CISC 436/636 Computational Biology \& Bioinformatics (Fall 2016)

Hidden Markov Models (I)

a. The model
b. The decoding: Viterbi algorithm

Hidden Markov models

- A Markov chain of states
- At each state, there are a set of possible observables (symbols), and
- The states are not directly observable, namely, they are hidden.
- E.g., Casino fraud

- Three major problems
- Most probable state path
- The likelihood
- Parameter estimation for HMMs

A biological example: CpG islands

- Higher rate of Methyl-C mutating to T in CpG dinucleotides \rightarrow generally lower CpG presence in genome, except at some biologically important ranges, e.g., in promoters, -- called CpG islands.
- The conditional probabilities $\mathrm{P}_{ \pm}\left(\mathrm{N} \mid \mathrm{N}^{\prime}\right)$ are collected from $\sim 60,000 \mathrm{bps}$ human genome sequences, + stands for CpG islands and - for non CpG islands.

P_{+}	A	C	G	T
A	.180	.274	.426	.120
C	.171	.368	.274	.188
G	.161	.339	.375	.125
T	.079	.355	.384	.182

P_{-}	A	C	G	T
A	.300	.205	.285	.210
C	.322	.298	.078	.302
G	.248	.246	.298	.208
T	.177	.239	.292	.292

Task 1: given a sequence x , determine if it is a CpG island.

One solution: compute the log-odds ratio scored by the two Markov chains:

$$
\mathrm{S}(\mathrm{x})=\log [\mathrm{P}(\mathrm{x} \mid \text { model }+) / \mathrm{P}(\mathrm{x} \mid \text { model }-)]
$$

where $\mathrm{P}(\mathrm{x} \mid$ model +$)=\mathrm{P}_{+}\left(\mathrm{x}_{2} \mid \mathrm{x}_{1}\right) \mathrm{P}_{+}\left(\mathrm{x}_{3} \mid \mathrm{x}_{2}\right) \ldots \mathrm{P}_{+}\left(\mathrm{x}_{\mathrm{L}} \mid \mathrm{x}_{\mathrm{L}-1}\right)$ and $\mathrm{P}(\mathrm{x} \mid$ model -$)=\mathrm{P}_{-}\left(\mathrm{x}_{2} \mid \mathrm{x}_{1}\right) \mathrm{P}_{-}\left(\mathrm{x}_{3} \mid \mathrm{x}_{2}\right) \ldots \mathrm{P}_{-}\left(\mathrm{x}_{\mathrm{L}} \mid \mathrm{x}_{\mathrm{L}-1}\right)$

Histogram of the length-normalized scores
(CpG sequences are shown as dark shaded)

Task 2: For a long genomic sequence x , label these CpG islands, if there are any.

Approach 1: Adopt the method for Task 1 by calculating the log-odds score for a window of, say, 100 bps around every nucleotide and plotting it.

Problems with this approach:

- Won't do well if CpG islands have sharp boundary and variable length
- No effective way to choose a good Window size.

Approach 2: using hidden Markov model

- The model has two states, "+" for CpG island and "-" for non CpG island. Those numbers are made up here, and shall be fixed by learning from training examples.
- The notations: $a_{k l}$ is the transition probability from state k to state $l ; e_{k}(b)$ is the emission frequency - probability that symbol b is seen when in state k.

The probability that sequence x is emitted by a state path π is:

$$
\mathrm{P}(\mathrm{x}, \pi)=\prod_{\mathrm{i}=1 \text { to } \mathrm{L}} \mathrm{e}_{\pi \mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right) \mathrm{a}_{\pi \mathrm{i} \pi \mathrm{i}+1}
$$

i:123456789
x:TGCGCGTAC
п:--++++---
$\mathrm{P}(\mathrm{x}, \pi)=0.338 \times 0.70 \times 0.112 \times 0.30 \times 0.368 \times 0.65 \times 0.274 \times 0.65 \times 0.368 \times 0.65 \times$ $0.274 \times 0.35 \times 0.338 \times 0.70 \times 0.372 \times 0.70 \times 0.198$.

Then, the probability to observe sequence x in the model is

$$
\mathrm{P}(\mathrm{x})=\Sigma_{\pi} \mathrm{P}(\mathrm{x}, \pi)
$$

which is also called the likelihood of the model.

