CISC 436/636 Computational Biology & Bioinformatics Fall 2016 Homework 4

Due date: December 1, 2016

1. [25 points] RNA secondary structure prediction. For the following RNA sequence

AGACUGUCAC

- a. [10 points] Fill out the DP table in the Nassinov folding algorithm to maximize the intramolecular Watson-Crick pairings.
- b. [10 points] Show the optimal secondary structure predicted by the algorithm.
- c. [5 points] Does the optimal structure have a bifurcation?
- 3. [15 points] Lattice model. A 2D HP model is given with the following energy function:
 - $E_i = -1$ if i-th and j-th residues are topological neighbor and both are hydrophobic = 0, otherwise
 - a. [5 points] For a sequence HHPHHHPHPPH, find the configuration that minimizes the total energy. Draw the configuration and also represent it as a binary string using the following encoding convention: 00 =right, 11 =left, 01 =up, and 10 =down.
 - b. [10 points] For the same sequence in part a, draw the two configurations C1 = 00101110001011100010 and C2 = 01010100001000010111. Calculate the total energy for each configuration. Form a new configuration C3 by crossing over C1 and C2 using the underlined parts. Draw the configuration C3 and calculate its total energy.

3. [30 points] Gene expression analysis. A hierarchical clustering algorithm is given as follows.

Step i. Start with m clusters, each contain one gene, and calculated the m x m symmetric distance matrix D1 (entries d_{IJ}).

Step ii. Determine from D1 which of the genes (or clusters in later iterations) are least distance. Suppose these happen to be genes (or clusters) I and J.

Step iii. Merge I and J into cluster IJ. From a new distance matrix D2 by deleting rows corresponding to I and J and columns I and J, and by adding a new row and column for distances IJ from all remaining genes (or clusters).

The distance between two clusters is calculated with the two schemes.

Single linkage: $d_{IJ} = \min\{d_{ab}: a \in I \text{ and } b \in J\}$ a,bComplete linkage: $d_{IJ} = \max\{d_{ab}: a \in I \text{ and } b \in J\}$ a,b

Step iv. Repeat steps ii and iii a total of m-1 times until a single cluster is formed.

Apply the above hierarchical clustering algorithm to the following hypothetical gene expression data using Euclidean distance.

Gene	exp1	exp2
А	1.0	1.5
В	1.0	1.0
С	3.0	1.0
D	5.5	1.0
E	7.0	1.0
F	7.0	2.0
G	7.0	5.0
Н	6.0	6.0
Ι	8.0	6.0

- a. Use single linkage, and draw the dendrogram.
- b. Use complete linkage, and draw the dendrogram.
- c. Plot the data points, and explain with a diagram why the G, H, I clusters differ for single-linkage and complete-linkage clustering.
- 4. [30 points] **Regulatory network inference**. Given the following data matrix from DNA microarray experiments, use the Boolean network predictor as discussed in the class to infer the genetic network for genes.

	x 1	x2	x3	x4	x5		
$\left(\right)$	0	1	1	1	+	١	P1
	1	0	1	-	1		P2
	0	1	-	1	1		Р3
	1	-	1	1	0		P4
	+	1	1	1	0		Р5

- a. For each pair of experiments where the expression level of gene x5 is changed, give the set of genes that also changed their expression levels in the respective experiments.
- b. Find a minimum set of genes such that it contains at least one gene from each set obtained in part a.
- c. Give the truth table for gene x5's regulation that is compatible with the data matrix. Use * for undecided cases.