CISC 436/636 Computational Biology & Bioinformatics (Fall 2016)

Hidden Markov Models (I)

- a. The model
- b. The decoding: Viterbi algorithm

Hidden Markov models

- A Markov chain of states
- At each state, there are a set of possible observables (symbols), and
- The states are not directly observable, namely, they are hidden.
- E.g., Casino fraud

- Three major problems
 - Most probable state path
 - The likelihood
 - Parameter estimation for HMMs

A biological example: CpG islands

- Higher rate of Methyl-C mutating to T in CpG dinucleotides → generally lower CpG presence in genome, except at some biologically important ranges, e.g., in promoters, -- called CpG islands.
- The conditional probabilities P_±(N|N')are collected from ~ 60,000 bps human genome sequences, + stands for CpG islands and – for non CpG islands.

\mathbf{P}_+	A C	G	Т	P_	А	С	G	Т	
A	.180 .274	.426	.120	A	.300	.205	.285	.210	
С	.171 .368	.274	.188	С	.322	.298	.078	.302	
G	.161 .339	.375	.125	G	.248	.246	.298	.208	
Т	.079 .355	.384	.182	Т	.177	.239	.292	.292	

Task 1: given a sequence x, determine if it is a CpG island.

Task 2: For a *long* genomic sequence x, label these CpG islands, if there are any.

Approach 1: Adopt the method for Task 1 by calculating the log-odds score for a window of, say, 100 bps around every nucleotide and plotting it.

Problems with this approach:

- Won't do well if CpG islands have sharp boundary and variable length
- No effective way to choose a good Window size.

Approach 2: using hidden Markov model

- The model has two states, "+" for CpG island and "-" for non CpG island. Those numbers are made up here, and shall be fixed by learning from training examples.
- The notations: a_{kl} is the transition probability from state k to state l; $e_k(b)$ is the emission frequency probability that symbol b is seen when in state k.

The probability that sequence x is emitted by a state path π is:

$$P(x, \pi) = \prod_{i=1 \text{ to } L} e_{\pi i} (x_i) a_{\pi i \pi i + 1}$$

i:123456789
x:TGCGCGTAC
$$\pi:--++++---$$

 $P(x, \pi) = 0.338 \times 0.70 \times 0.112 \times 0.30 \times 0.368 \times 0.65 \times 0.274 \times 0.65 \times 0.368 \times 0.65 \times 0.274 \times 0.35 \times 0.338 \times 0.70 \times 0.372 \times 0.70 \times 0.198.$

Then, the probability to observe sequence x in the model is $P(x) = \sum_{\pi} P(x, \pi),$

which is also called the likelihood of the model.

Decoding: Given an observed sequence x, what is the most probable state path, i.e.,

 $\pi^* = \operatorname{argmax}_{\pi} P(x, \pi)$

Q: Given a sequence x of length L, how many state paths do we have?

A: N^L, where N stands for the number of states in the model.

As an exponential function of the input size, it precludes enumerating all possible state paths for computing P(x).

Let $v_k(i)$ be the probability for the most probable path ending at position i with a state k.

Viterbi Algorithm

- Initialization: $v_0(0) = 1$, $v_k(0) = 0$ for k > 0.
- Recursion: $v_k(i) = e_k(x_i) \max_j (v_j(i-1) a_{jk});$ $ptr_i(k) = argmax_j (v_j(i-1) a_{jk});$

Termination:
$$P(x, \pi^*) = \max_k(v_k(L) a_{k0});$$

 $\pi^*_L = \operatorname{argmax}_j(v_j(L) a_{j0});$
Traceback: $\pi^*_{i-1} = \operatorname{ptr}_i(\pi^*_i).$

Casino Fraud: investigation results by Viterbi decoding

32 Hidden Markow 11

57

	5.2 Induen Markov models)/
Rolls Die Viterbi	31511624644664424531132163116415213362514454363165662656666 FFFFFFFFFFFFFFFFFFFFFFFFFFFF	6 L L
Rolls Die Viterbi	651166453132651245636664631636663162326455236266666662515163 LLLLLFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLL	1 F F
Rolls Die Viterbi	22255544166656656356432436413151346514635341112641462625335 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	6 LL FL
Rolls Die Viterbi	36616366646623253441366166116325256246225526525226643535333 LLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFF	FF FF
Rolls Die Viterbi	23312162536441443233516324363366556246666263266661235524524 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	12 FF
Fis	gure 3.5 The numbers show 300 rolls of a die as described in the exam-	

Figure 3.5 The numbers show 300 rolls of a die as described in the example. Below is shown which die was actually used for that roll (F for fair and L for loaded). Under that the prediction by the Viterbi algorithm is shown.

• The log transformation for Viterbi algorithm

 $v_k(i) = e_k(x_i) \max_j (v_j(i-1) a_{jk});$

$$\underline{a}_{jk} = \log a_{jk};$$

$$\underline{e}_{k}(x_{i}) = \log e_{k}(x_{i});$$

$$\underline{v}_{k}(i) = \log v_{k}(i);$$

$$\underline{\mathbf{v}}_{k}(i) = \underline{\mathbf{e}}_{k}(x_{i}) + \max_{j} (\underline{\mathbf{v}}_{j}(i-1) + \underline{\mathbf{a}}_{jk});$$