CISC 436/636 Computational Biology and Bioinformatics Fall 2016 Homework 3

Due date: November 15, 2016

1. Construct the UPGMA tree for the following distance matrix. Show the partial tree at each step, mark edges with their length.

	А	В	С	D
А	0	3	6	5
В	3	0	7	6
С	6	7	0	3
D	5	6	3	0

- 2. For the same input of problem 1, now reconstruct the tree using the neighbor-joining algorithm. Show the partial tree at each step, mark edges with their length.
- 3. Use the conventional parsimony method to calculate the most parsimonious cost of the tree ((((I, II), (III, IV)), V), VI) given for the following multiple alignment of 6 species. Mark the internal nodes with the hypothetical sequence that achieves the most parsimonious cost.

Sequence	1	2	3	4
I	Т	С	А	А
II	G	С	А	Т
III	Т	Т	Т	Т
IV	G	А	Т	А
V	G	А	А	С
VI	А	Т	А	G

4. For the following tree, calculate the probability P(A, C| T, t1, t2) in the maximum likelihood method as discussed in lecture 15 (slide 8).

