et al., 2003; Tamada et al., 2003; Yu, Smith,
Wang, Hartemink, & Jarvis, 2004). DBN can model behaviors
emerging temporally and can effectively handle problems like
hidden variables, prior knowledge, and missing data. The
disadvantage of DBN is that they may not scale very well
to large-scale data sets. For linear additive regulation models
(D’haeseleer, 2000; D’haeseleer, Wen, Fuhrman, & Somogyi,
1999; van Someren, Wessels, & Reinders, 2000, 2001), the
expression level of a gene at a certain time point can be
calculated by the weighted sum of the expression levels of
all genes in the network at a previous time point. Although
linear additive regulation can reveal certain linear relations in
the regulatory systems, it lacks the capability to capture the
nonlinear dynamics between gene regulations.

Considering the limitations of the above methods, in the
paper, genetic regulatory networks are inferred from time series
gene expression in the framework of recurrent neural networks
(Kolen & Kremer, 2001). In using RNNs for genetic network
inference, their ability to interpret complex temporal behavior
becomes particularly important, since that is an inherent
characteristic of times series gene expression data and makes
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them different from static expression data (Bar-Joseph, 2004).
Generalized RNNs can be considered as signal processing units
forming a global regulatory network. The recurrent structure
of RNNs effectively reflects the existence of feedback, which
is essential for gene regulatory systems. RNN models have
already been proposed and used for genetic regulatory networks
inference (D’haeseleer, 2000; Mjolsness, Mann, Castaño, &
Wold, 2000; Vohradský, 2001; Weaver, Workman, & Stormo,
1999; Xu, Hu, & Wunsch II, 2004b). For instance, D’haeseleer
(2000) discussed a realization of RNNs in modeling gene
networks using synthetic data. Vohradský (2001) investigated
the dynamic behaviors of a 3-gene network in the framework of
RNNs.

A commonly known problem in the neural network
community is the training difficulty of RNNs (Jaeger, 2002).
Typically, back-propagation through time (BPTT) (Werbos,
1990) and evolutionary algorithms (EAs) (Fogel, 1994; Yao,
1999) are used for RNN training. BPTT may be derived by
unfolding the temporal operation of the network into a layered
feedforward network, the topology of which grows by one layer
at every time step (Haykin, 1999). The derivatives of a cost
function with respect to the individual weight of the network
are calculated, which can then be used to do gradient descent
on the weights, updating them in the direction that minimizes
the error. However, the requirement of the computation of the
derivatives limits its application because the error functions are
not always differentiable. More seriously, the deep architecture
effect causes the gradient descent computation more and more
problematic. As a consequence, the procedure is easy to get
stuck to some local minima.

EAs are inspired by the process and principles of
natural evolution and refer to a class of population-based
stochastic optimization search algorithms (Fogel, 1994). The
major technologies of EAs include genetic algorithms (GAs),
genetic programming (GPs), evolution strategies (ESs), and
evolutionary programming (EP), each of which focuses on
a different facet of natural evolution (Fogel, 1994; Yao,
1999). Evolutionary algorithms have no requirement for the
gradient information and the objective or prior information
can be explicitly incorporated into the learning. Particularly,
gene regulatory network inference with GAs has already been
reported by Wahde and Hertz (2000, 2001) and Keedwell and
Narayanan (2005). As an example, Wahde and Hertz (2001)
used GA to identify the network parameters in inferring gene
regulatory interactions during the development of the central
nervous system of rats. These parameters are encoded based on
a decimal scheme and the fitness function is defined based on
the errors between the measurements and the estimated values.

This paper presents the application of a hybrid evolutionary–
swarm algorithm called differential evolution particle swarm
optimization (DEPSO) (Zhang & Xie, 2003) for training
RNNs. Its performance is compared with differential evo-
lution (Storn & Price, 1997) and particle swarm optimiza-
tion (Kennedy, Eberhart, & Shi, 2001), and the experimental
results demonstrate that the hybrid differential evolution par-
ticle swarm optimization algorithm can achieve superior per-
formance in RNN training. DEPSO achieves convergence all
the time and is faster than differential evolution (DE) or particle
swarm optimization (PSO) individually. Furthermore, the paper
demonstrates that the RNN-based model can provide meaning-
ful insight in capturing the nonlinear dynamics of genes net-
works and revealing genes regulatory interactions, explained
through corresponding connection weight matrices of RNNs.
Such information can then be used to reconstruct genetic regu-
latory networks and help understand the regulatory pathways.

