
Introduction to Perl

Patrick M� Ryan
patrick�m�ryan�gsfc�nasa�gov

Hughes STX Corporation

Revised November ��� ����

� What is Perl�

Perl has become the new language of choice for many system management tasks�
Combining elements of C� awk� sed� grep� and the Bourne shell� Perl is an excellent
tool for text and �le processing� Although Perl is often described as a 	system
management language
� it is useful for many tasks that would otherwise be done
with shell scripts�

	Perl
 is an acronym for Practical Extraction and Report Language� It was
developed by �and is still maintained by� Larry Wall of Netlabs� It is freely
available software and compiles on nearly all major architectures and operating
systems� These include all the major UNIX� variants as well as VMS and even
DOS�

Perl contains features of the Bourne shell ��bin�sh�� awk� sed� and grep as
well as access to systems calls and C library routines� It is said that Perl �lls the
niche between shell scripts and C programs�

Perl is not a compiled language but it is faster than most interpreted languages�
Before executing a Perl script� the perl program reads the entire script into
memory and 	compiles
 it into a fast internal format� In nearly all cases� a Perl
script is faster than its Bourne shell analogue� Note that by convention� one refers
to the Perl language in upper case and the perl program in lower case�

This document is intended to be an overview of the major features of Perl and
does not describe every facet of the language� Much more extensive reference
materials are available� These references� as well as pointers to example scripts�
are detailed at the end of this document�

��UNIX� is a trademark of AT�T� No� make that Unix Systems Laboratories� Or maybe Novell� Inc � � �

�

� Basic Syntax

Perl is a freeform language like C� Perl�s control �ow structures are very much
like C�s� There are no FORTRANlike line constraints�

Perl programs� by convention� sometimes end in �pl� This is not a requirement�
however� and most Perl scripts simply invoke the interpreter through the use of
the �� construct� The �rst line of a Perl script �at least in the UNIX world�
usually looks like this�

���usr�local�bin�perl

In Perl� every statement must end with a semicolon ���� Text starting with a
pound sign ��� is treated as a comment and is ignored�

Blocks of Perl code� such as those following conditional statements or in loops
are always enclosed in curly brackets �f���g��

� Data Types

Perl has three basic data types�

� scalars

� arrays of scalars

� associative arrays of scalars �also known as hash tables�

��� Scalars

The scalar is the basic data type in Perl� A scalar can be an integer� a �oating
point number� or a string� Perl �gures out what kind of variable you want based
on context� Scalars variables always have a dollar sign ��� pre�x� Therefore� a
string assignment looks like this�

�str 	
hello world�
�

not�

str 	
hello world�
�

�

In Perl� an alphanumeric string with no pre�x is �generally� assumed to be a
string literal� Thus� the second statement above attempts to assign string literal

hello world�
 to string literal
str
�

Perl�s string quoting mechanisms are similar to those of the Bourne shell�
Strings surrounded in double quotes �
� � �
� are subject to variable substitution�
Thus� anything that looks like a scalar variable is evaluated �and possible inter
polated� into a string� Strings inside single quotes ��� � � �� are passed through
basically untouched�

Perl variables do not have to be declared ahead of time� The are allocated
dynamically� It is even possible to refer to nonexistent Perl variables� The
default value for a variable in a numeric context is � and an empty string in a
string context� Perl has a facility for determining whether a variable is undeclared
or if it is really is a zeroish value�

Perl variables are also typed and evaluated based on context� String variables
which happen to contain numeric characters are interpolated to actual numeric
values if used in a numeric context� Consider this code fragment�

�x 	 �� � an integer
�y 	

� � a string
�z 	 �x��y�
print �z�
�n
�

After this code is executed� �z will have a value of ��
This interpolation can also happen the other way around� Numeric values are

formatted into strings if used in a string context� Numeric values do not have to
be manually formatted as in C or FORTRAN� This type of interpolation takes
place often when writing standard output� For instance�

�answer 	 ���
print
the answer is �answer
�

The output from this fragment would be 	the answer is ��
�
Note that integer constants may be speci�ed in octal or hexadecimal as well

as in decimal�
String constants may be speci�ed by way of 	here documents
 in the manner

of the shell� Here documents start with a unique string and continue until that
string is seen again� For example�

�msg 	 ���EOM��

�

The system is going down�
Log off now�

�EOM�

��� Arrays of Scalars

Perl scripts can have arrays �or 	lists
� consisting of numeric values or strings�
Entire array variables are pre�xed with an 	at
 sign ���� It is also possible to
assign to the array elements by name� Here are some examples of valid Perl array
assignments�

�numbers 	 ������������

�letters 	 �
this
�
is
�
a
�
test
��
��word��another�word� 	 �
one
�
two
��

Of course� Perl array elements can also be referenced by index� By default� Perl
arrays start at �� Perl array references look like this�

�blah��� 	 ����������
�message��� 	
core dumped�n
�

Note that since an array element is a scalar� it is pre�xed by a ��
The �� construct is used to �nd out the last valid index of an array rather

than its size� The �� variable indicates the base index of arrays in a Perl script�
By default� this value is �� Here is a code fragment which tells you the number
of elements in an array�

� assume that �a is an array with a bunch of interesting elements
�n 	 ��a � �� � �
print
array a has �n elements�n
�

�� can be reset to use a di�erent base index for arrays� To have FORTRANstyle
array indexing� set �� to ��

Arrays are expanded dynamically� You need only assign to new array elements
as you need them� You can preallocate array memory by assigning to its �� value�
For instance�

��months 	 � � array �months has elements ���

�

Perl has operators and functions to do just about anything one would need to
do to an array� There are facilities for pushing� popping� appending� slicing� and
concatenating arrays�

Perl can only do onedimensional arrays but there are ways to fake multi
dimensional arrays�

��� Associative Arrays of Scalars

Associative arrays are Perl�s implementation of hash tables� Associative arrays
are arguably the most unique and useful feature of Perl� Common applications
of associative arrays include creating tables of users keyed on login name and
creating tables of �le names� The pre�x for associative arrays is the percent sign
����

Associative arrays are keyed on strings �numeric keys are interpolated into
strings�� An associative array can be explicitly declared as a list of keyvalue
pairs� For example�

�quota 	 �
root
�������

pat
��� �

fiona
�������

Associative arrays elements are referenced in the following way�

�quota!dave" 	 �����

In this case�
dave
 is the key and ���� is the value� Note that the reference
above is to a scalar and is thus pre�xed by a ��

Here is another example� In Perl scripts� there is a prede�ned associative
array called �ENV which contains all of the environment variables of the calling
environment� Here is a bit of Perl code to see if you are running X Windows�

if ��ENV!DISPLAY"�
!

print
X is �probably� running�n
�
"

There are routines for traversing the contents of associative arrays and for
deleting elements� The relevant Perl routines are each� keys� values� and
delete�

Note that the namespace for Perl variables is exclusive� One can refer to
scalars� arrays� associative arrays� subroutines� and packages with the same name
without fear of con�ict�

�

� Operators and Comparators

Perl�s set of operators and comparators comprise nearly all of C�s operators and
comparators� All of the usual arithmetic expressions and precedence are the same
in Perl as they are in C� Listed below are expressions which are valid in Perl but
not in C� These descriptions are paraphrased from the Perl man page�

The exponentiation operator�

##	 The exponentiation assignment operator�

�� The null list� used to initialize an array to null�

� Concatenation of two strings�

�	 The concatenation assignment operator�

eq String equality ��� is numeric equality�� Other FORTRANstyle comparators
are also available� These are only used on strings�

	� Certain operations search or modify the string � by default� This operator
makes that kind of operation work on some other string� The right argument
is a search pattern� substitution� or translation� The left argument is what
is supposed to be searched� substituted� or translated instead of the default
� �

x The repetition operator�

�� The range operator

�f� �x� �l� � � � Unary �le test operator� Perl has the ability to test various �le
permission settings in the same way as the UNIX test command� Consult
the Perl manual page for a full listing of Perl �le test operators�

� A Word about Default Arguments

Many functions and syntactic structures in Perl have default arguments� In most
cases� this default argument is the variable � � While this is a handy feature for
experienced Perl programmers� it can make their code incomprehensible to those
just learning the language� For novices� it can be a nuisance when one does not
understand how the value of � is determined�

�

I recommend that when you are �rst learning Perl� put in all arguments explic
itly� In many cases� Perl �gures out what you are trying to do based on context
and assigns values to � according to its own rules� The value of � can change
subtly �or even drastically� depending on context�

Once you have a few lines of Perl under your belt and understand the ways of
� � feel free to use the default arguments� It is a nifty feature which allows you
to write slick� fast� �and cryptic� Perl code�

� Regular Expressions

Where once you had to execute a grep or expr every time you wanted to compare
a string to a regular expression �	regexp
�� you can now stick regexps right in
your code� Perl�s regexp handling capabilities are another reason that you�ll never
want to write another Bourne shell script�

��� Matching Regular Expressions

Perl regular expressions look very much like those in vi�

� Match any one character except a newline�

c# Match zero or more instances of character c�

c� Match one or more instances of character c�

c$ Match zero or one instance of character c�

�class� Match any of the characters in character class class�

nw Match an alphanumeric character �including

�

nW Match an nonalphanumeric character �including

�

nb Match a word boundary

nB Match nonboundaries

ns Match a whitespace character

nS Match a nonwhitespace character

nd Match a numeric character

�

nD Match a nonnumeric character

% Match the beginning of a line

� Match the end of a line

Also� nn� nr� nf� nt and nNNN have their usual Cstyle interpretations�
The actual syntax for the pattern matching command is m�pattern�gio� The

modi�ers are g for 	global
 match� i for 	ignore case
� and o for 	only compile this
regexp once
� With the m command� you can use any pair of nonalphanumeric
characters to bound the expression� This especially useful when matching �le
names that contain the 	�
 character� For example�

if �m�%�tmp�mnt��
! print
�� is an automounted file system�n
� "

If the delimiter you choose is 	�
� then the leading m is optional�
Perl even has the ability to do multiline pattern matching� Refer to the

documentation on the �# variable for complete information�

��� Extracting Matched String from Regexps

As in vi� grep� and sed� Perl can return substrings which are matched in a
regular expression� For instance� here is some Perl code to �sort of� emulate the
UNIX basename command�

�file 	
�auto�home�pat�c�utmpdmp�c
�
��base� 	 ��file 	& m'�#���%�����'��

The result of this code fragment is that �base has the value
utmpdmp�c
� The
parens in the regexp indicate the substring we want to extract�

The return value of a regular expression match depends on context� In an
array context� the expression returns an array of strings which are the matched
substrings� In a scalar context� typically in a test to see whether or not a string
matches a regexp� the expression returns a � or ��

Here is an example of a scalar context� The �STDIN(construct� discussed in
detail later� reads in one line of standard input�

�response 	 �STDIN(�
if ��response 	& �%�s#y�i�
! print
you said yes�n
� "

�

Note that the distinction between an 	array context
 and a 	scalar context
 is
important in Perl� Many routines and syntactic structures return di�erent types
of values depending on context� We will say more about array contexts later�

� Flow Control

Perl has all of the �ow control structures one normally expects in a procedural
language as well as a few extras�

��� If�Then�Else

The Perl if statement has the same structure as in C� Perl uses the same con
junctions and boolean operators as C�)) for 	and
� '' for 	or
� and � for 	not
�
One important note is that the Cstyle onestatement if construct cannot be
used� All of the code following a Perl conditional �if� unless� while� foreach�
must be enclosed in curly brackets� For instance� this C fragment�

if �error � ��
fprintf�stderr�
error code �d received�n
�error��

becomes this Perl fragment

if ��error � ��
! print STDERR
error code �error received�n
� "

