Functional Annotation (via sequence analysis and beyond)
-
A New Progressive-Iterative Algorithm for Multiple Structure Alignment
Dmitry Lupyan et al
Bioinformatics 2005, 21: 3255-3263.
-
Pairwise alignment incorporating dipeptide covariation.
Gavin E. Crooks et al
Bioinformatics 2005, 21: 3704-3710.
-
Improved pairwise alignments of proteins in the Twilight Zone using local
structure predictions
Yao-ming Huang and Christopher Bystroff
Bioinformatics 2006 22: 413-422.
-
Determining functional specificity from protein sequences
Jason E. Donald and Eugene I. Shakhnovich
Bioinformatics, Jun 2005; 21: 2629 - 2635.
-
A Long Indel Model For Evolutionary Sequence Alignment
I. Miklos, G. A. Lunter, and I. Holmes
Mol. Biol. Evol. 21:529-540, 2004
-
Application of latent semantic analysis to protein remote homology detection
Qi-wen Dong, Xiao-long Wang, and Lei Lin
Bioinformatics, 1 February 2006; 22: 285 - 290.
-
Semi-supervised protein classification using cluster kernels
Jason Weston, Christina Leslie, Eugene Ie, Dengyong Zhou, Andre Elisseeff,
and William Stafford Noble
Bioinformatics, Aug 2005; 21: 3241 - 3247.
-
A comparison of scoring functions for protein sequence profile alignment
Robert C. Edgar and Kimmen Sjolander
Bioinformatics 2004
-
Protein homology detection by HMM-HMM comparison
Johannes Soding
Bioinformatics, Apr 2005; 21: 951 - 960.
-
Clustering proteins from interaction networks for the prediction of cellular functions
Christine Brun et al
BMC Bioinformatics 2004
-
Profile-based direct kernels for remote homology detection and fold recognition
Rangwala, H. and Karypis, G.
Bioinformatics, (2005) 21, 4239-4247.
-
Inferring functional information from domain co-evolution
Yohan Kim, Mehmet Koyutrk, Umut Topkara, Ananth Grama, and Shankar Subramaniam
Bioinformatics, 1 January 2006; 22: 40 - 49
Identification of Structrual Features
-
SSEP-Domain: Protein Domain Prediction by Alignment
of Secondary Structure Elements and Profiles
Jan E. Gewehr and Ralf Zimmer
Bioinformatics 2005, 22: 181-187.
-
Reliable prediction of transcription factor binding sites by phylogenetic verification
Xiaoman Li et al
PNAS 102:16945-16950, 2005.
-
Gapped alignment of protein sequence motifs through Monte Carlo optimization of
a hidden Markov model
Andrew F Neuwald and Jun S Liu
BMC Bioinformatics, 2004
-
MicroRNA identification based on sequence and structure alignment
Xiaowo Wang et al
Bioinformatics, 2005, 21: 3610-3614.
-
A simple and fast secondary structure prediction method using hidden neural networks
Kuang Lin et al
Bioinformatics, 2005, 21: 152-159.
- (JB)
Exploiting conserved structure for faster annotation of non-coding RNAs without loss of accuracy
Zasha Weinberg and Walter L. Ruzzo1
Bioinformatics, 2004.
-
Accurate identification of alternatively spliced exons using support vector machine
Gideon Dror, Rotem Sorek, and Ron Shamir
Bioinformatics, Apr 2005; 21: 897 - 901.
-
Discrimination of outer membrane proteins using support vector machines
Keun-Joon Park, M. Michael Gromiha, Paul Horton, and Makiko Suwa
Bioinformatics, December 1, 2005; 21: 4223 - 4229
-
A simple statistical method for discriminating outer membrane proteins with better accuracy
M. Michael Gromiha and Makiko Suwa
Bioinformatics, Apr 2005; 21: 961 - 968.
-
Prediction of splice sites with dependency graphs and their expanded bayesian networks
Te-Ming Chen, Chung-Chin Lu, and Wen-Hsiung Li
Bioinformatics, Feb 2005; 21: 471 - 482.
- (Tapan)
Improved prediction of protein-protein binding sites using a support vector machines approach
James R. Bradford and David R. Westhead
Bioinformatics, Apr 2005; 21: 1487 - 1494.
-
Non-additivity in protein-DNA binding
R. A. O'Flanagan, G. Paillard, R. Lavery, and A. M. Sengupta
Bioinformatics, May 2005; 21: 2254 - 2263.
-
Fold recognition by combining profile-profile alignment and support vector machine
Sangjo Han, Byung-chul Lee, Seung Taek Yu, Chan-seok Jeong, Soyoung Lee, and Dongsup Kim
Bioinformatics, Jun 2005; 21: 2667 - 2673.
Inference of Biological Networks
-
Combining biological networks to predict genetic interactions
Sharyl L. Wong et al
PNAS 101:15682-15687, 2004.
-
Explore Biological Pathways from Noisy Array Data by Directed Acyclic Boolean Networks
LEI M. LI and HENRY HORNG-SHING LU
J. Comp. Bio. 12:170-185, 2005.
-
Prediction of regulatory networks: genome-wide identification of transcription factor
targets from gene expression data
Jiang Qian et al
Bioinformatics, 19:1917-1926, 2003.
-
Uncovering transcriptional regulation of metabolism by using metabolic network topology
Kiran Raosaheb Patil and Jens Nielsen
PNAS 102:2685-2689, 2005.
-
A Statistical Method for Constructing Transcriptional
Regulatory Networks Using Gene Expression and
Sequence Data
BIAO XING and MARK J. VAN DER LAAN
J. Mol. Bio. 12:229-246, 2005.
-
Selective Integration of Multiple Biological Data for Supervised Network Inference
Tsuyoshi Kato et al
Bioinformatics, 2005, 21: 2488-2495.
-
Highly conserved upstream sequences for transcription factor genes and implications
for the regulatory network
Hisakazu Iwama and Takashi Gojobori
PNAS, 101:17156-17161, 2004.
-
Developing optimal non-linear scoring function for protein design
Changyu Hu, Xiang Li, and Jie Liang
Bioinformatics, Nov 2004; 20: 3080 - 3098.
-
Gene selection using support vector machines with non-convex penalty
Hao Helen Zhang, Jeongyoun Ahn, Xiaodong Lin, and Cheolwoo Park
Bioinformatics, 1 January 2006; 22: 88 - 95.
-
A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences
Wei Li, Clifford A. Meyer, and X. Shirley Liu
Bioinformatics, Jun 2005; 21: i274 - i282.
-
Generating Boolean networks with a prescribed attractor structure
Ranadip Pal, Ivan Ivanov, Aniruddha Datta, Michael L. Bittner, and Edward R. Dougherty
Bioinformatics, Nov 2005; 21: 4021 - 4025.
-
Prediction of protein-protein interactions using distant conservation of sequence patterns and structure relationships
Jordi Espadaler, Oriol Romero-Isart, Richard M. Jackson, and Baldo Oliva
Bioinformatics, Aug 2005; 21: 3360 - 3368.
-
A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae
Kuang-Chi Chen, Tse-Yi Wang, Huei-Hun Tseng, Chi-Ying F. Huang, and Cheng-Yan Kao
Bioinformatics, Jun 2005; 21: 2883 - 2890.
-
A hypothesis-based approach for identifying the binding specificity of regulatory proteins from chromatin immunoprecipitation data
Kenzie D. MacIsaac, D. Benjamin Gordon, Lena Nekludova, Duncan T. Odom, Joerg Schreiber, David K. Gifford, Richard A. Young, and Ernest Fraenkel
Bioinformatics, 15 February 2006; 22: 423 - 429.
-
Inferring protein-protein interactions through high-throughput interaction data from diverse organisms
Yin Liu, Nianjun Liu, and Hongyu Zhao
Bioinformatics, Aug 2005; 21: 3279 - 3285.
-
Comparison of computational methods for the identification of cell cycle-regulated genes
Ulrik de Lichtenberg, Lars Juhl Jensen, Anders Fausbøll, Thomas S. Jensen, Peer Bork, and Søren Brunak
Bioinformatics, Apr 2005; 21: 1164 - 1171.
-
Iterative Cluster Analysis of Protein Interaction Data
Vicente Arnau, Sergio Mars, and Ignacio Marn
Bioinformatics, Feb 2005; 21: 364 - 378.
-
Application of compression-based distance measures to protein
sequence classification: a methodological study
Andras Kocsor, et al
Bioinformatics, 22, pp. 407-412, 2006.