The paper is organized as follows. Section 2 describes the
RNN model for regulatory network inference. In Section 3,
the three evolutionary/swarm computational technologies, used
for RNNs training, are described and discussed. Section 4
introduces the artificial data and the real data — the SOS
DNA repair system used in the analysis. Section 5 illustrates
experimental results to both data sets. The paper is concluded
in Section 6.

2. Recurrent neural networks

For a continuous time system, the genetic regulation
model can be represented through a recurrent neural network
formulation (D’haeseleer, 2000; Mjolsness et al., 2000; van
Someren, Wessels, & Reinders, 2001; Weaver et al., 1999),

τi
dei

dt
= f

(
N∑

j=1

wi j e j +

K∑
k=1

vikuk + βi

)
− λi ei , (1)

where ei is the gene expression level for the i th gene (1 ≤

i ≤ N , N is the number of genes in the system), f (·) is a
nonlinear function (usually, a sigmoid function is used f (z) =

1/(1+e−z)), wi j represents the effect of the j th gene on the i th
gene (1 ≤ i, j ≤ N ), uk is the kth (1 ≤ k ≤ K , K is the number
of external variables) external variable, which could represent
the externally added chemicals, nutrients, or other exogenous
inputs, vik represents the effect of the kth external variable on
the i th gene, τ is the time constant, β is the bias term, and λ is
the decay rate parameter. A negative value of wi j represents the
inhibition of the j th gene on the i th gene, while a positive value
indicates the activation controls. When wi j is zero, there is no
influence of the j th gene on the expression change of the i th
gene. The effects of other factors can be added into the formula
based on the specific situation. Note that this model is a natural
extension of the linear additive model in D’haeseleer et al.
(1999) and van Someren et al. (2000), in order to explicitly take
into account the nonlinear dynamics of the networks. Several
applications based on the model in Eq. (1) have been reported
in the literature (D’haeseleer, 2000; Mjolsness et al., 2000; van
Someren, Wessels, & Reinders, 2001; Weaver et al., 1999).

This model can also be described in a discrete form for
computational convenience, since measure is only made at
certain time points:

ei (t + 1t) − ei (t)
1t

=
1
τi

(
f

(
N∑

j=1

wi j e j (t) +

K∑
k=1

vikuk(t) + βi

)
− λi ei (t)

)
, (2)
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Fig. 1. The description of a genetic network through a recurrent neural network
model. This network is unfolded in time from t = 0 to T with an interval 1t .
Here, the regulatory network is shown in a fully connected form, although, in
practice, the network is usually sparsely connected.

Fig. 2. A node (neuron) in the recurrent neural network model, based
on Eq. (3).

or,

ei (t + 1t) =
1t
τi

f

(
N∑

j=1

wi j e j (t) +

K∑
k=1

vikuk(t) + βi

)

+

(
1 −

λi1t
τi

)
ei (t). (3)

Fig. 1 depicts a recurrent neural network, which is unfolded
in time from t = 0 to T with an interval 1t , for modeling
a genetic network. Here, each node corresponds to a gene,
and a connection between two nodes defines their interaction.
The weight values can be either positive, negative, or zero, as
mentioned above. Fig. 2 illustrates a node in the recurrent neural
network, which realizes Eq. (3).

The role that external variables play (affectors of expression
that originate and act downstream from transcription) will vary
from system to system. However, ignoring these variables at
this stage will not invalidate the inferred regulatory network
since the networks being studied, by definition, are largely
controlled via transcription. From the following section, it can
be seen that the inclusion of these exogenous inputs does
not affect the derivation of the learning algorithm. It is also
assumed that the decay rate parameter λ is 1 for computational
simplicity. The final model processed in the paper is represented
as

ei (t + 1t) =
1t
τi

× f

(
N∑

j=1

wi j e j (t) + βi

)

+

(
1 −

1t
τi

)
ei (t). (4)

3. Training algorithms

Although the RNN-based model has already been reported
in the literature, the difficulty of RNN training limits
its further application for gene network inference, as
aforementioned. Here, three different evolutionary/swarm
computational technology-based training approaches, i.e., DE,
PSO, and DEPSO, are used to determine the unknown network
parameters.

3.1. Particle swarm optimization

PSO is a population-based search strategy, consisting of
a swarm of particles, each of which represents a candidate
solution (delValle, Venayagamoorthy, Mohagheghi, Hernandez,
& Harley, in press; Eberhart & Shi, 2001; Kennedy et al.,
2001). Each particle i with a position represented as xi moves
in the multidimensional problem space with a corresponding
velocity vi . The basic idea of PSO is that each particle randomly
searches through the problem space by updating itself with
its own memory and the social information gathered from
other particles. These components are represented in terms of
two best locations during the evolution process: one is the
particle’s own previous best position, recorded as vector pi ,
according to the calculated fitness value, and the other is the
best position in the whole swarm, represented as pg . Also,
pg can be replaced with a local best solution obtained within
a certain local topological neighborhood. In the application
of PSO in RNNs training, the fitness function is defined to
measure the deviation of network output e(t) from the real
measurement (target) d(t), written as

Fit(xi ) =
1

T N

T∑
t=0

N∑
i=1

(ei (t) − di (t))2. (5)

More elaborate error terms can be added easily based on the
specific requirement of the problem at hand.

Fig. 3 depicts the vector representation of the PSO search
space. The corresponding canonical PSO velocity and position
equations at iteration t are written as,

vi (t) = w × vi (t − 1) + c1 × φ1 × (pi − xi (t − 1))

+ c2 × φ2 × (pg − xi (t − 1)), (6)

xi (t) = xi (t − 1) + vi (t), (7)

where w is the inertia weight, c1 and c2 are the cognitive and
social acceleration constants respectively, and φ1 and φ2 are
uniform random functions in the range of [0, 1].

PSO has many desirable characteristics, such as flexibility in
balancing global and local searches, computational efficiency



R. Xu et al. / Neural Networks 20 (2007) 917–927 921
Fig. 3. Vector representation of the PSO operation in a two dimensional space.
xi (t − 1) and vi (t − 1) denote the particle’s position and the associated
velocity vector in the searching space at generation t − 1, respectively. Vector
c1φ1(pi − xi (t − 1)) and c2φ2(pg − xi (t − 1)) describe the particle’s cognitive
and social activities, respectively. The new velocity vi (t) is determined by the
momentum part, cognitive part, and social part, given in Eq. (6). The particle’s
position at generation t is updated with xi (t − 1) and vi (t), given in Eq. (7).

for both time and memory, no need for encoding, and ease
of implementation. Also, the memory mechanism implemented
in PSO can retain the information of previous best solutions
that may get lost during the population evolution. It has been
shown that PSO requires less computational cost and can
achieve faster convergence than conventional back-propagation
in training feedforward neural networks for nonlinear function
approximation (Gudise & Venayagamoorthy, 2003). Juang
(2004) and Cai, Venayagamoorthy, and Wunsch II (2006)
combined PSO with EAs in training RNNs for dynamic
plant control and engine data classification, respectively. A
comparison of PSO and GA in evolving RNNs was also given
by Settles, Rodebaugh, and Soule (2003).

In the context of RNN training, each PSO particle, from a set
of M particles X = (x1, x2, . . . , xM ), is referred to as a candi-
date solution, represented as a D (=N (N + 2))-dimensional
vector xi = (wi,11, . . . , wi,N1, wi,12, . . . , wi,1N , . . . , wi,N N ,

βi,1, . . . , βi,N , τi,1, . . . , τi,N ), i = 1, . . . , M . The veloc-
ity associated with particle i is then denoted as vi =

(vi1, vi2, . . . vi D). Here, a batch mode is used for training,
which means the parameter updates are performed after all
input data points are presented to the model (Haykin, 1999).
The procedure for the implementation of PSO involves the fol-
lowing basic steps:

(i) Initialize a population of particles with random positions
and velocities of D dimensions. Specifically, the con-
nection weights, biases, and time constants are ran-
domly generated with uniform probabilities over the range
[wmin, wmax], [βmin, βmax], and [τmin, τmax], respectively.
Similarly, the velocities are randomly generated with uni-
form probabilities in the range [−Vmax, Vmax], where Vmax
is the maximum value of the velocity allowed.

(ii) Calculate the estimated gene expression time series based
on the RNN model, and evaluate the optimization fitness
function defined in Eq. (5) for each particle.
(iii) Compare the fitness value of each particle Fit(xi ) with
Fit(pi ). If the current value is better, reset both Fit(pi ) and
pi to the current value and location.

(iv) Compare the fitness value of each particle Fit(xi ) with
Fit(pg). If the current value is better, reset Fit(pg) and pg
to the current value and location.

(v) Update the velocity and position of the particles with Eqs.
(6) and (7).

(vi) Return to step (ii) until a stopping criterion is met, which,
usually, occurs upon reaching the maximum number of
iterations or discovering high-quality solutions.

PSO has only four major user-dependent parameters. The
inertia weight w is designed as a tradeoff between the
global and local search. Larger values of w facilitate global
exploration while lower values encourage a local search. w

can be fixed to some certain value or vary with a random
component, such as

w = wmax −
rand

2
, (8)

where rand is a uniform random function in the range of [0, 1].
As an example, if wmax is set as 1, Eq. (8) makes w vary
between 0.5 and 1, with a mean of 0.75. In this paper, these
two strategies are referred to as PSO-FIXEW and PSO-RADW,
respectively. c1 and c2, the cognitive and social components,
respectively, are used to adjust the velocity of a particle
towards pi and pg . Typically, these are set to 2.0 based on
past experience (Eberhart & Shi, 2001; Kennedy et al., 2001).
During the evolutionary/swarming procedure, the velocity for
each particle is restricted to a limit Vmax, like in velocity
initialization. When the velocity exceeds Vmax, it is reassigned
to Vmax. If Vmax is too small, particles may become trapped
into local optima, while if Vmax is too large, particles may miss
some good solutions. Vmax is usually set to around 10%–20% of
the dynamic range of the variable on each dimension (Kennedy
et al., 2001).

3.2. Differential evolution

DE is a simple stochastic function minimizer and evolves
individuals in order to increase the convergence to optimal
solutions. The main concept of DE is generating trial parameter
vectors by adding a weighted difference of two parameters to a
third one. In this way, no separate probability distribution has
to be used which makes the scheme completely self organizing
(Feoktistov & Janaqi, 2004; Price, Storn, & Lampinen, 2005;
Storn & Price, 1997).

Fig. 4 shows the vector diagram of the DE mutation process.
A population of individuals, shown by the stars, is initialized.
In every generation, for each individual in the population, three
other distinct individuals are randomly selected. As depicted
in Fig. 4, for the individual x1, three other individuals x2, x3,
and x4 are randomly selected. The difference vector between
x2 and x3 is added to x4 in order to generate an offspring y1 for
x1, shown by the small circular dot. Of the parent (x1) and the
offspring (y1), the one with greater fitness is selected to be part
of the next generation of individuals.
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Fig. 4. Vector representation of the DE operation in a two dimensional space.
y1 is the offspring reproduced for the parent x1. Other individuals x2, x3, and
x4 are randomly selected from the population.

Eqs. (9) and (10) describe the DE operation shown in Fig. 4,

y1 j = x4 j + γ
(
x2 j − x3 j

)
, (9)

y1 j = x1 j , (10)

where j corresponds to the dimension of the individual that
is to be mutated and γ is a scaling factor chosen based on
the application. The mutation procedure takes place for each
dimension in the individual depending on the value of the
mutation probability, pr .

Again, let X = (x1, x2, . . . , xM ) be a set of M DE
individuals, where each individual is a D-dimensional vector as
described in the previous section. The stepwise operation of the
DE algorithm is then described as follows (Engelbrecht, 2003):

(i) Initialize a population of M individuals. Set the values of
pr and γ .

(ii) In every generation, for each individual select three distinct
individuals randomly from the remaining population.

(iii) For every dimension/parameter of the individual, if
mutation is to take place based on the probability pr ,
Eq. (9) is used; otherwise Eq. (10) is used to update the
parameter values of the offspring.

(iv) For each parent and its offspring, the individual with the
higher fitness is passed on to the next generation.

(v) Repeat steps (ii)–(iv) until all the individuals have satisfied
some convergence criterion.

3.3. Hybrid differential evolution and particle swarm optimiza-
tion

In PSO, the search process is based on the social and
cognitive components, pg and pi . The entire swarm tries to
follow the pg , thus improving its own position. But for the
particular particle that is the pg , it can be seen from Eq. (6) that
the new velocity depends solely on the weighted old velocity.
To add diversity to the PSO, a hybrid DE and PSO, i.e., DEPSO,
is proposed (Zhang & Xie, 2003), thus eliminating the particles
from falling into a local minimum.

The DEPSO algorithm involves a two step process. In the
first step, the canonical PSO as described in Section 3.1 is
implemented. In the second step, the differential evolution
mutation operator is applied to the particles. The mutation
probability for this study is taken to be one (Zhang & Xie,
2003). Therefore, for every odd iteration, the canonical PSO
algorithm is carried out and for every even iteration the DEPSO
algorithm is carried out.

The procedure for the implementation of DEPSO involves
the following basic steps:

(i) For every odd iteration, carry out the canonical PSO
operation on each individual of the population by
implementing steps (i)–(vi) from Section 3.2.

(ii) For every even iteration, carry out the following steps:
(a) For every particle xi , ∆1 and ∆2 are calculated using

Eqs. (11) and (12). xa , xb, xc, and xd are different from
xi and randomly chosen,

∆1 = xa − xb, a 6= b, (11)
∆2 = xc − xd , c 6= d; (12)

(b) The mutation value δi is calculated by Eq. (13) and
added in Eq. (14) to create the offspring yi , depending
on a mutation probability,

δi = (∆1 + ∆2) /2; (13)
yi = pi + δi . (14)

The mutation value applied to each dimension of the
particle i may be different.

(c) Once the new population of offspring is created using
steps (a) and (b), their fitness is evaluated against that
of the parent. The one with the higher fitness is selected
to participate in the next generation.

(iii) The pg and pi of the new population are recalculated.
(iv) Repeat steps (i)–(iii) until convergence.

4. Data sets

The proposed method is applied to both a synthetic data set
and a real data set — SOS data set, as described below.

4.1. Synthetic data set

The synthetic genetic network is a simplified network
consisting of 8 genes. Based on the biological assumption that
the gene networks are usually sparsely connected (D’haeseleer,
2000; Perrin et al., 2003; van Someren, Wessels, & Reinders,
2001), the number of connections for each gene is limited to no
more than 4, which leads to 21 non-zero weights. The network
is simulated from a random initial state for each gene. Three
curves with 300 time points for each curve are generated, based
on Eq. (4), at a time resolution of 1t = 0.1, since multiple
series are more effective as demonstrated before (Wahde &
Hertz, 2000, 2001; Xu, Venayagamoorthy, & Wunsch II, 2006).
The typical behaviors of some simulated genes are depicted
in Fig. 5. It is clear that the expression levels for these genes
quickly get saturated, since we do not consider stimuli from
the external environment. Since the data points in real data are
generally not sufficient; only 30 points from each curve are
used to train the regulatory systems, mostly taken from the early
stage of the process.
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Fig. 5. Typical gene behaviors of the synthetic data in terms of expression level over time. X -axis: time, Y -axis: gene expression level.
4.2. SOS data set

The SOS DNA Repair network in bacterium Escherichia
coli is depicted in Fig. 6, which consisting of around 30
genes regulated at the transcriptional level (Ronen, Rosenberg,
Shraiman, & Alon, 2002). When damage occurs, the protein
RecA, which functions as a sensor of DNA damage, becomes
activated and mediates cleavage of the LexA protein. The
LexA protein is a repressor that blocks transcription of the
SOS repair genes. The drop in LexA protein levels causes the
activation of the SOS genes. After the damage is repaired or
bypassed, the cleavage activity of RecA drops, which causes
the accumulation of LexA protein. Then, LexA binds sites in
the promoter regions of these SOS genes and represses their
expression. The cells return to their original states. For this data
set, four experiments have been conducted with different light
intensities (Experiments 1 & 2: UV = 5 J m−2, Experiments 3
& 4: UV = 20 J m−2) (Ronen et al., 2002). Each experiment
consists of the expression measurements for 8 major genes
(uvrD, lexA, umuD, recA, uvrA, uvrY, ruvA, and polB) across
50 time points, sampled every 6 minutes. In the study, only the
time series from experiment 2 is used, since other series display
similar behaviors.

5. Results

5.1. Synthetic data set

The RNN model, together with the three training algorithms,
is first applied to a simplified synthetic genetic network
Fig. 6. The bacterial E. coli SOS DNA Repair network. Inhibitions are repre-
sented by -•, while activations are represented by → (Ronen et al., 2002).

consisting of 8 genes. The objective here is to investigate and
compare the performance of the three training algorithms on
RNNs’ parameters learning and the capability of the model
in unveiling the potential relations between genes, using the
generated time series gene expression data.

All three training algorithms are written in C++ and
the difference of their performance time is not significant.
Generally, for all three training algorithms, it takes less than 5 s
to run 1000 training epochs with 90 time points on a 2.4 GHz
Intel Pentium 4 processor with 512 M of DDR RAM. Moreover,
the codes are not specifically optimized. For a large-scale
data analysis with hundreds or thousands of genes, parallel
technology can be used to implement a population-based
training algorithm, thus, speeding up the training of the RNN.
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Table 1
Performance of PSO in RNN-based gene networks training

c1 c2 w Performance
>500 iterations Average number of iterations

2 2 Fixed at 0.8 12 51.16
1 − rand/2 8 55.11

0.5 2 Fixed at 0.8 39 60.16
1 − rand/2 41 47.54

2 0.5 Fixed at 0.8 7 99.02
1 − rand/2 20 122.45

0.5 0.5 Fixed at 0.8 91 83.11
1 − rand/2 93 46.29

1.5 2.5 Fixed at 0.8 18 69.11
1 − rand/2 21 59.44

2.5 1.5 Fixed at 0.8 4 57.73
1 − rand/2 4 54.63

Table 2
Performance of DE in RNN-based gene networks training

pr >500 iterations Average number of iterations

0.1 0 72.16
0.2 0 53.94
0.3 0 50.82
0.4 0 54.36
0.5 0 57.41
0.6 0 85.12
0.7 0 105.06

Table 3
Performance of DEPSO in RNN-based gene networks training

c1 c2 w Performance
>500 iterations Average number of iterations

2 2 Fixed at 0.8 0 47.39
1 − rand/2 0 42.91

1.5 2.5 Fixed at 0.8 0 44.83
1 − rand/2 0 47.90

2.5 1.5 Fixed at 0.8 0 47.62
1 − rand/2 0 41.49

The performance of PSO, DE, and DEPSO in training
the RNN-based 8-gene regulatory network is illustrated in
Tables 1, 2, 3, respectively. The performance is compared in
terms of the number of iterations required to reach a pre-
specified error. The maximum number of iterations allowed is
further set as 500. If the training algorithm reaches the expected
error threshold within 500 iterations, it is regarded to have
achieved convergence. The results summarized in the tables are
based on 100 runs, which consist of both the number of times
that the iteration exceeds the allowed maximum and the average
number of epochs if the algorithm has converged. The number
of particles or individuals in each run is chosen at 30.

The parameter selection, such as the inertia weight w and
the cognitive and social components c1 and c2, are important
to the performance of PSO. An optimization strategy has been
proposed to use another PSO to explore optimal parameter
values (Doctor, Venayagamoorthy, & Gudise, 2004). However,
the computational price may become quite expensive in this
situation. Here, the PSO performance is examined with the
commonly used values of c1 and c2 (Doctor et al., 2004;
Eberhart & Shi, 2001), together with both PSO-FIXEW and
PSO-RADW strategy for w For PSO-FIXEW, w is fixed at 0.8,
and for PSO-RADW, wmax is chosen to equal to 1 so that w

varies in the range of [0.5, 1]. As indicated in Table 1, the
best performance is achieved when PSO-RADW is used, and c1
and c2 are set as 2.5 and 1.5, respectively, where the expected
error can be reached averagely within 54.63 iterations, except
for 4 runs that failed to converge. PSO-FIXEW with the same
values of c1 and c2 requires 3 more iterations on average. The
results when c1 and c2 are set as 2 and 2 show that a few
more runs did not reach the error within 500 iterations. For all
other parameter combinations, the convergence depends more
on the initialization and is not consistently stable. For instance,
when the values of c1 and c2 are 0.5 PSO-RADW is used, the
percentage of convergence is only 59%, although the average
number iterations is as few as 47.54.

Compared with PSO, DE achieves more stable performance,
which means that all 100 runs have converged within 500
epochs. When DE is used, the scaling factor γ is set as 0.5
and the values of the mutation probability pr are changed
from 0.1 to 0.7. It is clear from Table 2 that neither large nor
small values of pr could improve the performance of DE. The
smallest number of epochs required on average is 50.82, as pr
takes the value of 0.3. In Table 3, the effectiveness of adding
the DE operator to the original PSO is demonstrated. For all
six different parameter combinations of w, c1, and c2 shown in
Table 3, DEPSO has reached the identified error in all 100 runs,
with the average number of epochs less than 50. In particular,
the best performance at c1 = 2.5 and c2 = 1.5, with PSO-
RADW used, only requires averagely 41.49 epochs to achieve
convergence, which shows a significant improvement of the
results when only either PSO or DE is used.

As discussed before, the weights in the RNN model have
their own biological meaning, i.e., a positive weight indicates
the activation, a negative weight represents the inhibition, and
a zero weight means there is no regulation. Thus, in order
to unravel the potential relations among genes or reconstruct
the gene networks, it is important to identify the associated
weight matrix W = {wi j }. However, one of the major
obstacles for genetic network inference is the “curse of
dimensionality” (D’haeseleer, 2000; van Someren, Wessels,
Reinders, & Backer, 2001), which describes the exponential
growth in computational complexity and the demand for
more time points as a result of high dimensionality in the
feature space (Haykin, 1999). Typically, the gene expression
data currently available contain measurements of thousands of
genes, but only with a limited number of time points (less than
50). Fortunately, biological knowledge of genetic regulatory
networks assumes that a gene is only regulated by a limited
number of genes, which implies that the regulatory networks
are sparsely connected, rather than fully connected, and most
weight values are zeros (D’haeseleer, 2000; Perrin et al., 2003;
van Someren, Wessels, & Reinders, 2001). Therefore, it is



R. Xu et al. / Neural Networks 20 (2007) 917–927 925
still reasonable to identify the non-zero weights from the time
series expression data, with extra caution the effect of the
curse of dimensionality. For instance, Wahde and Hertz (2000,
2001) proposed a two-step procedure for genetic regulatory
network inference. The goal of the first step is to unravel the
possible interactions between genes by iteratively searching
non-significant network parameters. With the results of the first
stage, the non-zero weights can be further fine-tuned, while the
non-significant weights are clamped to zero. This procedure is
repeated for different values of the maximum allowed weight.

In the following analysis, a method similar to what was used
in Perrin et al. (2003) is adopted to discretize the weights into
three categories using the following criteria:

• Category + representing activation: µi j > µ + σ and
|µi j | > σi j ;

• Category — representing inhibition: µi j < µ − σ and
|µi j | > σi j ;

• Category 0 representing absence of regulation: otherwise,

where µi j and σ 2
i j are the mean and variance for the element wi j

in the weight connection matrix, and µ and σ 2 are the mean and
variance of the means of all the 64 weights.

The following results are based on 500 different runs
with random initial values and the networks are trained by
DEPSO for 1000 generations, with parameters set as: number
of particles = 30, c1 = 2.5, c2 = 1.5 and PSO-RADW used.
For each run, the global best pg is taken as the solution, which
leads to 500 networks, on which the inferred weight connection
matrix shown in Table 4 are based. Compared with the original
weight matrix, also shown in Table 4, the model can identify 14
out of 21 possible connections existed in the network. Among
the 14 identified connections in the inferred matrix, 13 are
correctly labeled as either activation or inhibition, while the
one between node 5 and 6 is indicated as inhibition relation
instead of activation. The results also include 5 false positives,
which are not existent in the original network and are wrongly
identified as activation or inhibition between nodes. It is also
observed that the attained standard deviations are generally
large, compared with the corresponding mean values, which
causes the missing of some real connections in the network.
An algorithm is further developed by the authors to evolve
not only the network weights, but also the network structures,
with a statistical heuristic used to estimate the number of the
potential connections in a given network. The results on both
synthetic and real data sets show an evident improvement (Xu,
Wunsch II, & Frank, in press).

5.2. SOS data set

The RNN-based model is then employed to analyze the SOS
DNA Repair network in bacterium E. coli. Fig. 7 shows the
real gene expression profiles and the learned mean expression
profiles for Exp. 2. It can be seen that the proposed model
provides a promising way in capturing the dynamics of genes
from the given time series. Specifically, the dynamic behaviors
of gene lexA, recA, uvrA, uvrD, and umuD are well learned,
with the major change trends of the gene expression levels
Table 4
The generated connection matrix (upper panel) and the learned connection
matrix (lower panel)

wi j

+ 0 0 0 0 0 0 0
+ + 0 0 0 0 0 0
0 − + 0 0 0 0 0
0 − − + 0 0 0 0
0 + + − + − 0 0
0 0 0 − + + + −

0 0 0 0 0 0 + −

0 0 0 0 0 0 0 −

0 0 0 0 + 0 0 0
0 + 0 0 0 0 0 0
0 0 + 0 0 0 0 +

+ − − 0 0 0 0 0
0 + + − + + 0 0
0 0 0 − + + 0 0
0 0 0 0 0 0 + 0
0 0 0 0 0 + + −

Each element in the matrix represents the activation (+), inhibition (−), and
absence of regulation (0), between a pair of genes.

reflected in the learning curves. The expression profiles for
genes uvrY, ruvA, and polB oscillate dramatically between the
maximum value and zero, and the obtained models generally
use their means to represent the profiles because of the
definition of the fitness function. One possible strategy is to
add an additional item in the fitness function in order to track
the difference between two time points. However, when the
criteria aforementioned are used to infer the genes interactions,
only 2 out of 9 potential connections can be correctly identified
from the data, which are the inhibition of lexA on uvrD and
the activation of recA on lexA. Furthermore, even two or more
time series are used, there still no improvement for the results.
As discussed before, large standard deviations are observed
for many weight values, which partially explains the reason
of many zero weights in the inferred network. Therefore, the
reader should note that reconstructing the correct dynamics
is easier than reconstructing the correct regulatory network
structure. The reason for this is that genetic regulatory network
inference is an ill-posed problem — there is no unique solution
that will satisfy the data upon which the inference is based. This
inherent difficulty is a limitation of our approach, as well as of
any other approach we are aware of.

6. Conclusions

Recurrent neural network-based models, using time series
gene expression data from microarray experiments, provide a
promising way to investigate gene regulatory mechanisms and
understand gene interactions. A new hybrid evolutionary–swarm
algorithm DEPSO, based on the combined concepts of PSO
and DE, is presented to address the challenge of training these
RNNs. The performance of DEPSO is also compared with PSO
and DE and the simulation results demonstrate the effectiveness
of the hybridization of different evolutionary/swarm technolo-
gies in improving their search capability in network parame-
ters learning. Although in a general case, two data sets are not
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Fig. 7. The measured time series gene expression profiles (a) and the learned
mean expression profiles based on an RNN-based model (b).

sufficient to establish the superiority of one optimization algo-
rithm over another, as more gene expression data become avail-
able, the performance comparison of these algorithms can be
affirmed. Also, the experimental results show that the RNN-
based model is very useful in capturing the nonlinear dynamics
of genetic regulatory system, and further revealing the interac-
tions between genes. Given the similarity between RNNs and
gene networks, the authors believe that RNNs will play a more
important role in exploring the mystery of gene regulation rela-
tionships. However, currently, one of the major limiting factors
for genetic regulatory network inference is the paucity of re-
liable gene expression time series data, which restricts the ap-
plications of current computational methods to only synthetic
data, or small-scale real networks, with only several genes or
gene clusters. To construct a synthetic system that can simu-
late some well-known gene networks may provide a way for
allowing preliminary investigation and comparison of the pro-
posed methods. On the other hand, more advanced models are
critically needed to integrate gene expression data with data
from other sources, such as proteomic and metabolomic data,
in order to provide more reasonable and accurate modeling of
the behaviors of gene regulatory systems. Also, it is equally
important to combine prior information about the regulatory
networks of study into the model so as to remove some bio-
logically impossible connections. This strategy further simpli-
fies computational requirements and save computational time.
For example, genes that are co-regulated may share similar ex-
pression patterns in their sequences and have common motifs.
Such information could be used to examine the inferred rela-
tions and eliminate false positives. As to the RNNs model, it
can be further extended to include factors like time delay, which
is an important property of genetic regulatory networks, but un-
fortunately, not well addressed yet. Also, RNNs can also take
into account more complex interactions, such as interactions
between triplets of variables rather than pairs. RNNs are well
known for their capability in dealing with temporal information
and are well suited to handle this type of problems. To increase
the robustness and redundancy of current models and further
improve the search capability of the training algorithms are also
important and interesting directions for further research.
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