The Perl analogue to C�s else if construct is elsif and the else keyword works
as expected�

Perl has an unless statement which reverses the sense of the conditional� For
instance�

unless ���ARGV (�� � are there any command line arguments$
! print
error� no arguments specified�n
� exit � "

Perl�s ideas about truth are similar to C� In a numeric context� a zero value
is considered 	false
 and anything nonzero is 	true
� An empty string is 	false

and a string with a length of � or more is true� Scalar arrays and associative
arrays are considered 	true
 if they have at least � member and 	false
 if empty�
Nonexistent variables� since they are always �� are 	false
�

Note that Perl does not have a case statement because there are numerous
ways to emulate it�

	

��� The while statement

Perl�s while statement is very versatile� Since Perl�s notion of truth is very
�exible� the while condition can be one of several things� As in C� Perl conditional
statements can be actions or functions�

For instance� the �STDIN(statement with no argument assigns a line of stan
dard input to the � variable� To loop until the standard input ends� this syntax
is used�

while ��STDIN(�
!

print
you typed
����
"

In keeping with the recommended beginner practice of including all default ar
guments� that code would look like this�

while ��� 	 �STDIN(�

!
print
you typed
����

"

As stated before� an array is 	true
 if it has any elements left� For instance�

�users 	 �
nigel
�
david
�
derek
�
viv
��
while ��users�
!

�user 	 shift �users�
print
�user has an account on the system�n
�

"

This while loop will continue as long as �users has at least one element� The
shift routine pops the �rst element o� the named array and returns it�

Perl has two keywords used for shortcutting loop operations� The next key
word is like C�s continue statement� It will immediately jump to the next itera
tion of innermost loop� The last keyword will break out of the current conditional
statement� It is analogous to C�s break statement�

�

��� The for and foreach statements

The for and foreach statements in Perl are actually identical� They can be
used interchangeably in any context� Depending on what job is being performed�
however� one usually make more sense than the other�

Just to make things more confusing� there are two ways that the for�foreach
statement can be used� One way is exactly like C�s �argument for statement�
For instance�

�disks 	 �
�data
�
�data�
�
�usr
�
�home
��
for ��i	�� �i �	 ��disks� ���i�
! print �disks��i��
�n
� "

However� once you understand Perl�s builtin ways of iterating over an array�s
elements� you will almost never need to use the �argument for statement�

Perl�s oneargument foreach statement is similar to the foreach statement
in the C Shell� Given an array argument� the foreach statement will itera
tively return that array�s elements� This contrasts with the destructive traversal
demonstrated before with the while and shift statements�

The code fragment we just saw can be rewritten as�

�disks 	 �
�data
�
�data�
�
�usr
�
�home
��
foreach��disks�
! print ���
�n
� "

This construct is much more elegant and does not �necessarily� destroy the con
tents of �disks�

An subtle but important point to note is that� in the fragment above� � is
really a pointer into the array� not simply a copy of a value� If the code in the
loop modi�es the � � the array is changed�

��	 Goto

Yes� Perl even has a goto statement� goto label will send control of the program
to the named label� The usual caveats against GOTOs apply in Perl as elsewhere�
Don�t use GOTOs unless you really need them�

��

	 Built
In Routines� C Library Routines� and System

Calls

Perl has a rich set of builtin routines and access to most of the interesting
functions in the C library� The manual pages for Perl go into exhaustive detail
about all of these routines so I will simply discuss a few of the more commonly
used ones� Most of these descriptions are paraphrased from the man pages�� The
default argument for most of these routines is � � Note that parentheses around
function parameters are usually optional�

�� Built�In Routines

chop expr Chop o� the last character of a string and return the character� This
might not seem like a very interesting thing to do until you understand Perl
�le I�O� Upon reading a line of input into a variable� Perl preserves the
newline �nn�� Usually� you don�t need the newline so you probably want to
chop it o��

defined expr Determine whether or not the named variable really exists or not�
This function will return true if the named variable has a value and is not
simply unde�ned�

die expr Utter a �nal message and pass away� This function will print out a
string argument and then cause the script to terminate� It is used most
often when some kind of fatal error occurs�

each array Return the keyvalue pairs of an associative array in an iterative
manner�

join expr�array Joins the separate strings of array into a single string with �elds
separated by the value of expr� and returns the string�

pop array Pop o� the top element o� the named array and shorten the array by
one�

print expr Print out the arguments� More on the print function later�

push array�list Treat array as a stack and push the values of list on to the stack�
Has the e�ect of lengthening the array�

�And a few are shamelessly copied word for word

��

shift Shifts the �rst value of the array o� and returns it� shortening the array
by � and moving everything down� Shift�� and unshift�� do the same thing
to the left end of an array that push�� and pop�� do to the right end�

split�pattern�expr�limit � Splits a string into an array of strings and returns
it� The pattern is treated as a delimiter separating the �elds� A common
use of this function is to split up lines of the UNIX �etc�passwd �le into its
component �elds� This is similar awk�s functionality only more versatile�

substr expr�o�set�len Extract a substring out of expr and returns it�

�� UNIX�type Utility Routines

chmod Change the permission bits of the named �les�

chown Change the owner and group of the named �les�

mkdir Make directories�

unlink Remove a �le�

rename Rename a �le�

rmdir Remove a directory�

�� C Library Routines

Many C library routines can be accessed in Perl� This is a sampling of them�

getpw� getgr� � � � Perl has access to all of the C routines which access passwd�
group� and hostname information�

bind� connect� socket� � � � Interprocess communication facilities are avail
able in Perl�

stat Access �le information via the UNIX stat��� library routine�

exit Exit the program with the speci�ed exit status�

��

� Operating System Interaction

Perl can execute system commands in several ways�
Perl can run shell commands via the system routine� This acts essentially like

C�s system��� call� A string is passed to the shell for execution� The output
from the command is sent to standard output� The exit status is put into the �$
variable��

Perl also evaluates backquotes �also known as 	backticks
 or 	grave accents
�
in way similar to the shell� This is useful when you want to run a shell command
and capture the output� Here is an example in which a script gets the name of
the host�

�host 	 *hostname*�
chop��host��

Again� the exit status of this command will be put into �$� Note that we need
to chop o� the newline from the output�

� File Handling

Perl�s has I�O routines for reading and writing text �les as well as 	unformatted

�les�

���� Text IO

Perl reads and writes text �les by way of �lehandles� By convention� �lehandles
are usually in upper case�

Files are opened by way of the open command� This command is given two
arguments� a �lehandle and a �le name �the �le name may be pre�xed with
some modi�ers�� Lines of input are read by evaluating a �lehandle inside angled
brackets ��� � �(�� Here is an example which reads through a �le�

open�F�
data�txt
��
while��line 	 �F(�
!

� do something interesting with the input
"
close F�

�Actually� the entire status word is put into ��� Read the man page for details�

��

The �le name argument can have one of several pre�xes� If the �le name is
pre�xed with �� the �le is opened for reading� �This is the default action�� If the
�le name is pre�xed with (then it is opened for writing� If the �le exists� it is
truncated and opened� Finally� a pre�x of ((opens the �le for appending� Here
are a few examples�

� peruse the passwd file
open�PASSWD�
��etc�passwd
��
while ��p 	 �PASSWD(�
!

chop �p�
�fields	 split��+���p��
print
�fields����s home directory is �fields����n
�

"
close PASSWD�

� enter some information into a log file
open�LOG�
((user�log
��
print LOG
user �user logged in as root�n
�

� read a line of input from the user
�response 	 �STDIN(�

There are � prede�ned �lehandles which have obvious meanings� STDIN� STDOUT�
and STDERR� Trying to rede�ne these �lehandles with open statements will cause
strange things to happen� STDOUT is the default �lehandle for print�

Perl�s �le input facility acts very di�erently if it is called in an array context�
If input is being read in to an array� the entire �le is read in as an array of lines�
For instance�

�file 	
some�file
�
open�F��file��
�lines 	 �F(� � suck in the whole file� yum� yum����

close F�

This capability� though useful� should be used with great care� Ingesting whole
�les into memory can be a risky thing to do if you do not necessarily know
what size �les you are dealing with� Perl already does a certain amount of input
bu�ering so reading in a �le at once does not necessarily yield an increase in I�O
performance�

��

���� Pipes

Perl can use the open routine to run shell commands and read or write to them
in the manner of C�s popen��S� call�

If a �le name argument starts with the pipe character �'�� the �le name is
treated as a command� The command is then executed and the program can be
sent input via the print command�

If the �le name argument ends with a pipe� the command is executed and that
command�s output can be read using the �� � �(facility� Here are two examples�

open�MAIL�
' Mail root
�� � send mail to root
print MAIL
user �
pat�
 is up to no good�n
�
close MAIL� � mail is now sent

open�WHO�
who'
�� � see who�s on the system
while ��who 	 �WHO(�
!

chop �who�
��user��tty��junk� 	 split���s����who����
print
�user is logged on to terminal �tty�n
�

"
close�WHO��

���� Unformatted File Access

Perl can do direct reading and writing of bytes via the sysread and syswrite
calls�

Given the narrow scope of this introduction to Perl� I will not discuss these
functions� The references at the end provide complete information�

���	 Use of the print command

We have already seen several examples of the use of the print command in Perl�
Now perhaps is a good time to see a more exact description of what it does�

The print command is very �exible and� in most cases� can do the same thing
several di�erent ways� In general� print takes a series of strings separated by
commas� does any necessary variable interpolation� and then prints out the re
sult� The string concatenation operator ��� is often used with print� All of the
following lines yield the same output�

��

print
But these go to ��n
�
�level 	 �
print
But these go to
��level�
��n
�

print
But these go to �level��n
�
printf
But these go to �d��n
��level�
print
But these
 �
go to
� �level�
��n
�
print join�� ���
But
�
these
�
go
�
to
�
�level��n
���

As you can see� the Cstyle printf command is available� However� because of
Perl�s ability to automatically interpolate numeric values to strings� printf is
rarely needed�

There are� in fact� subtle performance issues that can be addressed with each
of the methods in the example above� Wall and Schwartz�s book� listed in the
references� talks about these issues�

As seen in several of the previous examples� the print command also takes an
optional �lehandle argument�

�� Some Notes about Perl Array Contexts

In C� every expression yields some kind of value� That value can be used as input
to another routine without having to store it in a temporary variable� Thus� you
can do things like chdir�getenv�
HOME
���

In Perl� many routines and contexts yield arrays� These resultant arrays can
be passed to other routines� iterated over� and subscripted� This eliminates the
need for many temporary variables�

Here are a few examples� In this �rst case� we use the sort routine� This
routine takes an array as a parameter and passes back a sorted version of the
same array�

�names 	 �
bill
�
hillary
�
chelsea
�
socks
��
�sorted 	 sort �names�
foreach �name ��sorted�
! print �name�
�n
� "

In fact� one can iterate directly over the output from sort�

foreach �name �sort �names�
! print �name�
�n
� "

��

This example shows that we can even put a subscript on an array context�

�name 	 �getpwuid������ ��
print
my name is
��name�
�n
�

The function getpwuid returns an array� We want the 	real name
 �or GECOS�
�eld from the passwd entry so we put a subscript of � � on the array context and
put the result in �name�

�� Subroutines and Packages

Perl has the ability to do modular programming by way of subroutines and li
braries�

���� Subroutines

Perl scripts can contain functions �usually called 	subs
� which have parameters
and can return values� Listed below is a skeleton for a Perl sub called sub�

sub sub
!

local��param��param�� 	 ���
� do something interesting

�value�
"