Decoding: Given an observed sequence \mathbf{x}, what is the most probable state path, i.e.,

$$
\pi^{*}=\operatorname{argmax}_{\pi} \mathbf{P}(\mathbf{x}, \pi)
$$

Q: Given a sequence x of length L, how many state paths do we have?
A: N^{L}, where N stands for the number of states in the model.
As an exponential function of the input size, it precludes enumerating all possible state paths for computing $\mathrm{P}(\mathrm{x})$.

Let $\mathrm{v}_{\mathrm{k}}(\mathrm{i})$ be the probability for the most probable path ending at position i with a state k .

Viterbi Algorithm

Initialization: $\mathrm{v}_{0}(0)=1, \mathrm{v}_{\mathrm{k}}(0)=0$ for $\mathrm{k}>0$.
Recursion: $\quad \mathrm{v}_{\mathrm{k}}(\mathrm{i})=\mathrm{e}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}\right) \max _{\mathrm{j}}\left(\mathrm{v}_{\mathrm{j}}(\mathrm{i}-1) \mathrm{a}_{\mathrm{jk}}\right)$;

$$
\operatorname{ptr}_{\mathrm{i}}(\mathrm{k})=\operatorname{argmax}_{\mathrm{j}}\left(\mathrm{v}_{\mathrm{j}}(\mathrm{i}-1) \mathrm{a}_{\mathrm{jk}}\right) ;
$$

Termination: $\mathrm{P}\left(\mathrm{x}, \pi^{*}\right)=\max _{\mathrm{k}}\left(\mathrm{v}_{\mathrm{k}}(\mathrm{L}) \mathrm{a}_{\mathrm{k} 0}\right)$;

$$
\pi_{\mathrm{L}}^{*}=\operatorname{argmax}_{\mathrm{j}}\left(\mathrm{v}_{\mathrm{j}}(\mathrm{~L}) \mathrm{a}_{\mathrm{j} 0}\right) ;
$$

Traceback: $\quad \pi^{*}{ }_{\mathrm{i}-1}=\operatorname{ptr}_{\mathrm{i}}\left(\pi_{\mathrm{i}}^{*}\right)$.

Casino Fraud: investigation results by Viterbi decoding

3.2 Hidden Markov models 57
Rolls
315116246446644245311321631164152133625144543631656626566666
FFFLLLLLLLLLLLLLLL
FFLLLLLLLLLLLL

```
Die
Viterbi
```

```
Rolls
```

Rolls
Die
Die
651166453132651245636664631636663162326455236266666625151631
651166453132651245636664631636663162326455236266666625151631
LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLLFFFFFFFFF
LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLLFFFFFFFFF
Viterbi LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF
Viterbi LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF
Rolls 222555441666566563564324364131513465146353411126414626253356
Die FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL
Viterbi FFFL
Rol1s 366163666466232534413661661163252562462255265252266435353336
Die
LLLLLLLLFF
Viterbi LLLLLLLLLLLLFF
Rolls 233121625364414432335163243633665562466662632666612355245242
Die
FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

```

Figure 3.5 The numbers show 300 rolls of a die as described in the example. Below is shown which die was actually used for that roll ( \(F\) for fair and \(L\) for loaded). Under that the prediction by the Viterbi algorithm is shown.

CISC636, F16, Lec9, Liao
- The log transformation for Viterbi algorithm
\[
\mathrm{v}_{\mathrm{k}}(\mathrm{i})=\mathrm{e}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}\right) \max _{\mathrm{j}}\left(\mathrm{v}_{\mathrm{j}}(\mathrm{i}-1) \mathrm{a}_{\mathrm{jk}}\right) ;
\]
\[
\begin{aligned}
& \underline{\boldsymbol{a}}_{\mathrm{jk}}=\log \mathrm{a}_{\mathrm{jk}} \\
& \boldsymbol{\underline { e }}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}\right)=\log \mathrm{e}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}\right) \\
& \underline{\boldsymbol{v}}_{\mathrm{k}}(\mathrm{i})=\log _{\mathrm{v}_{\mathrm{k}}}(\mathrm{i})
\end{aligned}
\]
\[
\underline{\boldsymbol{v}}_{\mathrm{k}}(\mathrm{i})=\underline{\boldsymbol{e}}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}\right)+\max _{\mathrm{j}}\left(\underline{v}_{\mathrm{j}}(\mathrm{i}-1)+\underline{\boldsymbol{a}}_{\mathrm{jk}}\right) ;
\]```