This sub can then be called in this way�

�return�val 	 do sub�
this is
�
a test
��

The do can be replaced by)� This is actually the preferred method�

�return�val)sub�
this is
�
a test
��

There are a few thing to keep in mind when writing subroutines� Parameters
are put into the array � inside the routine� Since all variables are global by
default� we use the local�� function to copy the values into local variables�

Perl has a return statement which can be used to explicitly return values� This
is usually unnecessary� however� because the return value from a Perl subroutine
is simply the value of the last statement executed� Thus� if you want a subroutine
to return a zero� the last line of the routine can be ���

��

���� Packages

Perl has a library of useful routines which you can include in your scripts� The
Perl analogue of C�s �include statement is require�

For instance� Perl has a library to do commandline parsing similar to C�s
getopt��� function�

require �getopts�pl��

)Getopts��vhi+���
if ��opt�v� ! print
verbose mode is turned on�n
� "

It is also possible to write your own libraries and include them in other scripts�

�� Prede�ned Variables

Perl has a sizable set of prede�ned variables� These are all documented in detail
in the man pages so I will only describe a few of the common ones�

� Default argument for many routines and syntactic structures�

�$ Status word returned from last system call� The lower bytes contain the signal
upon which the program died �if any� and the upper bytes contain the exit
code�

�� Process ID of script�

�� Real user ID of user running script�

�ARGV Commandline arguments of script� Note that �ARGV��� is the �rst actual
argument� not the name of the program �as in C�� The name of the script is
in the variable ���

�ENV Associative array containing the environment variables of the calling envi
ronment�

�� Command Line Options

Perl has a set of commandline switches� Here are a few of the most useful ones�

�c Check the syntax of a Perl script but do not execute it�

�	

�e Specify Perl code on the command line�

�w Warn the programmer about any questionable uses of variables� These include
variable used only once and variables which are referenced before being as
signed� New Perl programmers are advised to check their scripts with perl
�c �w script�pl�

�� References

���� Manuals and Books

There are several very good references to Perl available� The �rst and foremost
is the Perl manual page� It is about �� pages long and describes all aspects of
Perl� albeit in a terse manner� For me� it is the reference of �rst resort since I
can scan through it in an Emacs bu�er�

The book Programming Perl by Perl author Larry Wall and Randal Schwartz
is the de�nitive compendium of all things Perl� It is known colloquially as 	the
Camel book
 due to O�Reilly and Associates� habit of putting animals on the
covers of their books� in the case a camel� It should be noted� however� that it
is not the best book to buy for learning Perl from scratch simply because it is so
big� It is a better book to read once you know the basics�

There is a book due out sometime this fall by Randal Schwartz called Learning Perl�
It is being written presumably in response to the di�culty of learning Perl from
the Programming Perl book�

There is a Usenet newsgroup devoted to the Perl language called comp�lang�perl�
This is a forum for discussing nuances of Perl and asking questions about the lan
guage� New Perl programmers are encouraged to read the manual pages and the
Perl FAQ �mentioned below� and to consult experienced local Perl programmers
before posting to the group�

���� How to get Perl

The current version of Perl is ������ Although version � is in alpha test right now�
version � is the stable version� Version � can be found via the archie protocol
at hundreds of ftp sites�

I have put the current version of Perl in the anonymous ftp account on my
machine� The code can be found at�

jaameri�gsfc�nasa�gov+�pub�perl�perl����� �tar�gz

�

There are several useful things in that directory� They are�

� perl�mode�el An Emacs major mode for editing Perl code�

� perl�faq The list of FrequentlyAsked Questions about Perl�

� refguide�ps PostScript format reference guide for perl ������

� examples� A directory of example Perl scripts

The directory of example scripts is a good place to start hacking with real Perl
code� Even though I refer to these as 	example
 scripts� they are all real Perl
scripts that I wrote to solve real problems�

I welcome comments� bug �xes� fan mail� et cetera about anything in the ftp di
rectory or about Perl in general� I can be reached at patrick�m�ryan�gsfc�nasa�gov�

��

